长江上游鱼类体内多环芳烃的含量及饲料菲对中华倒刺鲃生态毒理学影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Polycyclic Aromatic Hydrocarbons in Fish from the Upper Reaches of the Yangtze River and Ecotoxicological Effects of the Dietary Phenanthrene (PHE) on Spinibarbus Sinensis
  • 作者:王汨
  • 论文级别:博士
  • 学科专业名称:水生生物学
  • 学位年度:2013
  • 导师:谢小军
  • 学科代码:071004
  • 学位授予单位:西南大学
  • 论文提交日期:2013-04-10
摘要
本研究进行了野外调查和实验室观测两个系列的实验。
     系列一是调查多环芳烃(PAHs)在长江上游鱼类体内的含量和分布情况。于2010年9一11月在长江朱杨江段采集到10种鱼类标本,分别为中华倒刺鲃(Spinilbarbus sinensis Linnaeus)、瓦氏黄颡鱼(Pelteobagrus vachelli Richardson)、圆筒吻鮈(Rhinogobio cylindricus Gunther)、鲤(Cyprinus carpio Linnaeus)、鱼即(Carassius auratus Linnaeus)、大眼鳜(Siniperca kneri Garman)、铜鱼(Coreius heterodon Bleeker)、圆口铜鱼(Coreius guichenoti Sauvage et Dabry)、大鳍鳠(Mystus macropterus B leeker)和鲇(Silurus asotus Linnaeus);在该江段上游支流沱江富顺江段采集到6种鱼类标本,分别为鲫、黄颡鱼(Pelteobagrus fulvidraco Richardson)、鲤、大眼鳜、大鳍鳠和鲇。每种鱼的样本量为3—11尾,共计195尾。采用快速溶剂萃取及气相色谱法对鱼体中的16种多环芳烃含量进行检测。系列二是实验室条件下含菲(PAHs物质之一)食物暴露实验。以中华倒刺鲃(Spinibarbus sinensis)为实验对象(该种鱼在系列一实验中被发现含PAHs总量在所测种类中最多,且为长江上游特有珍稀鱼类),以菲(Phenanthrene, PHE)为毒物,配制含PHE的人上饲料进行投喂。在水温27.5℃下的条件下,进行了两个部分的实验:1、饲料中不同浓度PHE暴露实验。PHE含量分别为0、500、1000和1500μg/g的饲料,喂养中华倒刺鳃16周后取样;2、饲料PHE不同暴露时间实验。以PHE含量为0和1000μg/g的饲料,分别喂养中华倒刺鲃0、1、3、7、14、28、42、56、84和112天后取样。分别观测了上述两类处理的实验鱼体的抗氧化胁迫能力、代谢能力、生长状态和体内PHE累积等方面的指标。
     由实验系列一所得结果如下:
     1、在长江干流朱杨江段所采集到的10种鱼体样本中均检测到了多种PAHs的存在,其中中华倒刺鲃鱼体内PAHs总量(ΣPAHs)最高,其含量为(2.91±0.45)μg/g;鲇体内ΣPAHs最低,其含量为(0.52±0.04)μg/g。
     2、在沱江富顺江段采集到的6种鱼均检测到多种PAHs存在,其中鲫体内ΣPAHs最高,为(8.50±1.13)μg/g;鲇体内ΣPAHs最低,其含量为(1.30±0.07)μg/g。
     3、采集自长江朱杨段和沱江富顺段两采集地的相同种类有5种,富顺段5种鱼体内ΣPAHs均分别高于朱杨段同种类鱼体内的含量;除大眼鳜外,其余4种鱼的差异均达到显著水平。富顺江段鱼类体内高分子量PAHs比例较高,而朱杨江段鱼类体内富集的低分子量PAHs和中分子量PAHs的比例较高。
     由实验系列二所得结果如下:
     1、饲料中PHE含量水平未对血清中的红细胞数目、血红蛋白和总蛋白造成显著差异;血糖含量随饲料中PHE浓度含量水平的升高表现出先升高后降低的趋势,且各染毒组均显著高于空白对照组(p<0.05);球蛋白含量在500μgPHE/g组显著高于对照组(p<0.05),白蛋白含量则在500μg PHE/g组显著低于对照组(p<0.05),而这两个指标在其余含毒饲料组与空白对照组间均无显著差异。
     2、血清谷丙转氨酶活性随饲料PHE含量水平的升高表现出升高的趋势,仅在最高浓度组(1500μg PHE/g组)时与空白对照组的差异达到显著水平(p<0.05);谷草转氨酶也随饲料中PHE含量水平的升高而升高,1000μg PHE/g和1500μgPHE/g组与空白对照组之间差异达到显著水平(p<0.05)。
     3、肝糖原随饲料中PHE浓度含量水平的升高而降低,且各组间的差异均达到了显著水平(p<0.05);各实验处理组的肌糖原含量均显著低于对照组(p<0.05),而3个染毒饲料组之间无显著差异。
     4、脑组织中乙酰胆碱酯酶(TChE)活性随着饲料中PHE含量水平增高而降低,且各实验处理组之间的差异显著;该活性还随着PHE食物暴露时间的延长而降低,从染毒的第7天开始,染毒组活性显著低于空白对照组(p<0.05)。
     5、肝胰脏、肠和鳃组织中丙二醛(MDA)含量随着饲料中PHE含量水平的增高而增高,在肠和鳃组织中,各处理组之间的差异达到显著;在肝胰脏组织中,500μg PHE/g组与空白组之间差异不显著,其余各组间差异显著。这3种组织的MDA含量还随着PHE食物暴露时间的延长而增高。其中,肝胰脏和肠组织中MDA含量均于染毒第3天开始显著高于空白对照组(p<0.05);鳃组织中MDA含量水平从第84天开始显著高于空白对照组(p<0.05)。
     6、随着饲料中PHE含量水平的增高,实验鱼肝胰脏和肠组织中总抗氧化能力(T-AOC)随之降低。各染毒组的肝胰脏组织中T-AOC水平与空白对照组之间的差异显著(p<0.05)。各染毒组肠组织中T-AOC水平差异显著(p<0.05)。随着染毒时间的延长,实验鱼体的肝胰脏组织T-AOC水平呈“降低-升高-降低”趋势;肠组织T-AOC水平呈“升高-降低”趋势;鳃组织T-AOC水平呈一直升高的趋势。
     7、实验鱼肝胰脏、肠和鳃组织中谷胱甘肽-S-转移酶(GST)活性随着饲料中PHE含量水平的增高而降低。各染毒组肝胰脏GST活性均显著低于空白对照组(p<0.05)。肠组织GST活性在各处理组间的差异均达到显著水平(p<0.05)。1500μg PHE/g组鳃组织GST活性显著低于其余3组(p<0.05),其余3组间无显著差异。随着染毒时间的延长,染毒组肝胰脏组织GST活性呈“降低-升高-降低”趋势;肠组织GST活性呈“升高-降低”趋势。
     8、实验鱼体的标准体重代谢率(MS)随着饲料中PHE含量水平的升高而升高,1000和1500μg PHE/g组的MS显著高于空白对照组,且二者间差异显著(p<0.05)。MS还随着PHE食物暴露时间的延长而升高,从染毒第7天开始显著高于空白对照组(p<0.05)。
     9、实验鱼肝胰脏组织线粒体的状态3呼吸率随着饲料中PHE含量水平的增高而增高。1000和1500μg PHE/g组肝胰脏组织线粒体呼吸率显著高于空白对照组,且二者间差异显著(p<0.05)。该呼吸率还随染毒时间的延长而增高,从染毒的第56天开始,染毒组肝胰脏组织线粒体呼吸率显著高于空白对照组(p<0.05)。
     10、实验鱼的摄食量和饲料效率随着饲料中PHE含量水平的升高而降低;其中,500、1000和1500μg PHE/g组摄食量之间的差异不显著,但三者均显著低于空白对照组(p<0.05);各染毒组饲料效率差异显著(p<0.05)。这两个指标还随着染毒时间的延长而降低,分别从染毒的第14和28天开始显著低于空白对照组(p<0.05)。
     11、实验鱼的器官指数随着饲料中PHE含量水平增高而升高;肝胰脏指数在500和1000μg PHE/g组之间无显著差异,二者与空白对照及1500μg PHE/g组之间的差异达到显著水平(p<0.05)。500μg PHE/g组肠指数与空白对照组差异不显著,其余各组间差异均显著(p<0.05)。
     12、实验鱼体的特定体重生长率随着饲料中PHE含量水平的增高而降低,各实验处理组之间的差异显著(p<0.05)。该值也随着染毒时间的延长而降低,从14天开始与空白组间的差异显著(p<0.05)。
     13、鱼体肥满度随着饲料中PHE水平的升高而降低。其中500和1000μg PHE/g组差异不显著,但二者均显著高于1500μg PHE/g组而显著低于空白对照组(p<0.05)。
     14、实验鱼体对饲料中PHE的摄入量、日粮水平、累积量和累积率均随着饲料中PHE含量水平的升高而增高,月.各组间差异均显著(p<0.05)。
     15、肝胰脏、肠和肌肉组织对于饲料中PHE的累积量PHE/g)随着饲料中PHE含量水平的升高而升高。同一染毒组个体不同器官组织的PHE含量从高到低依次均为:肝胰脏>肠>肌肉;其中,肌肉的PHE含量与饲料PHE含量水平的相关关系为:y=0.038x-2.900(r2=0.978)。这3种组织的PHE含量也随着染毒时间的延长而增高;在1000μg PHE/g饲料条件下,肌肉的PHE含量与食物PHE暴露时间的相关关系为:y=0.341x+0.791(r2=0.942)。
     通过讨论得出以下结论:
     1、长江朱杨段及其支流沱江富顺段的鱼类均受到了PAHs的污染,而沱江鱼类受PAHs的污染程度高于长江干流朱杨段鱼类。
     2、沱江富顺段鱼体所含的高分子量PAHs组成百分比高于长江干流朱杨段的鱼体,而中、低分子量PAHs组成百分比相对于干流鱼类较低,表明两个江段PAHs的污染源不同。
     3、中华倒刺鲃血液学指标、肝胰脏指数和糖原含量受到饲料中PHE含量水平的影响,PHE对鱼体的肝胰脏组织造成了组织损伤,并干扰了鱼体正常的碳水化合物代谢过程。
     4、PHE食物暴露会导致鱼体组织器官的氧化损伤并抑制鱼体相应解毒酶系统的活性,可引起鱼类肝脏和肠道出现组织增大等形态结构特征的改变;且这些毒性胁迫会随着PHE暴露的浓度增长或时间延长而加剧。
     5、中华倒刺鳃静止代谢率和肝胰脏组织线粒体呼吸耗氧率随着暴露浓度的增高和染毒时间的延长而增高,表明鱼体可通过生理性调节,提高其代谢强度,以满足机体抵抗PHE食物暴露胁迫的有关生理过程对能量的额外需求。
     6、染毒组中华倒刺鳃的生长率、摄食率、饲料效率等生长状态指标的下降与鱼体的代谢增强,糖原含量降低,解毒酶系统功能调整等现象相伴而发生,表明染毒鱼体生长率较低的主要原因是外源能量摄入不足和额外代谢能量消耗。
     7、在食物中一定浓度的PHE暴露下,中华倒刺鳃鱼体各器官所累积的PHE浓度不同,表明PHE在鱼体内的累积与分布具有器官及组织的特异性。
     8、根据我国食品安全标准进行估算,为保证鱼体肌肉中PHE含量不超标,对中华倒刺鲃饲喂16周时所采用的食物中PHE含量不得高于207.90μg/g;若PHE食物暴露的浓度达到1000μg/g时,则暴露天数最多不得超过12天。
Two series of experiments were carried out in this study:field investigation and observation in laboratory.
     The experiment I was conducted on the contents and distribution of polycyclic aromatic hydrocarbons (PAHs) in the fishes from the upper reaches of the Yangtze River. From September to November in2010, the samples of10species were collected from the Zhuyang section of the Yangtze River, including Spinilbarbus sinensis, Pelteobagrus vachelli, Rhinogobio cylindricus, Cyprinus carpio, Carassius auratus, Siniperca kneri, Coreius heterodon, Coreius guichenoti, Mystus macropterus, and Silurus asotus. And the samples of6species were collected from the Fushun section of the Tuo River, a tributary of the Yangtze River, including Carassius auratus, Pelteobagrus fulvidraco, Cyprinus carpio, Siniperca kneri, Mystus macropterus, and Silurus asotus. The sample size for each fish species was3-11, totaling195. The contents of16polycyclic aromatic hydrocarbons (PAHs) in each sample were measured by the accelerated solvent extraction and gas chromatography. The experiment Ⅱ was conducted on effects of deitary phenanthrene (PHE, one of PAHs) on Spinibarbus sinensis in the laboratory conditions. Two treatments were carried out in this experiment. One was different levels of dietary PHE exposure. The tested fish was fed by experimental diets with different PHE contents (0,500,1000and1500μg/g) for16weeks. The other was different exposure time to dietary PHE. The diets containing0and1000PHE μg/g were used to feed the fish for0,1,3,7,14,28,42,56,84and112 days, respectively. The ability of anti-oxidative stress, hematological index, energy metabolism, growth performance and PHE accumulation were measured in the tested fish at each sampling time.
     The main results from experiment I were as follows:
     1. Various kinds of PAHs were detected in the10species of fish collected from the Zhuyang section of the Yangtze River. Spinibarbus sinensis had the highest total content of PAHs (ΣPAHs)[(2.91±0.45) μg/g], and Silurus asotus had the lowest ΣPAHs [(0.52±0.04) μg/g].
     2. Various kinds of PAHs were detected in the6species of fish collected from the Fushun section of the Tuo River. Carassius auratus had the highest ΣPAHs [(8.50±1.13) μg/g], and Silurus asotus had the lowest ΣPAHs [(1.30±0.07) μg/g].
     3. Comparing the five same species collected from the Zhuyang section to those from the Fushun section, each of the latter showed higher contents of ΣPAHs than its counterpart of the former, with significant differences in all pairs except Siniperca kneri. The fishes from the Fushun section contained a higher percentage of high-molecular-weight PAHs (HMW-PAHs), while those from the Zhuyang section contained higher percentages of low-molecular-weight PAHs (LMW-PAHs) and medium-molecular-weight PAHs (MMW-PAHs).
     The main results from experiment II were as follows:
     1. There were no significant differences in the number of red blood cells, hemoglobin and total protein in the serum among the different groups. Glucose content in the tested groups showed a "up-down" trend with increasing of the dietary PHE concentration, and that in each group exposed to dietary PHE was significantly higher than that in the control group (p<0.05), respectively. The contents of the globulin in the group of500μg PHE/g were significantly higher than that in the control group; the contents of the albumin in the group of500μg PHE/g were significantly lower than that in the control group (p<0.05); there were no significant differences of the two values in the other two groups with dietary PHE (1000and1500μg PHE/g) compared with the control.
     2. The activity of alanine aminotransferase increased with the concentration of dietary PHE increasing, but the difference reached significant only between the group of1500μg PHE/g and the control (p<0.05). The activity of aspartate aminotransferase also increased with the concentration of PHE increasing, and the values in the groups at1000and1500μg PHE/g were significantly higher than that in the control group (p<0.05).
     3. The content of glycogen in hepatopancreas decreased with the dietary PHE increasing, all the differences between the every two tested groups showed significant (p<0.05). The muscle glycogen in the three groups with dietary PHE exposure were significantly lower than that in the control group (p<0.05), but there was no significant difference among them.
     4. The activity of acetylcholinesterase (TChE) in the brain decreased with the increasing of the dietary PHE level. With the exposure time extension, the activity of TChE in the PHE exposed group was significantly lower than that of the control groups at the7th day and the latter(p<0.05).
     5. The malonaldehyde (MDA) contents in hepatopancreas, gut and gill increased with the increasing of dietary PHE level. All the differences in guts and gills between the every two tested groups showed significant (p<0.05). In hepatopancreas there was no significant difference betweent500μg PHE/g group and the control, but there were significant differences among the other groups (p<0.05). The MDA contents in hepatopancreas, gut and gill also increased with the exposure time extension. The MDA contents of the hepatopancreas and gut in PHE exposed group were significantly higher than that in the control group at the3rd day and the latter (p<0.05); the MDA content in gill was significantly higher than the control groupat the84th day and the latter (p<0.05).
     6. With the increasing of dietay PHE level, the total antioxidant capacity (T-AOC) in the hepatopancreas and gut decreased. There was a significant difference in T-AOC level of hepatopancreas between each of the PHE exposed groups and the control group; there was no significant difference in the value between500and1000μg PHE/g group, but those in both groups were significantly higher than that in1500μg PHE/g group (p<0.05), respectively. With extension of the exposure time, T-AOC level in the hepatopancreas in the PHE exposed group showed a "down-up-down" trend, that of gut showed an "up-down" trend, and that of gill showed an increasing trend.
     7. The activity of glutathione-S-transferase (GST) in the hepatopancreas, gut and gill decreased with dietary PHE level increasing. The GST activity in the hepatopancreas in each of PHE exposed groups were significantly lower than that in the control group (p<0.05). And there were significant differences in the activities of the gut among the different groups (p<0.05). The GST activity of the gill in1500μg PHE/g group was significantly lower than that in each of the other three groups (p<0.05), and there was no significant difference among the other three groups. With the exposure time extension, GST activity in the hepatopancreas of the exposure groups showed a "down-up-down" trend; that in gut showed an "up-down" trend.
     8. The resting metabolic rate for the standard body weight (MS) increased with the increasing of the dietary PHE level. MS in1500μg PHE/g group was significant higher than that in1000μg PHE/g group (p<0.05), each of them was significantly higher than the control (p<0.05). MS increased with the exposure extension, that in the PHE exposed group was significantly higher than that in the control group at the7th day and the latter (p<0.05).
     9. The mitochondrial State3respiration rate in the hepatopancreas increased with the increasing of the dietary PHE level. The respiration rates in1000and1500μg PHE/g group were significantly higher than that in the control, and difference was significant between the two groups(p<0.05). With the extension of exposure time, State3respiration rates in the PHE exposed group decreased and it was significantly higher than that of the control group at the56th day and the latter (p<0.05).
     10. The feed intake and feed efficiency decreased with the increasing of dietary PHE level. There were no significantly differences among the feed intakes in500,1000and1500μg PHE/g groups, but those in each of them was significantly lower than that in the control group (p<0.05); the feed efficiencies among each of the exposure groups was significantly different (p<0.05). With the extension of exposure time, the feed intake and feed efficiency of the PHE exposed group were significantly lower than those in the control group (p<0.05) at the14th and28th days, respectively.
     11. The organ index increased with the increasing of the dietary PHE level. Hepatopancreas index between500and1000μg PHE/g groups was not significantly different. But those in the two groups were significantly higher than that in the control and lower than that in1500μg PHE/g group (p<0.05). The intestinal index in500μg PHE/g group was not significantly different from the control group, but there were significant difference among the other groups (p<0.05).
     12. The specific growth rates of body weight (SGR) of the tested fish decreased with the increasing of the dietary PHE level. SGR among the different groups were significantly different (p<0.05). With the exposure time extension, SGRs in the exposure groups were significantly lower than that in the control group at the14th day and the latter(p<0.05).
     13. The condition factor of fish decreased with the increasing of the dietary PHE level. The condition factor between500and1000μg PHE/g groups were not significantly different (p<0.05), but they were significantly higher than that in1500μg PHE/g group (p<0.05) and also were significantly lower than that in the control (p <0.05)。
     14. The PHE intake, dietary PHE ration level, PHE accumulation and the ratio of accumulation in the bodies increased with the increasing of the dietary PHE level. All the values among the different groups were different significantly (p<0.05).
     15. The PHE accumulation in the hepatopancreas, intestine and muscle increased with the increasing of the dietary PHE level. The PHE contents of different organs in the same exposure groups declined in the following order:hepatopancreas> intestine> muscle. The regression relationship of PHE contents in the muscle with the dietary PHE level could be described as:y=0.038x-2.900(r=0.978, p<0.05). The regression relationship of PHE content in the muscle with the exposure time could be described as: y=0.341x+0.791(r2=0.942, p<0.05).
     The conclusions suggested by the discussion were as follows:
     1. The fishes from the Zhuyang section of the Yangtze River and those from the Fushun section of the Tuo River are contaminated by PAHs, more serious in the latter.
     2. The fishes from the Fushun section contained a higher percentage of HMW-PAHs but lower percentages of MMW-PAHs and LMW-PAHs, as compared with those from the Zhuyang section, which may be due to the difference in pollution source of PAHs between the two river sections.
     3. The hematological index, hepatopancreas index and glycogen content in Spinilbarbus sinensis were influenced by the dietary PHE level. PHE damaged the normal function of the hepatopancreas as well as the carbohydrate metabolism.
     4. PHE exposure could cause peroxidation damage to the tissues and organs, impairment of detoxification enzyme system, and histological changes in this fish such as enlargement of the hepatopancreas and intestinal tract. All of the toxicological stress would be worse with the increasing of dietary PHE level or extension of PHE exposure time.
     5. The resting metabolic rate and respiratory rate of mitochondria in the hepatopancreas tissue increased with the increasing of dietary PHE exposure concentration and extension of its exposure time, which suggested that the metabolic rate would increase by physiological adjustment in the fish with dietary PHE exposure to supply extra energy for resisting the toxicological stress.
     6. The descend of growth performance (growth rate, feed efficiency, etc.) were accompanied with the metabolism boosting, glycogen contents descend, adjustment of detoxification enzyme activity and so on, which suggested that the lower growth rate in the tested fish was due to insufficiency of its exogenous energy intake and extra cost of the energy for resisting toxico logical stress.
     7. Under a certain concentration of dietary PHE exposure, the PHE accumulations in various organs of Spinilbarbus sinensis were different, which suggested that PHE accumulation and distribution in this fish should be tissue and organ-specific.
     8. Based on the national food safety standard in P.R.China, to control the PHE content of the muscle in Spinilbarbus sinensis below the permitted level, the dietary PHE concentration should not be over207.90μg/g when the fish was fed no longer for16weeks, and it should be fed no longer for12days when the dietary PHE is1000μg/g.
引文
邴旭文,蔡宝玉,王利平.中华倒刺鲃肌肉营养成分与品质的评价.中国水产科学,2005,12(2):211-215.
    蔡立哲,马丽,袁东星等.九龙江口红树林区底栖动物体内的PAHs海洋学报,2005,27(5):112-118
    曹六俊,叶丽丽,赵蕾等.内江市主城区沱江丰水期水质调查研究.内江师范学院院报,2008,23(1):263-266.
    曹治国,刘静玲,栾芸等.滦河流域PAHs的污染特征,风险评价与来源辨析.环境科学学报,2010,30(2):246-253.
    陈昌平,谢华平.中华倒刺鲃对铜的富集研究.水利渔业,2007,27(3):106-107
    陈加平,徐立红,吴振斌等.苯并[a]芘致毒的鱼的分子生态毒理学指标研究.中国环境科学,1999,19(5):417-420
    陈巍,马会民.活性氧物种的氧杂蒽类光学探针的研究进展.分析化学研究,2012,40(9):1311-1321
    陈奕欣,王重刚,李钦等.苯并[a]芘和芘对梭鱼肝脏DNA损伤的研究.海洋学报,2000,22(2):92-96
    丛伟,工新红.苯并[a]芘对真鲷胚胎EROD活性影响的测定.厦门大学学报(自然科学版),2007,46(1):120-123
    邓利,谢小军.南方鲇的营养学研究:1.人工饲料的消化率.水生生物学报,2000,24(4)347-355.
    丁瑞华.四川鱼类志.成都:四川科学技术出版社,1994.
    丁志强.重金属(铜、锌和汞)对中华倒刺鲃生物毒性效应的研究:[硕士学位论文].重庆:西南大学,2008.
    窦晗,常彪,魏志成等.国内民用燃煤烟气中PAHs排放因子研究.环境科学学报,2007,27:1783-1788.
    段新斌,陈大庆,刘劭平等.长江三峡库区鱼类资源现状的研究.水生生物学报,2002,26,605-611
    方杰.浙江沿海沉积物和¨海洋生物中持久性有机污染物及重金属的分析与研究:[博士学位论文].浙江:浙汀大学,2007
    方展强,王春凤.硒对汞致剑尾鱼鳃和肝组织总抗氧化能力变化的拮抗作用.实验动物与比较医学,2005,25(3):136-139.
    冯涛,魏凤琴,欧阳高亮等.苯并[a]芘对大弹涂鱼干细胞超微结构的影响.应用生态学报, 2003,14(1):1780-1782.
    郭志顺,罗财红,张卫东等.三峡库区重庆段江水中持久性有机污染物污染状况分析.中国环境监测,2006,22(4):45-48.
    郭志顺,罗财红,张卫东.三峡库区重庆段江水中持久性有机污染物污染状况分析.四川大学学报(自然科学版),2006a,43(6):1337-1340
    郭志顺,罗财红,张卫东等.三峡库区重庆段江水中持久性有机污染物污染状况分析.中国环境监测,2006b,22(4):45-48
    韩非PAHs来源与分布及迁移规律研究概述.气象与环境学报,2007,23(4):57-61
    黄菲,胡莹莹,焦艳等.菲(PHE)短期暴露对斑马鱼(Branchy danio rerio)繁殖行为及产卵、受精、孵化和仔鱼死亡率的影响.北京师范大学学报(自然科学版),2010,46(1):63-67.
    计勇,陆光华.污染水体的总抗氧化能力生物标志物研究.中国环境科学,2010,30(3):395-399
    江锦花.近海海洋环境中PAHs的浓度水平及来源分析:[硕士学位论文].浙江:浙江大学,2006
    蒋冬梅.重庆市城乡居民膳食结构与重金属摄入水平研究:[硕士学位论文].重庆:西南大学,2007
    匡少平,孙东亚PAHs的毒理学特征与生物标记物研究.世界科技研究与发展,2007,29(2):41-47
    李康,周忠良,陈立侨等,2006.苯并[a]芘对鲫鱼生物标志物的影响研究.环境科学研究,2006,19(1):91-95.
    梁艳,2010.鱼类体内PAHs生物标志物研究综述.上海环境科学,2010,29(4):157-160.
    梁艳.长江嘉陵江重庆段PAHs污染状况及风险评价:[硕士学位论文].重庆:重庆大学,2009.
    廖伏初,何兴春,何望等.洞庭湖渔业资源与生态环境现状及保护对策.岳阳职业技术学院学报,2006,21(6):32-37
    林浩然.鱼类生理学.广州:广东高等教育出版社,1997.
    林建清,王新红,洪华生等.湄洲湾表层沉积物中PAHs的含量分布及来源分析.厦门大学学报(自然科学版),2003,42(5):633-638.
    林建清.生物标志物法研究PAHs对海水养殖鱼类的毒性效应:[博士学位论文].厦门,厦门大学,2002.
    林小植,谢小军,罗毅平.中华倒刺鲃幼鱼饲料蛋白质需求量的研究.水生生物学报,2009,33(4):416-423.
    刘绍平,段辛斌,陈大庆等.长江中游渔业资源现状研究.水生生物学报,2005,29(6)708-711.
    刘晓宇,王斌,吴谋成等.卿鱼肝脏AchE的提取及有机磷农药对AChE的抑制效应研究.食品科学,2007,28(4):191-194
    刘志.重金属离子对褐牙鲆毒性效应的研究:[硕士学位论文].青岛:中国海洋大学,2005.
    马健,翟永越,王东辉PAHs在松花江水环境中的富集及对生态环境的影响,环境科学与管理2006,31(1):91-92
    孟顺龙.除草剂阿特拉津对鲫鱼的毒性影响研究:[硕士学位论文].南京:南京农业大学,2007
    孟紫强.生态毒理学原理和方法.北京:科学出版社,2006.
    穆景利.苯并(a)芘在黑鲷(Sparus macrocephalus)体内代谢转化机制的初步研究:[硕士学位论文].厦门:厦门大学,2006
    聂麦茜,张志杰.环境中PAHs污染规律及其生物净化技术.环境导报,2001,1:18-21.
    潘晓群,袁宝君,史祖民等.江苏省城乡居民膳食状况调查研究.江苏预防医学,2007,18(4):6-9
    孙翰昌,丁诗华,陈大庆等.Cu2+对中华倒刺鲃抗氧化功能的毒理效应.农业环境科学学报,2006,25(1):69-72.
    孙翰昌,耿晓修,张芬.3种刺激性渔药对中华倒刺鳃幼鱼的急性毒性试验.南方水产,2006,2(6);59-62
    孙红文,李书霞PAHs的光致毒效应.环境科学进展,1998,6(6):1-11.
    谭树华,何典翼,严芳等.亚硝酸钠对鲫鱼肝脏丙二醛含量和总抗氧化能力的影响.农业环境科学学报,2005,24:21-24.
    唐阵武,程家丽,张化永等.长江武汉段水体有机污染的健康风险评价.水利学报,2009,40(9):1064-1069
    王彻华,彭彪.长江干流主要城市江段微量有机物污染分析.人民长江,2001,32(7):20-23.
    王隽媛,边红枫,金香琴.荼对斑马鱼(Danio rerio)内脏团抗氧化防御系统的胁迫与生物响应.环境科学,2009,30(2):516-521.
    王泪,闫玉莲,李健,等.长江朱扬江段和沱江富顺江段16种PAHs的含量.水生生物学报,2013,37(2):358-366
    王云.苯并[a]芘、三丁基锡及其混合物对褐菖鲉的毒性效应:[博士学位论文].厦门:厦门大学,2007
    王重刚,陈奕欣,郑微云等.笨并[a]芘和芘的混合物暴露对梭鱼脾脏抗氧化防御系统的影响.海洋学报,2003,25:135-139
    翁朝红,工新红,王淑红等.苯并[a]芘暴露引起黑鲷肝、脾、肠组织病理变化.集美大学学报,2008,13(4):309-314.
    翁朝红,王新红,王淑红等.苯并[a]芘暴露引起黑鲷肝、脾、肠组织病理变化.集美大学学报(自然科学版),2008,13(4):309-314.
    吴玲玲,陈玲,张亚雷等.菲对斑马鱼鳃和肝组织结构的影响.生态学杂志,2007,26(5)688-692.
    吴文婧,谢金开,徐福留等.苯并[a]芘在四种食用淡水鱼中的含量和分布.环境科学学报,2008,28(10):2072-2077.
    吴雪美.食品中PAHs物质分析方法比较研究:[硕士学位论文].浙江:浙江工业大学,2008.
    吴玉琼.苯并[a]芘、三丁基锡及其混合物对褐菖鲉抗氧化防御系统的影响:[硕士学位论文].厦门:厦门大学,2007.
    肖玖金,李旭东,王红磊,等.沱江水质现状评价与变化趋势分析.中国给水排水,2010,26(22):119-120]
    熊毅,高旭,郭劲松等.三峡库区城市给水厂PAHs含量水平评价.重庆大学学报《自然科学版),2005,28(7):90-92
    徐恩斌,张忠兵,谢渭芬等.乙酰胆碱酯酶的研究进展.国际病理科学与临床杂志,2003,23(1):73-75
    许川,舒为群,罗财红等.三峡库区水环境PAHs和邻苯二甲酸酯类有机污染物健康风险评价.环境科学研究,2007,20(5):57-60
    许艳秋.长江中上游重庆主城区水体有机污染概况及典型有机污染物的环境迁移行为初探:[硕士学位论文].重庆:西南大学,2010.
    闫玉莲,谢小军,袁伦强.温度对南方鲇肝组织离体线粒体代谢耗氧率的影响.水生生物学报,2008,32(2):237-243
    杨发忠,颜阳,张泽志等PAHs研究进展.云南化工,2005,32(2):42-48.
    杨毅,刘敏,侯立军等.海岸带水环境中PAHs的归宿研究.海洋环境科学,2003,22(1):69-74
    殷名称.鱼类生态学.北京:中国农业出版社.1998.
    袁伦强.多氯联苯PCB126对南方鲇的生理生态学影响:[博士学位论文].重庆:西南大学,2009
    张蕾,徐镜波.硝基芳烃对虹鱂鱼(Poecilia retictulata)的毒性.生态环境,2004,13(1):31-33.
    张春玲,胡俊峰,王丕文,等.苯并[a]芘对鲫鱼肝脏总抗氧化能力的影响.环境与健康杂志,2004,21(5):325-326.
    张芹,郭志顺,周谐.三峡库区重庆段鲶鱼和鲤鱼体内持久性有机污染物分析.四川环境2007,26(2):14-16.
    张文兵,谢小军,付世建等.南方鲇的营养学研究:饲料的最适蛋白质含量[J].水生生物学报,2000,24(6):603-609.
    张喜南.动物生物化学.北京:高等教育出版社.1992,253-255.
    赵建庄,梁桂芝,柴丽娜等.乙酰胆碱酯酶分离纯化的方法.北京农学院院报,2003,18(4):249-251.
    郑荣辉,王重刚PAHs对鱼类生殖机能的影响.台湾海峡,2004,23(2):245-252.
    周兰,陈昌明,彭坤辉.四种常用药物对中华倒刺鲤的急性毒性.重庆水产,2005,2:38-41.
    周启星,孔凡翔,朱琳.生态毒理学.北京:科学出版社,2004:226-227
    周玉,郭文场,杨振国等.鱼类血液学研究进展.上海水产大学学报,2001,10(2):163-165
    朱必风,邓少平,林志红.芳烃羧化酶与鲫鱼组织地记PAHs和代谢释放的关系.中国环境科学,1996,16(1):38-41.
    朱心玲,贾丽珠,张明瑛.草鱼血液学的研究I.九项血液常数的周年变化.水生生物学报,1985,9(3):248-257.
    左谦.环渤海西部地区表土中的PAHs污染:[博士学位论文].北京:北京大学,2007
    Aas E, Baussant T, Balk L, et al. PAH metabolites in bile, cytochrome P4501A and DNA adducts as environmental risk parameters for chronic oil exposure:a laboratory experiment with Atlantic cod. Aquatic Toxicology,2000,51(2):241-258
    Adams S M, Shepard K L.,Greeley Jr M S, et al.The use of biodicators for assessing the effects of pollutant stress on fish. Marine Environmental Research,1989,28:459-464
    Adams S M. Biological indicators of stress in fish. American Fisheries Society,1990,1-8.
    Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for Polyaromatic Hydrocarbons-Update. Atlanta:U.S. Department of Health and Human Services, Toxicology Information Branch,1995,458
    Ahmad I, Pacheco M, Santos M A. Naphthalene-induced differntial tissue damage association with circulating fish phagocyte induction. Ecotoxicology and Environmental Safety,2003,54:7-15.
    Ahmad I, Pacheco M, Santos M A. Anguilla anguilla L. oxidative stress biomarkers:An in situ study of freshwater wetland ecosystem (Pateira de Fermentelos, ortugal). Chemosphere,2006,65: 952-962
    Al-Hassan J M, Afzal M, Rao C V N, et al. Petroleum Hydrocarbon Pollution in Sharks in the Arabian Gulf. Bulletin of Environmental Contamination and Toxicology,2000,65:391-398
    Aluru N, Vijayan M M. Aryl hydrocarbon receptor activation impairs cortisol response to stress in rainbow trout by disrupting the rate-limiting steps in steroidogenesis. Endocrinology,2006,147: 1895-1903.
    Aluru N, Vijayan M M. β-Naphthoflavone disrupts cortisol production and liver glucocorticoid responsiveness in rainbow trout. Aquatic Toxicology,2004,67:273-285.
    Anderson M J, Miller M R, Hinton D E. In vitro modulation of 17-b-estradiol-induced vitellogenin synthesis:effects of cytochrome P4501 A1 inducing compounds on rainbow trout (Oncorhynchus mykiss) liver cells. Aquatic Toxicology,1996.34:327-350.
    Anderson M J, Olsen H, Matsumura F, et al. In vivo modulation of 17β-estradiol-induced vitellogenin synthesis and estrogen receptor in Rainbow Trout (Oncorhynchus mykiss) liver cells by β-Naphthoflavone[J]. Toxicology and Applied Pharmacology,1996,137:210-218.
    Ansaldo M, Nahabedian D E, Holmes-Brown E, et al. Potential use of glycogen level as biomarker of chemical stress in Biomphalaria glabrata. Toxicology,2006,224(1-2):119-127.
    Anver C E. Blood chemistry (electrolytes, lipoprotein and enzymes) values of black scorpion fish (Scorpaena porcus 1758) in the Dardanelles. Turkey Journal of Biology Science,2004,4:716-719.
    Anyakora C, Arbabi M, Coker H. A screen for benzo[a]pyrene in fish samples from crude oil polluted environments. Ameriacan Journal of Environmental Sciences,2008,4:145-150.
    Arias A H, Spetter C V, Freije R H, et al. Polycyclic aromatic hydrocarbons in water, mussels {Brachidontes sp., Tagelus sp.) and fish(Odontesthes sp.) from Bahia Blanca Estuary, Argentina. Estuarine. Coastal and Shelf Science,2009,85:67-81.
    Ariese F, Kok S J, Verkaik M, et al. Synchronous fluorescence spectrometry of fish bile:A rapid screening method for the biomonitoring of PAH exposure. Aquatic Toxicology,1993,26(3): 273-286
    Atchison G J, Henry M G, Sandheinrich M B. Effects of metals on fish behavior:a review. Environmental Biology of Fishes,1987,18:11-25
    Azzi A, Davies K. J A, Kelly F. Free radical biology-terminology and critical thinking. FEBs Letters, 2004,558:3-6.
    Babson J R, Russo-Rodriguez S E, Wattley R V, et al. Microsomal activation of fluoranthene to mutagenic metabolites. Toxicology and Applied Pharmacology,1986,85:355-366
    Bacca H, Huvet A, Fabioux C et al. Molecular cloning and seasonal expression of oyster glycogen phosphorylase and glycogen synthesis genes. Biochemistry and Physiology, Part B,2005,140: 635-646.
    Bado-Nilles A, Quentel C, Auffret M, et al., a. Immune effects of HFO on European sea bass, Dicentrarchus labrax, and Pacific oyster, Crassostrea gigas. Ecotoxicology and Environmental Safety,2009,72:1446-1454.
    Bains O S, Kennedy C K. Energetic costs of pyrene metabolism in isolated hepatocytes of rainbow trout, Oncorhynchus mykiss. Aquatic Toxicology,2004,67:217-226.
    Balint T, Ferenczy J, Katai F, et al. Similarities, differences between the massive eel (Anguilla anguilla L.)devastations that occurred in Lake Balaton in 1991 and 1995. Ecotoxicology and Environmental Safety,1997,37:17-23
    Balint T, Szegletes T, Szegletes Z, et al. Biochemical and subcellular changes in carp exposed to the organophosphorus methidathion and the pyrethroid deltamethrin. Aquatic Toxicology,1995,33: 279-295.
    Banni M, Negri A, Dagnino A, et al. Acute effects of benzo[a]pyrene on digestive gland enzymatic biomarkers and DNA damage on mussel Mytilus galloprovincialis. Ecoloxicology and Environmental Safety,2010,73:842-848
    Barse A V, Chakrabarti T, Ghosh T K, et al. One-tenth dose of LC5o of 4-tert-butylphenol causes endocrine disruption and metabolic changes in Cyprinus carpio. Pesticide Biochemistry and Physiology,2006,86:172-179.
    Barsiene J, Lehtonen K, Koehler A et al.Biomarker responses in flounder(Platichthys flesus) and mussel (Mytilus edulis) in the Klaipeda-Butingearea (BalticSea). MarinePollution.Bulletin, 2006,53:422-436.
    Bayne B L, Moore M N, Widdowsv J et al. Measurement of the response of individuals to environmental stress and pollution:studies with bivalve molluscs. Philospophical Transactions of the Royal Society,1979,563-581.
    Beamish R J and Mahnken C. A critical size and period hypothesis to explain natural regulation of salmon abundance and linkage to climate and climate change. Progress in Oceanography,2001, 49:423-437.
    Begum G, Vijayaraghavan S. Carbohydrate metabolism in hepatic tissue of freshwater catfish Clarias batrachus L. during dimethoate exposure. Food and Chemical Toxicology,1995,33(5): 423-426.
    Benard G, Faustin B, Passerieus E, et al. Physiological diversity of mitochondrial oxidative phosphorylation. American Journal of Physiology-Cell Physiology,2006,291:1172-1182
    Bemet D, Schmidt H, Wahli T, et al. Effluent from a sewage treatment works causes changes in serum chemistry of brown trout (Salmo trulta L). Ecotoxicology and Environmental Safety, 2001,48:140-147.
    Beyer J, Sandvik M, Skare J U, et al. Time-and dose-dependent biomarker responses in flounder (Platichthys flesus L.) exposed to benzo[a]pyrene,2,3,3',4,4',5-hexachlorobiphenyl (PCB-156) and cadmium. Biomarkers,1997,235-44.
    Beyers D W, Rice J A, Clements W H et al. Estimating the physiological cost of chemical exposure: integrating energetics and stress to quantify toxic effects in fish. Canadian Journal of Fisheries and Aquatic Sciences,1999,56:814-822.
    Bidinotto, P M, Moraes G, Souza R H S. Hepatic glycogen and glucose in eight tropical fresh water teleost fish:A procedure for field determinations of micro samples. Boletim Tecnico CEPTA, 1997,10:53-60
    Bihari N, Fafandel M, Piskur V. Polycyclic Aromatic Hydrocarbons and Ecotoxicological Characterization of Seawater, Sediment, and Mussel Mytilus galloprovincialis from the Gulf of Rijeka, the Adriatic Sea, Croatia. Archives of Environment Contamination and Toxicology, 2007,52(3):379-387.
    Boleas S, Fernandez C, Beyer J. Accumulation and effects of Benzo[a]pyrene on cytochrome P450-1A in waterbome exposed and intraperitoneal injected juvenile turbot (Scophthalmus maximus). Marine Environmental Research,1998,46:17-20.
    Bonga S E W. The stress response in fish. Physiology Reviews,1997,77:591-625.
    Bonn B A. Polychlorinated dibenzo-p-dioxin and dibenzofuran concentration prfiles in sediment and fish tissue of the Willamette Basin, Oregon. Environmental. Science & Technology,1998,32: 729-735.
    Broman D, Nauf C, Lundbergh I, et al. An in situ study of the distribution, biotransformation and flux of polycyclic aromatic hydrocarbons (PAHs) in an aquatic food chain (seston-Mytilus Edulis-Somateria Mollissima L) from the Baltic:an ecotoxicological perspective. Environmenatal Toxicology and Chemistry,1990,9(4):429-442.
    Brown J S, Steinert S A. DNA damage and biliary PAH metabolites in flatfish from Southern California bays and harbors, and the Channel Islands. Ecological Indicators,2003,3(4): 263-274
    Burdick A D, Davis J W I I, Liu K J, et al. Benzo[a]pyrene quinones increase cell proliferation, generate reactive oxygen species, and transactivate the epidermal growth factor receptor in breast epithelial cells. Cancer Research,2003,63(22):7825-7833.
    Cai Q Y, Mo C H, Wu Q T, et al. Bioremediation of polycyclic aromatic hydrocarbons (PAHs) contaminated sewage sludge by different composting processes. Journal of Hazardous Materials,2007,142:535-542.
    Cairns J Jr, Cherry D S, Giattina J D. Correspondence between behavioral responses offish in laboratory and heated, chlorinated effluents. Mitsch W J, Bosserman R W, Klo-Patek J M(eds). Energy and ecologica modeling. Amsterdam:Elsevier,1982:207-215.
    Cambier S, Gonzalez P, Mesmer-Dudons N et al. Effects of dietary methylmercury on the zebrafish brain:histological, itochondrial, and gene transcription analyses. Biometals,2012,25:165-180.
    Camus L, Jones M, Regoli F, et al. Total oxyradical scavenging capacity and cell membrane stability of haemocytes of the Arctic scallop Chlamys islandicus, following benzo[a]pyrene exposure. Marine Environmental Research,2002,54,425-430.
    Canty M N, Hagger J A, Moore R T B et al. Sublethal impact of short term exposure to the organ ophosphatepesticideazamethipos in the marine mollusc Mytilus edulis. Marine Pollution Bulletion,2007,54:396-402.
    Cao Z H, Wang Y Q, Ma Y M, et al. Occurrence and distribution of Polycyclic aromatic hydrocarbons in reelaimed water and surface water of Tianjin, China. Journal of Hazardous Materials,2005,122(1-2):51-59.
    Carls M G, Heintz R A, Marty G D, el al. Cytochrome P4501A induction in oil-exposed pink salmon Oncorhynchus gorbuscha embryos predicts reduced survival potential. Marine Ecology Progress Series,2005,301:253-265.
    Carls M G, Rice S D, Hose J E. Sensitivity of fish embryos to weathered crude oil:Part I. Low-level exposure during incubation causes malformations, genetic damage, and mortality in larval Pacific herring (Clupea pallasi). Environmenatal Toxicology and Chemistry,1999,18:481-493.
    Carvalho P S, Kalil Dad C, Novelli G A, et al. Effects of naphthalene and phenanthrene on visual and prey capture endpoints during early stages of the dourado Salminus Brasiliensis. Marine Environmental Research,2008,66:205-207
    Casillas E, Arkoosh M R, demons E, et al. Chemical contaminant exposure and physiological effects in outmigrant Chinook salomn from selected urban estuaries of Puget Sound, Washington. Salmon Ecosystem Restoration:Myth and Reality, Proceeding of the 1994 Northeast Pacific Chinook and Coho Salmon Workshop, Keefe M, American Fisheries Society, Corvallis, OR,1995,86-102.
    Casillas E, Eberhart B T L, Collier T K, et al. Effects of chemical contaminants from the Hylebos Waterway on growth of Juvenile Chinook Salmon, report to Commencement Bay Natural Resource Trustees and NOAA Damage Assessment Center, Seattle WA,1998
    Catoggio J A. Other organic toxic substances. Guidelines of lake management, toxic substances management in lakes and reservoirs,1991,4:113-126.
    Cheikyula J O, Koyama J, Uno S, a. Bioaccumulation of dietary polycyclic aromatic hydrocarbons and EROD induction in the red sea bream and Java medaka. Japanese of Journal Environment Toxicology,2008,11(2):99-115.
    Cheikyula J O, Koyama J, Uno S, b. Comparative study of bioconcentration and EROD activity induction in the Japanese flounder, red sea bream, and Java medaka exposed to polycyclic aromatic hydrocarbons. Environmental Toxiclogy,2008,23:354-362.
    Chen B L, Xuan X D, Zhu L Z, et al. Distributions of polycyclic aromatic hydrocarbons in surface waters, sediments and soils of Hangzhou City, China. Water Research,2004,38 (16): 3558-3568.
    Cheung C C C, Siu WHL, Richardson B J, et al. Antioxidant responses to benzo[a]pyrene and aroclor 1254 exposure in the green-lipped mussel Perna viridis. Environmental Pollution,2004, 128:393-403.
    Cheung K C, Leung H M, Kong K Y. Residual levels of DDTs and PAHs in freshwater and marine fish from Hong Kong markets and their health risk assessment. Chemosphere,2007,66(3): 460-468
    Chuiko G M, Tillitt D E, Zajicek J Z et al. Chemical contamination of the Rybinsk Reservoir, northwest Russia:Relationship between liver polychlorinated biphenyls (PCB) content and health indicators in bream (Abramis brama). Chemosphere,2007,67:527-536.
    Claireaux G, Couturier C, Groison A L. Effect of temperature on maximum swimming speed and cost of transport in juvenile European sea bass (Dicentrarchns labrax). Journal of Experimental Biology,2006,209:3420-3428.
    Coban M Z, Sen D. Examination of liver and muscle glycogen and blood glucose levels of Capoeta umbla (Heckel,1843) living in Hazar Lake and Keban Dam Lake (Elazig, Turkey). African Journal of Biotechnology,2011,10(50):10271-10279
    Cohen A M, Nugegoda D, Gagnon M M. The Effect of Different Oil Spill Remediation Techniques on Petroleum Hydrocarbon Elimination in Australian Bass (Macquaria novemaculeata). Archives of Environmental Contamination and Toxicology,2001 a,40 (2):264-270.
    Cohen A, Nugegoda D, Gagnon M M, et al. Metabolic responses of fish following exposure to tow different oil spill remediation techniques. Ecotoxicology and Environmental Safety,2001b,48: 306-310.
    Colavecchia M V, Backus S M, Hodson P V, et al. Toxicity of oil sands to early life stages of fathead minnows (Pimephales promelas). Environmental Toxicology and Chemistry,2004,23: 1709-1718.
    Colavecchia M V, Hodson P V, Parrott J L. The relationships among CYP1A induction, toxicity, and eye pathology in early life stages of fish exposed to oil sands. Journal of Toxicology and Environmental Health,1999,70:1542-1555.
    Cole H A. The assessment of sublethal effects of pollutants in the sea. Philos. Trans. Philospophical Transactions of the Royal Society,1979,286:399-633.
    Collier T K, Stein J E, Goksoyr A, et al. Biomarkers of PAH exposure in oyster toadfish (Opsanis tau) from the Elizabeth River, Virginia. Environmental Science & Technology,1993,2: 161-177.
    Collier T K, Varanasi U. Hepatic activities of xenobiotic metabolizing enzymes and biliary levels of xenobiotics in English sole (Parophrys vetnlus) exposed to environmental contaminants. Archives of Environment Contamination and Toxicology,1991,20(4):462-473.
    Connell D W, Wu R S S, Richardson B J, et al. Fate and risk evaluation of persistent organic contaminants and related compounds in Victoria Harbour, Hong Kong. Chemosphere,1998, 36(9):2019-2030.
    Contaminants across the United States. Environmental Research,2000,84:170-185
    Correia A D, Goncalves R, Scholze M. et al. Biochemical and behavioral responses in gilthead seabream (Spaus aurata) to phenanthrene. Journal of Experimental Marine Biology and Ecology,2007,347:109-122.
    Corsi I, Mariottini M, Sensini C, et al. Fish as bioindicators of brackish ecosystem health: integrating biomarker responses and target pollutant concentrations. Oceanologica Acta,2003, 26:129-138.
    Cortazar E, Bartolome L, Arrasate S, et al. Distribution and bioaccumulation of PAHs in the UNESCO protected natural reserve of Urdaibai, Bay of Biscay. Chemosphere,2008,72: 1467-1474
    Costa J, Ferreira M, Rey-Salgueiro L, et al. Comparision of the waterborne and dietary routes of exposure on the effects of Benzo(a)pyrene on biotransformation pathways in Nile tilapia (Oreochromis niloticus). Chemosphere,2011,84(10):1452-1460
    Couillard C M. A microscale test to measure petroleum oil toxicity to mummichog embryos. Environmental Toxicology,2002,17:195-202.
    Countway R E, Dickhut R M, Canuel E A. Polycyclic aromatic hydrocarbon (PAH) distributions and associations with organic matter in surface waters of the York River, VA Estuary, Organic Geochemistry,2003,34:209-224.
    Cowan J H, Rose K A, DeVries D R. Is density-dependent growth in young-of-the-year fishes a question of critical weight? Reviews in Fish Biology and Fisheries,2000,10:61-89.
    Cox M M. Lehninger Principles of Biochemistry,3rd ed. Worth Publishers, New York,2000
    Dai W, Fu L L, Du H H, et al. Effects of Montmorillonite on Pb accumulation, axidative stress,and DNA damage in Tilapia (Oreochromis niloticus) exposed to dietary Pb. Biological Trace Element Research,2010,136:71-78.
    Dange A D. Changes in carbohydrate metabolism in Tilapia, Oreochromis (Sarotherodon) mossambicus, during short-term exposure to different types of pollutants. Environmental Pollution,1986,41,165-177.
    Daniona M, Le Flochb S, Kanan R, et al. Effects of in vivo chronic hydrocarbons pollution on sanitary status and immune system in sea bass (Dicentrarchus labrax L.). Aquatic Toxicology, 2011,105:300-311
    Dauble D D, Gray R H, Skalski J R, et al. Avoidance of awater-soluble fraction of coal liquid by fathead minnows. Transactions of the American Fisheries Society,1985,114:754-760
    Davison W, Franklin C E, McKenzie J C, et al. The effects of acute exposure to water soluble fraction of diesel fuel oil on survival and metabolic rate of an Antarctic fish (Pagothenia borchgrevinki). Biochemistry Physiology C,1992,185-188.
    Deb S C, Araki T, Fukushima T. Polycyclic aromatic hydrocarbons in fish organs. Marine Pollution Bulletin,2000,40(10):882-885.
    Deeb K Z E, Said T O, Naggar M H E, et al. Distribution and Sources of Aliphatic and Polycyclic Aromatic Hydrocarbons in Surface Sediments, Fish and Bivalves of Abu Qir Bay (Egyptian Mediterranean Sea). Bulletin of Environmental Contamination and Toxicology,2007,78: 373-379
    Di Giulio R T, Hinton D E. The toxicology of fishes. Boca Raton, London, New York:CRC Press,1991
    Di Giulio R T, Hinton D E. The Toxicology of fishes. CRC Press, Taylor & Francis Group, Boca Raton, London, New York,2008.
    Dissanayake A, Piggott C, Baldwin C, et al. Elucidating cellular and behavioural effects of contaminant impact (polycyclic aromatic hydrocarbons, PAHs) in both laboratory-exposed and field-collected shore crabs, Carcinus maenas (Crustacea:Decapoda). Marine Environmental Research,2010,70:368-373.
    Diwan, A D., Hingorani, H G. and Chandrasekhram Naidu, N. Levels of blood glucose and tissue glycogen in two live fish exposed to industrial effluent. Bulletin of environmental contamination and toxicology,1979,21:269-272.
    Dougherty C P, Holtz S H, Reinert J C, et al., Dietary exposures to food contaminants across the United States. Environmental Reasearch,84(2):170-185
    Douhri H, Sayah F. The use of enzymatic biomarkers in two marine invertebrates Nereis diversicolor and Patella vulgata for the biomonitoring of Tangier's bay (Morocco). Ecotoxicology and Environmental Safety,2009,72:394-399
    Dutta H M, Arends D A. Effects of endosulfan on brain acetylcholinesterase activity in juvenile bluegill sunfish. Environmental Research,2003,91:157-162
    EPA. EPA 440/5-86-001. Quality criteria for water. Washington DC:US Environmental Protection Agency,1987
    Evanson M, Van Der Kraak G J. Stimulatory effects of selected PAHs on testosterone production in goldfish and rainbow trout and possible mechanisms of action. Comparative Biochemistry and Physiology, Part C,2001,130:249-258
    Everaarts J M, Shugart L R, Gustin M K, et al. Biological markers in fish:DNA integrity, hematological parameters and liver somatic index. Marine Environmental Resarch,1993,35 101-107.
    Ezike C, Ufodike E B C. Plasma glucose and liver glycogen of African catfish (Claria gariepimis) exposure of petrol. Jouenal of fisheries international,2008,3(2):46-48.
    Farr A J, Chabot C C, Taylor D. Behavioral Avoidance of Fluoranthene by Fathead Minnows (Pimephales Promelas). Neutctoxicology and Teratology,1995,17(3):265-271
    Farwell A, Nero V, Croft M, et al. Modified Japanese medaka embryo-larval bioassay for rapid determination of developmental abnormalities. Archives of Environmental Contamination and Toxicology,2006,51:600-607
    Ferguson P L, Chandler G T. A laboratory and field comparison of sediment polycyclic aromatic hydrocarbon bioaccumulation by the Cosmopolitan Estuarine Polychaete Streblospio benedicti (Webster). Marine Environmental Research,1998,45:387-401.
    Fisher S W. Mechanisms of bioaccumulation in aquatic systems. In:Ware, G.W. (Ed.), Reviews of Environmental Contamination and Toxicology, vol.142. New York:Springer,1995,87-118.
    Folmar L C. Effects of chemical contaminants on blood chemistry of teleost fish:a bibliography and synopsis of selected effects. Environmental Toxicology and Chemistry,1993,12:337-375.
    Fonseca V F, Franca S, Serafim A, et al. Multi-biomarker responses to estuarine habitat contamination in three fish species:Dicentrarchus labrax, Solea senegalensis and Pomatoschistus microps. Aquatic Toxicology,2011,102:216-227
    Franke C. How meaningfull the bioconcentration factor for riskassessment? Chemosphere,1996, 32(10):1897-1905.
    Freeman D J, Cattell F C R. Woodbunring as a souice of atmospheric polycyclic aromatic hydorcarbons. Environmental Science and Technology,1990,24(10):1581-1585
    French B L, Reichert W L, Hom T, et al. Accumulation and dose response of hepatic DNA adducts jn English sole (Pleuronectes vetnlus) exposed to a gradient of contaminated sediments. Aquatic Toxicology,1996,36(12):1-16.
    Frenzilli G, Scarcelli V, DelBarga I, et al. DNA damage in eelpout (Zoarces vivipanis) from Goteborg harbour. Mutation Research,2004,552:187-195.
    Fu C Z, Wu J H, Chen J K, et al. Freshwater fish biodiversity in the Yangtze River basin of China: patterns, threats and conservation. Biodiversity and Conservation,2003,12(8):1649-1685
    Fu S J, Xie X J, Cao Z D. Effect of fasting on resting metabolic rate and postprandial metabolic response in southern catfish (Silurus meridionalis Chen). Journal of Fish Biology,2005,67(1): 279-285.
    Fulton M H, Key P B. Acetylcholinesterase inhibition in estuarine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effects. Environmental Toxicology and Chemistry,2001,20:37-45.
    Gadagbui B K M, James M O. Activities of affinity-isolated glutathione S-transferase (GST)from channel catfish whole intestine. Aquatic Toxicology,2000,49:27-37Gaitonde D, Sarker A, Kaisary S, et al. Acetylchilinesterase activities in marine snail(Cronia contracta) as a biomarker of neurotoxic contaminationts along the Goa coast, West coast of India. Ecotoxicology,2006, 15:353-358
    Geiselbrecht A D, Hedlund B P, Tichi M A. Isolation of Marine Polycyclic Aromatic Hydrocarbon (PAH)-Degrading Cycloclasticus Strains from the Gulf of Mexico and Comparison of Their PAH Degradation Ability with That of Puget Sound Cycloclasticus Strains. Appied and Environmental Microbiology,1998,64(12):4703-4710
    George S G. Enzymology and molecular biology of phase II xenobiotic-conjugating enzymes in fish. In:Malins, D.C., Ostrander, G.K. (Eds.), Aquatic Toxicology; Molecular, Biochemical and Cellular perspectives. Lewis Publishers, CRC press,1994,37-85.
    Gesto M, Soengas J L, Miguez J M. Acute and prolonged stress responses of brain monoaminergic activity and plasma cortisol levels in rainbow trout are modified by PAHs (naphthalene, β-naphthoflavone and benzo(a)pyrene) treatment. Aquatic Toxicology,2008,86(3):341-351
    Gesto M, Tintos A, Soengas J L, et al. Effects of acute and prolonged naphthalene exposure on brain monoaminergic neurotransmitters in rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology, Part C,2006,144:173-183.
    Gesto M., Tintos A, Soengas J L, et al. β-Naphthoflavone and benzo(a)pyrene alter dopaminergic, noradrenergic, and serotonergic systems in brain and pituitary of rainbow trout(Oncorhynchus mykiss). Ecotoxicology and Environmental Safety,2009,72:191-198
    Geyer H J, Scheuntert I, Rapp K, et al. Correlation between acute toxicity of 2,3,7,8-tetrachlorobibenzo-p-dioxin (TCDD) and total body fat content in mamals.Tox/co/ogy, 1990,65:97-107.
    Goede R W, Barton B A. Organismic indices and an autopsy-based assessment as indicators of health and condition of fish.In Biological Indicators of Stress in Fish. American Fisheries Society,1990,9:93-108.
    Goncalves R, Scholze M, Ferreira A M, et al. The joint effect of polycyclic aromatic hydrocarbons on fish behavior. Environmental Research,2008,108:205-213
    Gravato C, Santos M. Juvenile sea bass liver P450, EROD induction, and erythrocytic genotoxic responses to PAH and PAH-like compounds. Ecotoxicology and Environmental Safety,2002, 51:115-127.
    Grung M, Holth T F, Jacobsen M R, et al. Polycyclic Aromatic Hydrocarbon (PAH) Metabolites in Atlantic Cod Exposed via Water or Diet to a Synthetic Produced Water. Journal of Toxicology and Environmental Health, Part A,2009,72:254-265
    Guderley H, St-Pierre J, Counture P, et al. Plasticity of the properties of mitchondria from rainbow trout red muscle with seasonal acclimatization. Fish Physiology and Biochemistry,1997,16: 531-541
    Guo W, He M C, Yang Z F, et al. Distribution of polycyclic aromatic hydrocarbons in water, suspended particulate matter and sediment from Daliao River watershed, China. Chemosphere, 2007,68:93-104
    Guo W, He M C, Yang Z F, et al. Distribution, partitioning and sources of polycyclic aromatic hydrocarbons in Daliao River water system in dry season, China. Journal of Hazardous Materials,2009,164:1379-1385
    Haasch M L, Lech J J, Prince R, et al. Caged and wild fish:Induction of hepatic cytochrome P-450 (CYP1A1) as an environmental biomonitor[J]. Environmental Toxicology and Chemistr y,1993, 12(5):885-895
    Handy R D., Depledge, M H., Physiological responses:their measurement and use as environmental biomarkers in ecotoxicology. Ecotoxicology,1999,8:329-349.
    Hartwell S I, Cherry D S, Cairns J Jr, a. Field validation of avoidance of elevated metals by fathead minnows (Pimephales promefas) following in situ acclimation. Environmenatal Toxicology and Chemistry,1987,6:189-200; 1987.
    Harvey R G. PolycyclicAromaticHydrocarbons:Chemistry and Carcinogenicity. Cambridge University Press,1991:11-25.
    Hasspieler B M J V, Di Giulio R T. Glutathione-dependent defense in channel catfish(Ictalurus punctatus) and brown bullhead (Ameriurus nebulosus). Ecotoxicology and Environmental Safety,1994,28:82-90.
    Haux C, Larsson A. Long-term sublethal physiological effects on rainbow trout, Salmo garirdneri, during exposure to cadmium and the latter subsequent recovery. Aquatic Toxicology,1984,5: 129-142.
    Heath A G. Water Pollution and Fish Physiology, second ed. Lewis, Boca Raton, FL, USA,1995
    Hedtke W & Puglisi F,1980. Effects of waste oil on the survival and reproduction of the American flagfish, Jordanella floridae. Canadian Journal of Fisheries and Aquatic Sciences,37:757-764.
    Heemken O P, Stachel B, Theobald N, et al. Temporal variability of organic micropollutants in suspended particulate matter of the River Elbe at Hamburg and the River Mulde at Dessau, Germany. Archives of Environmental Contamination and Toxicolog,2000,38:11-31.
    Heintz R A, Rice S D, Wertheimer A C, et al. Delayed effects on growth and marine survival of pink salmon Oncorhynchus gorbuscha after exposure to crude oil during embryonic development. Marine Ecology Progress Series,2000,208:205-216
    Heintz R A, Short J W, Rice S D. Sensitivity of fish embryos to weathered crude oil:art Ⅱ. Increased mortality of pink salmon (Oncorhynchus gorbuscha) embryos incubating downstream from weathered Exxon Valdez crude oil. Environmenatal Toxicology and Chemistry,1999,18:494-503
    Hellou J, Leonard J, Anstey C. Dietary Exposure of Finfish to Aromatic Contaminants and Tissue Distribution. Archives of Environmental ontamination and Toxicology,2002,42:470-476.
    Hellou J, Leonard J, Anstey C. Dietary Exposure of Finfish to Aromatic Contaminants and Tissue Distribution. Archives of Environmental Contamination and Toxicology,2002,42:470-476
    Hellou J, Warren W, Andrews C, et al. Long-term fate of crankcase oil in rainbow trout:a time-and dose-response study. Environ. Regulatory Toxicology and Pharmacology,1997,16 (6): 1295-1303
    Hinton D E, Baumann P C, Gardner G R et al. Histopathologic biomarkers. In:Huggett, R.J., Kimerle, R.A., Mehrle, P.M. (Eds.), Biomarkers:Biochemical, Physiological, and Histological Markers of Anthropogenic Stress. Lewis Publishers, Boca Raton, FL, USA,1992,155-209.
    Holbrook D J. Effects of toxicants on nucleic acid and protein metabolism. Hodgson E, Levi P E (eds). Introduction to biochemical toxicology. Appleton & Langer, Conenecticut,1994, 367-379
    Hontela A, Rasmussen J B, Audet C, et al. Impaired cortisol stress response in fish from environments polluted by PAHs, PCBs, and mercury. Archives of Environmental Contamination and Toxicology,1992,22:278-283
    Hori T S F, Avilez I M, Inoue L K, et al. Metabolical changes induced by chronic phenol exposure in matrinxa Brycon cephalus (teleostei:characidae) juveniles. Comparative Biochemistry and Physiology,2006,143:67-72.
    Horng C Y, Lin H C, Lee W. A Reproductive toxicology study of phenanthrene in Medaka(Oryzias latipes). Archives of Environmental Contamination and Toxicology,2010,58:131-139.
    Horng C Y, Lin H C, Lee W. A Reproductive Toxicology Study of Phenanthrene in Medaka (Oryzias latipes). Archives of Environmental Contamination and Toxicology,2010,58:131-139
    Hsieh S H, Tsai K P, Chen C Y. The combined toxic effects of nonpolar narcotic chemicals to Pseudokirchneriella subcapitata. Water Research,2006,40:1957-1964.
    Huang Z Y, Chen Y X, Zhao Y, et al. Antioxidant responses in Meretrix meretrix exposed to environmentally relevant doses of tributyltin. Environmental Toxicology and Pharmacology, 2005,20:107-111.
    Incardona J P, Carls M G, Teraoka H, et al. Aryl hydrocarbon receptor-independent toxicity of weathered crude oil during fish development. Environmental Health Perspectives,2005,113: 1755-1762.
    Incardona J P, Collier T K, Scholz N L. Defects in cardiac function precede morphological abnormalities in fish embryos exposed to polycyclic aromatic hydrocarbons. Toxicology and Applied Pharmacology,2004,196:191-205.
    Incardona J P, Day H L, Collier T K et al. Developmental toxicity of 4-ring polycyclic aromatic hydrocarbons in zebrafish is differentially dependent on AH receptor isoforms and hepatic cytochrome P4501A metabolism. Toxicology and Applied Pharmacology,2006,217,308-321.
    Jagwani D, Shukla P, Kulkarni A, et al. Organ Specific Distribution of PAHs in a Carnivorous Fish Species Following Chronic Exposure to Used Synthetic-Based Drilling Mud. Polycyclic Aromatic Compounds,2011,31:227-242
    Jagwani D, Shukla P, Kulkarni A, et al. Organ Specific Distribution of PAHs in a Carnivorous Fish Species Following Chronic Exposure to Used Synthetic-Based Drilling Mud. Polycyclic Aromatic Compounds,2011,31:227-242
    Jee J H, Kim S G, Kang J C. Effects of phenanthrene on growth and basic physiological functions of the olive flounder, Paralichthys olivaceus. Journal of Experimental Marine Biology and Ecology,2004,304:123-136.
    Ji Y, Lu G H, Wang C, et al. Biochemical responses of freshwater fish Carassius auratus to polycyclic aromatic hydrocarbons and pesticides. Water Science and Engineering,2012,5(2): 145-154
    Jiang Q T, Lee T K M, Chen K, et al.Human health risk assessment of organochlorines associated with fish consumption in a coastal city in China. Environmental Pollution,2005,136:155-165
    Jifa W, ZhiminY, Xiuxian S, You W. Response of integrated biomarkers of fish(Lateolabrax japonicus) exposed to benzo(a)pyrene and sodium dodecyl-benzene sulfonate. Ecotoxicology of Environmental Safely,2006,65:,230-236.
    Jovanovich M C, Marion K R. Seasonal variation in uptake and depuration of antracene by the brackish water clam Rangia cuneata. Marine Biology,1987,95:395-403.
    Jung D, Cho Y, Collins L B, et al. Effects of benzo[a]pyrene on mitochondrial and nuclear DNA damage in Atlantic killifish (Fundulus heteroclitus) from a creosote-contaminated and reference site. Aquatic Toxicology,20095:44-51
    Kahn R A, Kiceniuk J. Histopatological effects of crude oil on Atlantic cod following chronic exposure. Canadian Journal of Zoology,1984,62:2038-2043.
    Kanaly RA, Harayama S. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. Journal of Bacteriology,2000,182 (8):2059-2067.
    Kang J C, Kim S G, Jee J H. Long-term sublethal cadmium exposed survival, growth and metabolic rate change in the olive flounder, Paralichthys oltvaceus. Journal of Korean Fisheries Society, 2003,36 (1):39-43.
    Kang J C, Lee J S, Jee J H. Ecophysiological responses and subsequent recovery of the olive flounder, Paralichthys olivaceus exposed to hypoxia and iron Ⅱ. Survival, metabolic and histological changes of the olive flounder exposed to iron. Journal of Korean Fisheries Society, 1999,32 (6):699-705.
    Kang J J, Fang H W. Polycyclic Aromatic Hydrocarbons Inhibit the Activity of Acetylcholinesterase Purified from Electric Eel. Biochemical and Biophysical Research Communications,1997, 238(2):367-369
    Karacik B, Okay O S, Henkelmann B, et al. Polycyclic aromatic hydrocarbons and effects on marine organisms in the Istanbul Strait. Environment International,2009,35:599-606
    Kastner M, Breuer-Jammali M, Mahro B. Impact of Inoculation Protocols, Salinity, and pH on the Degradation of Polycyclic Aromatic Hydrocarbons (PAHs) and Survival of PAH-Degrading Bacteria Introduced into Soil. Appied and Environmental Microbiology,1998,64, (1):359-362
    Kayal S, Connell D W. Polycyclic aromatic hydrocarbons in biota from the Brisbane river estuary, Australia. Estuarine, Coastal and Shelf Science,1995,40:475-493.
    Kazeto Y, Place A R, Trant J M. Effects of endocrine disrupting chemicals on the expression of CYP19 genes in zebrafish (Danio rerio) juveniles. Aquatic Toxicology,2004,69:25-34
    Kennedy C J, Farrell A P. Immunological alterations in juvenile Pacific herring Clupea pallasi, exposed to aqueous hydrocarbons derived from crude oil. Environmental Pollution,2008,153: 638-648.
    Khalili N R, Scheff P A, Holsen T M. PAH source fingerprints for coke ovens, diesel and gasoline engines, highway tunnels, and wood combustion emissions. Atmospheric Environment,1995, 29(4):533-542
    Kiceniuk J W, Kahn R A. Effect of petroleum hydrocarbon on Altantic cod, Gadus morhusa, following chronic exposure. Canadian Journal of Zoology,1987,65:490-494.
    Kim S G, Park D K, Jang S W, et al. Effects of Dietary Benzo[a]pyrene on growth and hematological parameters in juvenile rockfish, Sebastes schlegeli (Hilgendorf). Bulletin of Environmental Contamination and Toxicology,2008,81:470-474.
    Kiparissis Y, Akhtar P, Hodson P V, et al. Partition-controlled delivery of toxicants:A novel in vivo approach for embryo toxicity testing. Environmental Science & Technolog,2003,37:2262- 2266.
    Ko F C, Baker J, Fang M D, et al. Composition and distribution of polycyclic aromatic hydrocarbons in the surface sediments from the Susquehanna River. Chemosphere,2007,66:277-285
    Koedprang W, Nakajima M, Maita M, et al. Correlation of hematology and plasma chemistry levels in silver crucian carp Carassius langsdorfii. Fisheries Science,2002,68(4):721-728.
    Kong K Y, Cheung K C, Wong C K C et al. The residual dynamic of polycyclic aromatic hydrocarbons and organochlorine pesticides in fishponds of the Pearl River delta, South China. Water Research,2005,39(9):1831-1843
    Kooijman S A L M, Bedaux J J M. Analysis of toxicity tests on fish growth. Water Research,1996, 30:1633-1644
    Kopecka-Pilarczyk J, Correia A D. Biochemical response in gilthead seabream (Spams aurata) to in vivo exposure to a mix of selected PAHs. Ecotoxicology and Environmental Safety,2009,72: 1296-1302.
    Kopecka-Pilarczyk J, Correia A D. Effects of Exposure to PAHs on Brain AChE in Gilthead Seabream, Sparus aurata L., Under Laboratory Conditions. Bulletin of Environmental Contamination Toxicology,2011,86:379-383.
    Kubin L A. Growth of juvenile English sole exposed to sediments amended with aromatic compounds:[MS Thesis]. Washington, USA:Western Washington State University,1989
    Lake J L, Mckinney R, Lake C A, et al. Comparisons of patterns of polychlorinated biphenyl congeners in water, sediment and indigenous organisms from New Bedford Harbour, Massachusetts. Archives of Environment Contamination and Toxicology,1995,29(2):207-220
    Landrum P F, Lee H, Lydy M J. Toxicokinetics in aquatic systems:model comparisons and use in hazard assessment. Environmental Toxicology and Chemistry,1992,11:1709-1725.
    Lemaire P, Mathieu A, Carriere A, et al. The Uptake Metabolism and Biological Half-Life of Benzo[a]pyrene in Different Tissues of Sea Bass, Dicentrarchus labrax. Fcotoyicoiogy and Environmental Safety,1990,20:223-133.
    Lemaire-Gony S, Lemaire P, Pulsford A L. Effects of cadmium and benzo[a]pyrene on the immune system, gill ATPase and EROD activity of European sea bass Dicentrarchus labrax. Aquatic Toxicology,1995,31:297-313.
    Lemke M A, Kennedy C J. The uptake, distribution and metabolism of benzo(a)pyrene in coho salmon (Oncorhynchus kisutch) during the parr-smolt transformation. Environmenatal Toxicology and Chemistry,1997,16:1384-1388.
    Leticia A G, Gerardo G B. Determination of esterase activity and characterization of cholinesterases in the reef fish Hacmulon plumieri. Ecotoxicology and Environmental Safety,2008,71: 787-797.
    Li G C, Xia X H, Yang Z F, et al. Distribution and sources of polycyclic aromatic hydrocarbons in the middle and lower reaches of the Yellow River, China. Environmental Pollution,2006,144 (3):985-993.
    Liang Y, Tse M F, Young L, et al. Distribution patterns of polycyclic aromatic hydrocarbons (PAHs) in the sediments and fish at Mai Po Marshes Nature Reserve, Hong Kong. Water Research, 2007,41(6):1303-1311
    Liguori L, Heggstad K, Hove H T, et al. An automated extraction approach for isolation of 24 polyaromatic hydrocarbons (PAHs) from various marine matrixes. Analytica Chimica Acta, 2006,573-574:181-188.
    Listowsky I. High capacity binding by glutathione S-transferases and glucocorticoid resistance. Structure and Function of Glutathione Transferases (Tew KD,Pickett C B, Mantle T J, Mannervik B and Hayes J D, eds),1993:199-299
    Little E E, Finger S E. Swimming behavior as an indicator of sublethal toxicity in fish. Environmenatal Toxicology and Chemistry,1990,9:13-19.
    Livingstone D R,. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Marine Pollution Bulletin 2001,42:656-666.
    Lorenzen K. The relationship between body weight and natural mortality in juvenile and adult fish:a comparison of natural ecosystems and aquaculture. Journal of Fish Biology,1996,49: 627-647.
    Lu X X, Reible D D, Fleeger J W, et al. Bioavilability of desorption-resistant phenanthrene to the Oligochaete, Ilyodrilus templetoni. Environmental Toxicology and Chemistry,2003,22: 153-160.
    Luo X J, Mai B X, Yan Q S, et al. Polycyclic aromatic hydroearbons (PAHs) and organochlorine Pesticides in water columns from the Pearl River and the Macao harbor in the Pearl River Delta in South China. Marine Pollution Bulletion,2004,48(11-12):1102-1115.
    Luo Y, Wang X R, Shi H H, et al. Electron paramagnetic resonance investigation of in vivo free radical formation and oxidative stress induced by 2,4-dichlorophenol in the freshwater fish Carassius auratus.Environmental Toxicology Chemistry,2005,24:2145-2153.
    Lyons B P, Stewart C, Kirby M F. Postlabeling ananysis of DNA adducts and EROD induction as biomarkers of genotoxin exposure in dab (Limanda limanda)from British coastal waters. Marine Environmental Research,2000,50(1-5):575-579.
    Ma M, Feng Z, Guan C, et al. DDT, PAH and PCB in Sediments from the Intertidal Zone of the Bohai Sea and the Yellow Sea. Marine Pollution Buletion,2001,42(2):132-136.
    Mai B X, Fu J M, Sheng G Y, et al. Chlorinated and polycyclic aromatic hydrocarbons in riverine and estuarine sediments from Pearl River Delta, China. Environmental Pollution,2002,117(3): 457-474.
    Malik A, Ojha P, Singh KP. Distribution of polycyclic aromatic hydrocarbons in edible fish from Gomti river, India. Bulletin of Environmental Contamination and Toxicology,2008,80(2): 134-138.
    Martinez-Alvarez R M, Morales A E, Sanz A. Antioxidant defenses in fish:biotic and abiotic factors. Reviews in Fish Biology and Fisheries,2005,15:75-88.
    Marty G D, Short J W, Dambach D M, et al. Ascites, premature emergence, increased gonadal cell apoptosis, and cytochrome P4501A induction in pink salmon larvae continuously exposed to oil-contaminated gravel during development. Canadian Journal of Zoology,1997,75:989-1007.
    Maskaoui K, Zhou J L, Hong H S, et al. Contamination by polycyclic aromatic hydrocarbons in the Jiulong River Estuary and Western Xiamen Sea, China. Environmental. Pollutiion,2002,118: 109-112.
    Mastral A M, Callen M S. A review on polycyclic aromatic hydrocarbon (PAH) emissions from energy generation. Environmental Science and Technology,2000,34(15):3051-3057
    Mathew R, McGrath J A, Di Toro D M. Modeling polycyclic aromatic hydrocarbon bioaccumulation and metabolism in timevariable early life-stage exposures. Environmenatal Toxicology and Chemistry,2008,27:1515-1525.
    McCarty L S, Mackay D. Enhancing ecotoxicological modeling and assessment:Body residues and modes of action. Environmental Science & Technology,1993,27:1719-1728.
    McDonald D G, Milligan C L. Chemical properties of the blood. In:Hoar, W.S., Randall, D.J., Farrell,A.P. (Eds.), Fish Physiology. Academic Press, San Diego,1992,55-133
    McElroy A E, Bogler A, Weisbaum D, et al. Uptake, metabolism, mutant frequencies and mutational spectra in ktransgenic medaka embryos exposed to benzo[a]pyrene dosed sediments. Marine Environmental Research,2006,62:273-277.
    McElroy A E, Farrington J W, Teal J M. Bioavailability of polycyclic aromatic hydrocarbons in the aquatic environment. In:Varanasi, U. (Ed.), Metabolism of Polycyclic Aromatic Hydrocarbons. CRC Press, Boca Raton, Florida,1989,139.
    McGurk M D. Allometry of marine mortality of Pacific salmon. Fishery Bulletin,1996,94:77-88
    Mckim J M, Bradbury S P, Niemi G J. Fish acute toxicity syndromes and their use in the QSAR approach to hazard assessment. Environmental Health Perspectives,1987,71:171-186.
    McKim J M, Schmieder P K, Carlson R W et al. Use of respiratory-cardiovascular response of rainbow trout (Salmo gairdneri) in identifying acute toxicity syndromes in fish. Ⅰ. Pentachlorophenol,2,4-dinitrophenol, tricaine methanesulfonate and 1-octanol. Environmental Toxicology and Chemistry,1987,6:3-13.
    McVeety B D, Hites R A. Atmospheric deposition of polycyclic aromatic hydrocarbons to water surfaces:amass balance approach. Atmospheric Environmet,1988,22:511-536.
    Meador J P, Buzitis J, Bravo C F. Using fluorescent aromatic compounds in bile from juvenile salmonids to predict exposure to polycyclic aromatic hydrocarbons. Environmental Toxicology and Chemistry,2008,27(4):845-853
    Meador J P, Sommers F C, Ylitalo G M et al. Altered growth and related physiological responses in juvenile Chinook salomon(Oncorhynchus tshawytscha) from dietary exposure to polycyclic aromatic hdrocarbons(PAHs). Canadian Journal of Fisheries and Aquatic Scinces,2006, 63:2364-2376.
    Meador J P, Sommers F C, Ylitalo G M, et al. Altered growth and related physiological response in juvenile Chinook salmon (Oncorhynchus tshawytscha) from dietary exposure to polycyclic aromatic hydrocarbons(PAHs). adian Journal of Fisheries and Aquatic Sciences,2006,63: 2364-2376
    Meador J P, Stein J E, Reichert W L et al. A review of bioaccumulation of polycyclic aromatic hydrocarbons by marine organisms. Reviews of Environmental Contamination and Toxicology, 1995,143:79-165.
    Meador J P, Stein J E, Reichert W L, et al. Bioaccumulation of polycyclic aromatic hydrocarbons by marine organisms. Reviews of Environmental Contamination & toxicology,1995,143:79-165.
    Merten A Aoc, Beard E B, Baker J E. PAH-Induced impacts on the bioenergetics and population dynamics of Fundulus Heter litus:Model application for assessing long-term effects from oil spills. International Oil Spill Conference Proceedings,2005,1:375-378
    Meyer J N, Nacci D E, Di Giulio RT. Cytochrome P4501A (CYP1A) in killifish (Fundulus heteroclitus):heritability of altered expression and relationship to survival in contaminated sediments. Toxicological Science,2002,68:69-81.
    Milinkovitch T, Kanan R, Thomas-Guyon H, et al. Effects of dispersed oil exposure on the bioaccumulation of polycyclic aromatic hydrocarbons and the mortality of juvenile Liza ramada. Science of the Total Environment,2011,409(9):1643-1650.
    Miron D M, Crestani M, Shettinger M R, et al. Effects of the herbicides clomazone, quinclorac, and metsulfuron methyl on acetylcholinesterase activity in the silver catfish (Rhamdia queleri) (Heptapteridae). Ecotoxicology and Environmental Safety,2005,61:398-403.
    MitonL L. Analytical chemistry of Polycyclic Aromatioc Compound. INC,1981:17-40.
    Moles A, Babcock MM, Rice SD. Effects of oil exposure on pink salmon, Oncorhynchus gorbuscha, alevins in a simulated intertidal environment. Marine Environmental Research,1987.21:49-58.
    Molson J W, Frind E O, Van Stempvoort D R, et al. Humic acid enhanced remediation of an emplaced diesel source in groundwater.1.Laboratory-based pilot scale test. Journal of Contaminant Hydrology,2002,54:277-305
    Mondon J A, Duda S, Nowak B F. Immune response of greenback flounder Rhombosolea tapirina after exposure to contaminated marine sediment and diet. Marine Environmental Research, 2000,50:443-450.
    Monson P D, Call D J, Cox D A, et al. Photoinduced toxicity of fluoranthene to the northern leopard frog (Rana pipiens). Environmental Toxicology'and Chemistry,1999,18:308-312
    Monteiro P R R, Reis-Henriques M A, Coimbra J, b. Polycyclic aromatic hydrocarbons inhibit in vitro ovarian steroidogenesis in the flounder (Platichthys flesus L). Aquatic Toxicology,2000, 48:549-559.
    Monteiro P R R, Reis-Henriques M A, Coimbra J,a. Plasma steroid levels in female flounder (Platichthys flesus) after chronic dietary exposure to single polycyclic aromatic hydrocarbons. Marine Environmental Research,2001,49:453-467.
    Monteverdi G H, DiGiulio R T. Vitellogenin-associated maternal transfer of exogenous and endogenous ligands in the estuarine fish, Fundulus heteroclitus. Marine Environment Research, 2000,50:191-199.
    Mora S, Tolosa I, Fowler S W, et al. Distribution of petroleum hydrocarbons and organochlorinated contaminants in marine biota and coastal sediments from the ROPME Sea Area during 2005. Marine Pollution Bulletin,2010,60:2323-2349
    Moreira S M, Moreira-Santos M., Ribeiro R, et al. The'Coral Bulker'fuel oil spill on the North Coast of Portugal:spatial and temporal biomarker responses in Mytilus galloprovincialis. Ecotoxicology,2004,13:619-630.
    Morris H. Roberts Jr., William J, et al. Acute Toxicity of PAH Contaminated Sediments to the Estuarine Fish, Leiostomus xanthurus. Bulletin of Environmental Contamination and Toxicology,1989,42:142-149
    Moss D W, Henderson A R, Kochinar J F. Enzymes principles of diagnostic enzymolgy and the aminotransferases. Tietz N W, Textbook of Clinical Chemistry. Saunders, Philadelphia,1986, 663-678.
    Nahrgang J, Camus L, Gonzalez P, et al. Biomarker responses in polar cod (Boreogadus saida) exposed to dietary crude oil. Aquatic Toxicology,2010,96:77-83.
    Nahrgang J, Camus L, Gonzalez P, et al. PAH biomarker responses in polar cod (Boreogadus saida) exposed to benzo(a)pyrene. Aquatic Toxicology,2009,94:309-319.
    Nakata H, Sakai Y, Miyawaki T, et al. Bioaccumulation and toxic potencies of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in tidal flat and coastal ecosystems of the Ariake Sea, Japan. Environmental Science & Technology,2003,37:3513-3521.
    Nasir A M, Hantoush A A. Effest of water soluilble fraction(WSF) of crude oil on some biochemical characters of Juveniles Common Carp, Cyprinus carpio L. Basarh Journal of Veterinary Research,2010,9(1):122-129
    National Research Council(NRC). Nutrient Requirements of Fish. National Academy Press, Washington, DC,1993
    Nelson D L, Cox M M. Lehninger Principles of Biochemistry,3rd ed. New York:Worth Publishers, 2000
    Nero V, Farwell A, Lister, et al. Gill and liver histopathological changes in yellow perch (Perca flavescens) and goldfish (Carassius auratus) exposed to oil sands process-affected water. Ecotoxicology and Environmental Safty,2006,63:365-377.
    Nicolas J M. Vitellogenesis in fish and the effects of polycyclic aromatic hydrocarbon contaminants. Aquatic Toxicology,1999,45:77-90.
    Nisbet C, Lagoy P. Toxic equivalency factors (TEFs) for polycyclicaromatic hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology,1992,16(3):290-300
    Nncardona J P, Collier T K, Scholz N L. Defects in cardiac function precede morphological abnormalities in fish embryos exposed to polycyclic aromatic hydrocarbons. Toxicology and Applied Pharmacology,2004,196:191-205
    Ohnishi S, Kawanishi S. Double base lesions of DNA by a metabolite of carcinogenic benzo[a]pyrene. Biochemical and Biophysical Research Communications,2002,290:778-782.
    Oikari A, Jimenez B. Effects of hepatotoxicants on the induction of microsomal monooxygenase activity in sunfish liver by beta-naphtoflavone and benzo[a]pyrene. Ecotoxicology and Environmental Safety,1992,23(1):89-102.
    Oliveira M, Gravato C, Guilherminoa L. Acute toxic effects of pyrene on Pomatoschistus microps (Teleostei, Gobiidae):Mortality, biomarkers and swimming performance. Ecological Indicators, 2012,19:206-214
    Oliveira M, Gravatob C, Guilhermino L. Acute toxic effects of pyrene on Pomatoschistus microps (Teleostei, Gobiidae):Mortality, biomarkers and swimming performance. Ecological Indicators, 2012,19:206-214.
    Oliveira M, Pacheco M, Santos M A. Organ specific antioxidant responses in golden grey mullet (Liza aurata) following a short-term exposure to phenanthrene. Science of the total environment, 2008,396:70-78.
    Omoregie E, Eseyin T G, Ofojekwu P C. Chronic effects of formalin on erythrocyte counts and plasma glucose of Nile tilapia, Oreochromis niloticus. Asian Fisheries Society,1994,7:1-6.
    Onah N T K, Albina D O, Ping L, et al. Emission of particulate matter and polycyclic aromatic hydrocarbons from select cookstove-fuel systems in Asia. Biomass and Bioenergy,2005, 28:579-590.
    Onkar S. Bains, Christopher J. Kennedy. Energetic costs of pyrene metabolism in isolated hepatocytes of rainbow trout, Oncorhynchus mykiss. Aquatic Toxicology,2004,67:217-226.
    Opuene K, Agbozu Ⅰ, Adegboro O O. A critical appraisal of PAH indices as indicators of PAH source and composition in Elelenwo Creek, southern Nigeria. Environmentalist,2009, 29:47-55
    Oruc E O, Usta D. Evaluation of oxidative stress responses and neurotoxicity potential of diazinon in different tissues of Cyprinus carpio. Environmental Toxicology and Pharmacology,2007,23: 48-55.
    Overli O, Harris C A, Winberg S. Short-term effects of fights for social dominance and the establishment of dominant-subordinate relationships on brain monoamines and cortisol in rainbow trout. Brain, Behavior and Evolution,1999,54:263-275.
    Overli O, Pottinger T G, Carrick T R, et al. Brain monoaminergic activity in rainbow trout selected for high and low stress responsiveness. Brain, Behavior and Evolution,2001,57,214-224.
    Overli O, Winberg S, Pottinger T G. Behavioral and neuroendocrine correlates of selection for stress responsiveness in rainbow trout-a review. Integrative Comparative Biology,2005,45:463-474.
    Pacheco M, Santos M A, a. Tissue distribution and temperature dependence of Anguilla anguilla L. EROD activity following exposure to model inducers and relationship with plasma cortisol, lactate and glucose levels. Environment International,2004,26:149-155.
    Pacheco M, Santos M A, b. Biotransformation, endocrine, and genetic responses of Anguilla anguilla L. to petroleum distillate products and environmentally contaminated waters. Ecotoxicology and Environmental Safety,2001,49,64-75.
    Pacheco M, Santos M A. Biotransformation, endocrine, and genetic responses of Anguilla anguilla L. to petroleum distillate products and environmentally contaminated waters. Ecotoxicology and Environmental Safety,2001b,49:64-75.
    Pacheco M, Santos M A. Naphthalene and β-naphthoflavone effects on Anguilla anguilla L. hepatic metabolism and erythrocytic nuclear abnormalities. Environment International,2002,28: 285-293.
    Pacheco M, Santos M A. Tissue distribution and temperature dependence of Anguilla anguilla L. EROD activity following exposure to model inducers and relationship with plasma cortisol, lactate and glucose levels. Environment International,2001a,26:149-155.
    Padros J, Pelletier E, Ribeiro O C. Metabolic interactions between low doses of benzo[a]Pyrene and tributyltln in arctic charr (Salvelinus alpinus):a long-term in vivo study. Environmental Toxicology and Pharmacology,2003,192:45-55.
    Pal S, Kokushi E, Cheikyula J O, et al. Histopathological effects and EROD induction in common carp exposed to dietary heavy oil. Ecotoxicology and Environmental Safety,2011,74(3): 307-314.
    Pal S, Kokushi E, Cheikyula J O, et al. Histopathological effects and EROD induction in common carp exposed to dietary heavy oil. Ecotoxicology and Environmental Safety,2011,74:307-314
    Palanikumar L, Kumaraguru A K, Ramakritinan C M, et al. Biochemical response of anthracene and benzo[a]pyrene in milkfish Chanos chanos. Ecotoxicology and Environmental Safety,2012,75: 187-197
    Palm R C, Powell D B, Skillman A, et al. Immunocompetence of Juvebile Chinook salmon against Listonella anguillarhim following dietary exposure to polycyclic aromatic hydrocarbons. Environmental Toxicology and Chemistry,2003,22:2986-2994.
    Palm R C, Powell D B, Skillman A, et al. Immunocompetence of juvenile Chinook salmon against Listonella anguillarhim following dietary exposure to polycyclic aromatic hydrocarbons. Emironmenatal Toxicology and Chemistry,2003,22:2986-1994
    Pan LQ, Ren J, Liu J. Responses of antioxidant systems and LPO level to benzo (a)pyrene and benzo(k)fluoranthene in the haemolymph of the Scallop Chlamys Ferrari. Environment Pollution,2006,141:443-451.
    Payne J F, Kicenuuk J W, Squires W R, et al. Pathological changes in a marine fish after a six-month exposure to petroleum. J. Fish.Res.Board.Can,1978,35:665-667.
    Payne J F, Mathieu A, Melvin W, et al. Acetylcholinesterase, an old biomarker with a new future? Field trials in association with two urban rivers and a paper mill in Newfoundland. Marine Pollution Bulletin,1996,32:225-231.
    Pereira W E, Rostad C E, Chiou C T, et al. Contamination of esturien water, biota and sediments by halogenated organic compounds:a filed study. Environmental Science & Technology, 1988:722-728.
    Perez-Lopez M, Anglade P, Bec-Ferte M P. Characterization of hepatic and extrahepatic glutathione S-transferases in rainbow trout (Oncorhynchus mykiss) and their induction by 3,3',4,4'-tetrachlorobiphenyl. Fish Physiology and Biochemistry,2000,22(2):21-32
    Perugini M, Visciano P, Giammarino A, et al. Polycyclic aromatic hydrocarbons in marine organisms from the Adriatic Sea, Italy. Chemosphere,2007,66:1904-1910
    Peterson R E, Theobald H M, Kimmel G L. Developmental reproductive toxicity of dioxins and related compounds:Cross species comparisons. Critical Reviews in Toxicology,1993,23:283-335.
    Petri D, Glover C N, Ylving S, et al. Sensitivity of Atlantic salmon (Salmo salar) to dietary endosulfan as assessed by haematology, blood biochemistry, and growth parameters. Aquatic Toxicology,2006,80:207-216.
    Phelps G W, Thurberg F P, Gould E, et al. Comparison of several physiological monitoring techniques as applied to the blue mussel Mytilus edulis, along a gradient of pollutant stress in Narragansett Bay, Rhode Island. In:Vernberg, F.J., Calabrese, A., Thurberg, F.P., Vernberg, W.B. (Eds.), Biological Monitoring of Marine Pollutants. Academic Press, New York,1981, 335-356.
    Pinkney A E, Harshbarger J C, May E B, et al. Tumor prevalence and biomarkers of exposure in brown bullheads (Ameiurus nebulosus) from the tidal Potomac River, USA, Watershed. Environmental Toxicology and Chemistry,2001,20(6):1196-1205.
    Pritchard J B, Bend J R. Mechanisms controlling the renal excretion of xenobiotics in fish:effects of chemical structure. Drug Metabolism Reviews,1984,15(4):655-671.
    Rao S, Rao R. Study on the polycyclic aromatic hydrocarbons in tissues of fish from KoUeru lake. Indian Journal of Fisheries,2001,48(3):323-327
    Ravindran K. Effect of petroleum hydrocarbon toluene on some oxidoreductase systems of freshwater fish Tilapia mossambica. Environment and Ecology,1988,6:705-708
    Regoli F, Principato G. Glutathione, glutathione-dependent and antioxidant enzymes in mussel, mytilus galloprovincialis, exposed to metals under field and laboratory conditions:Implication for the use of biochemical biomarkers. Aquatic Toxicology,1995,31:143-164
    Reynaud S, Deschaux P. The effects of 3-methylcholanthrene on lymphocyte proliferation in the common carp (Cyprinus carpio L.). Toxicology,2005,211:156-164.
    Rhodes S, Farwell A, Hewitt L M, et al. The effects of dimethylated and alkylated polycyclic aromatic hydrocarbons on the embryonic development of the Japanese medaka. Ecotoxicology and Environmental Safety,2005,60,247-258.
    Ribera D, Narbonne J F, Michel X, et al. Responses of antioxidants and lipid peroxidation in mussels to oxidative damage exposure. Comparative Biochemistry Physiology C,1991, 100:177-181.
    Rice C A, Myers M S, Willis M L, et al. From sediment bioassay to fish biomarker-connecting the dots using simple trophic relationships. Marine Environmental Research,2000,50:527-533.
    Roberts Jr. M H, Hargis, Jr. W J, Strobel C J, et al. Acute Toxicity of PAH Contaminated Sediments to the Estuarine Fish, Leiostomus xanthurus. Bulletin of Environmental Contamination and Toxicology,1989,42:142-149
    Roche H, Buet A, Ramade F. Accumulation of lipophilic microcontaminants and biochemical responses in Eels from the Camargue Biosphere Reserve. Ecotoxicology,2002,11:155-164.
    Rogge W F, Hildemann L M, Mazurek M A, et al. Sources of fine organic aerosol.noncatalyst and catalyst-equipped automobiles and heavy duty diesel trucks. Environmental Science and Technology,1993,27:636-651.
    Rowe C L. Growth responses of estuarine fish exposed to mixed trace elements in sediments over a full life cycle. Ecotoxicology and Environmental Safety,2003,54:229-239.
    Santos M A, Pacheco M. Anguilla anguilla L. stress biomarkers recovery in clean water and secondary-treated pulp mill effluent. Ecotoxicology and Environmental Safety,1996,35: 96-100.
    Scandalios J G. Oxygen stress and superoxide dismutases. Plant Physiology,1993,101:7-12
    Schirmer K, Dixon D G, Greenberg B M, et al. Ability of 16 priority PAHs to be directly cytotoxic to a cell line from the rainbow trout gill. Toxicology,1998,127:129-141
    Scott G R K, Sloman A. The effects of environmental pollutants on complex fish behaviour: integrating behavioural and physiological indicators of toxicity. Aquatic Toxicology,2004,68: 369-392.
    Seifter S, Dayton S, Novic B, et al. The estimation of glycogen with the anthrone reagent. Archives of Bioehemistry and Biophysics,1950,50:191-200.
    Sen A, Kirikbakan A. Biochemical Characterization and Distribution of Glutathione S_Transferases in Leaping Mullet (Liza saliens). Biochemistry (Moscow),2004,69:993-1000.
    Seruto C, Sapozhnikova Y, Schlenk D. Evaluation of the relationships between biochemical endpoints of PAH exposure and physiological endpoints of reproduction in male California Halibut (Paralichthys californicvs) exposed to sediments from a natural oil seep. Marine Environmental Research,2005,60:454-465.
    Sheedy B R, Mattson V R, Cox J S, et al. Bioconcentration of polycyclic aromatic hydrocarbons by the freshwater oligochaete Lumbriculus variegates. Chemosphere,1998,36 (15):3061-3070.
    Shen WY, Fu L L, Li W F, et al.Effect of dietary supplementation with Bacillus subtilis on the growth, performance, immune response and antioxidant activities of the shrimp (Litopenaeus vannamei).Aquaculture Research,2010,41(11):1691-1698.
    Sherry J P, Whyte J J, Karrow N A, et al. The Effect of Creosote on Vitellogenin Production in Rainbow Trout (Oncorhynchus mykiss). Archives of Environmental Contamination and Toxicology,2006,50(1):65-68
    Shi H H, Sui Y X, Wang X R, et al. Hydroxyl radical production and oxidative damage induced by cadmium and naphthalene in liver of Carassius auratus. Comparative Biochemistry Physiology C,2005,140(1):115-121.
    Shi H H, Wang X R, Luo Y, et al. b. Electron paramagnetic resonance evidence of hydroxyl radical generation and oxidative damage induced by tetrabromobisphenol A in Carassius auratus. Aquatic Toxicology,2005,74:365-371
    Siang H Y, Yee L M, Seng C T. Acute toxicity of organochlorine insecticide endosulfan and its effect on behaviour and some hematological parameters of Asian swamp eel (Monopterus albus, Zuiew). Pesticide Biochemistry and Physiology,2007,89:46-53.
    Sijm D T H M, Wever H, de Vries P J, et al..Octan-1-ol/water partition coefficients of polychlorinated dibenzop-dioxins and dibenzofurans:experimental values determined with a stirring method. Chemosphere,1989b,19:263-266.
    Sijm D T H M, Wever H, Opperhuizen A,a. Influence of biotransformation on the accumulation of PCDDs from fly-ash in fish. Chemosphere,1989,19:475-480.
    Simcik M F, Steven J. Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan. Atmospheric environment,1999, (33):5071-5079.
    Simon L M, Nemcsok J, Boross L. Studies on the effect of paraquat on glycogen mobilization in liver of common carp (Cyprinus carpio L.). Comparative Biochemistry and Physiology, Part C, 75:167-169
    Singh H, Singh T P. Site of action of some agricultural pesticides in the hypothalamo-hypophysal-o-axis of the freshwaster catfish, Heteropneustesfossilis(B\och). Proceedings of the International Symposium on Reproductive Physiology of Fish,1982,8:2-6
    Slooff W, Van Kreijl C F, Baars A J. Relative liver weights and xenobiotic-metabolizing enzymes of fish from polluted surface waters in the Netherlands. Aquatic Toxicology,1983,4:1-14.
    Soimasuo R, Ilmari J, Kukkonen J et al. Biomarker responses along a pollution gradient:effects of pulp and paper mill effluents on caged whitefish. Aquatic. Toxicology,1995,31:329-345.
    Solbe J F de L G, Flook V A. Studies on the toxicity of zinc sulphate and of cadmium sulphate to stone loach Noemacheilus barbatulus (L.) in hard water. Journal of Fish Biology,1975, 7:631-637; 1975.
    Sorensen F F, Weeks J M. Baatrup E. Altered locomotory behaviour in woodlice (Oniscus asellus (L)) collected at a polluted site. Environmenatal Toxicology and Chemistry,1997,16:685- 690.
    Spehar R L, Poucher S, Brooke L T, et al. Comparative Toxicity of Fluoranthene to Freshwater and Saltwater Species under Fluorescent and Ultraviolet Light. Archives of Environmental Contamination and Toxicology,1999,37:496-502
    Steele C W. Responses of zebra fish, Brachydanio rerio, to behavior-altering chemicals:[Ph. D dissertation]. Teas, U S A:Texas A&M University, College Station,1986
    Stegeman J J, Brouver M, Di Giulio R T, et al. Molecular responses to environmental contamination: enzyme and protein synthesis as indicators of chemical exposure and effects.
    Huggett R A, Kimerle P M and Mehrle P M, et al. Biomarkers, Biochemical, Physiological and Histological Markers of Anthropogenic Stress. Boca Rat on Florida:Lewis Publishers,1992, 235-335.
    Stephensen E, Svavarsson J, Sturve J.Biochemical indicators of pollution exposure in shorthorn sculpin(Myococephalus scorpius), caught in four harbours on the southwest coast of Iceland. Aquatic Toxicology,2000,48:431-442.
    Summerfelt R C, Lewis W M. Repulsion of green fish by certain chemicals. Jowanal of the Water Pollution Control Federation,1967,39:2030-2038
    Sun Y Y, Yu H X, Zhang J F, et al. Bioaccumulation, depuration and oxidative stress in fish Carassius auratus under phenanthrene exposure. Chemosphere,2006,63:1319-1327
    Sundberg H, Tjarnlund U, Kerman G, et al. The distribution and relative toxic potential of organic chemicals in a PCB contaminated bay. Marine Pollution Bulletin,2005,50:195-207.
    Sundin U, Moore G, Nedergaard J et al. Thermogenin amount and activity in hamster brown fat mitochondria:effect of cold acclimation. American Journal of Physiology,1987,252:822-832
    Teles M, Gravato C, Pacheco M, et al. Juvenile sea bass biotransformation, genotoxic and endocrine responses to β-naphthoflavone,4-nonylphenol and 17β-estradiol individual and combined exposures. Chemosphere,2004,57:147-158.
    Teles M, Oliveira M, Pacheco M, et al. Endocrine and metabolic changes in Anguilla anguilla L. following exposure to β-naphthoflavone-a microsomal enzyme inducer. Environment International,2005,31:99-104.
    Teles M, Pacheco M, Santos M A. Anguilla anguilla L. Liver ethoxyresorufin O-deethylation, glutathione S-transferase, erythrocytic nuclear abnormalities, and endocrine responses to naphthalene and bnaphthoflavone. Ecotoxicology and Environmental Safety,2003,55:98-107.
    Telli-Karakoc F, Tuli A, Hewer A, et al. Adduct distributions in piscine DNA:South-Eastem black sea. Marine Pollution Bulletin,1998,36:696-704.
    Thais da Cruz Alves dos Santos, Van Ngan P, de Arruda Campos Rocha Passos M J et al. Effects of naphthalene on metabolic rate and ammonia excretion of juvenile Florida pompano, Trachinotus carolinus. Journal of Experimental Marine Biology and Ecology,2006,335: 82-90.
    The Commission of the European Communities. No.1881/2006. Setting maximum levels for certain contaminants in foodstuffs.2006
    Thomas P. Molecular and biochemical responses of fish to stressors and their potential use in environmental monitoring. Am Fis h Soc Sym American Fisheries Society Symposium,1990,8: 9-28.
    Thomas R E, Rice S D. Effect of water-soluble fraction of cook inlet crude oil on swimming performance and plasma cortisol in juvenile coho salmon (Oncorhynchus kisutch). Comparative Biochemistry and Physiology, Part C,1987,87:177-180.
    Tintos A, Gesto M, Mi'guez J M, et al. (3-Naphthoflavone and benzo(a)pyrene treatment affect liver intermediary metabolism and plasma cortisol levels in rainbow trout Oncorhynchus mykiss. Ecotoxicology and Environmental Safety,2008,69:189-186.
    Tintos A, Gesto M, Mi'guez J M, et al. Naphthalene treatment alters liver intermediary metabolism and levels of steroid hormones in plasma of rainbow trout (Oncorhynchus mykiss). Ecotoxicology and Environmental Safety,2007,66:139-147.
    Tintos A, Gesto M, Miguez J M, et al. β-Naphthoflavone and benzo(a)pyrene treatment affect liver intermediary metabolism and plasma cortisol levels in rainbow trout Oncorhynchus mykiss. Ecotoxicology and Environmental Safety,2008,69:180-186.
    Tolosa Ⅰ, de Mora S D, Fowler S W, et al. Aliphatic and aromatic hydrocarbons in marine biota and coastal sediments from the Gulf and the Gulf of Oman. Marine Pollution Bulletin,2005,50: 1619-1633
    Tugiyono, Gagnon M M. Metabolic disturbances in fish exposed to sodium Pentachlorophenate (NaPCP) and 3,3',4,4'5-pentachlorobiphenyl (PCB126), individually or combined. Comparative Biochemistry and Physiology, Part C,2002,132:425-435.
    Tuvikene A. Responses of fish to polycyclic aromatic hydrocarbons(PAHs). Annales Zoologici Fennici,1995,32:295-309.
    Vaglio A, Landriscina C. Changes in liver enzyme activity in the teleost Spams aurata in response to cadmium intoxication. Ecotoxicology and Environmental Safety,1999,43:111-116.
    Valavanidis A, Vlachogianni Th, Triantafillaki S, et al. Polycyclic aromatic hydrocarbons in surface seawater and in indigenous mussels (Mytilus galloprovincialis) from coastal areas of the Saronikos Gulf (Greece). Estuarine, Coastal and Shelf Science,2008,79:733-739.
    Valdez Domingos A M, Valdez Domingos F X, Pelletier E, et al. Tissue Distribution and Depuration Kinetics of Waterbome 14C-labeled Light PAHs in Mummichog(Fundulus heteroclitus). Environmental Science & Technology,2011,45:2684-2690
    Van der Oost R, Beyer J, Vermeulen N P E. Fish bioaccumulation and biomarkers in environmental risk assessment:a review. Environmental Toxicology and Pharmacology,2003.13:57-149.
    Van Schanke A, Boon J P, Aardoom Y, et al. Effect of a dioxin-like PCB(PCB116) on the biotransformation and genotoxicity of benzo[a]pyene in the marine flatfish dab (Limanda-limanda). Aquatic Toxicology,2000,50:403-415.
    Van Wezel A P, Opperhuizen A. Narcosis due to environmental pollutants in aquatic organisms: residue-based toxicity, mechanisms, and membrane burdens. Critical Reviews in Toxicology, 1995,25:255-279.
    Vandermeulen J, Hrudley S. Oil in Freshwater:Chemistry, Biology, Countermeasure technology.New York:Pergamon Press,1984,267-303.
    Varanasi U, Stein J E, Nishimoto M. Biotransformation and disposition of PAH in fish. In:Varanasi, U.(Eds.), Metabolism of Polycylic Aromatic Hydrocarbons in the Aquatic Environment. CRC Press, BocaRaton, FL,1989,93-149.
    Varanasi U, Stein J E, Reichert W L, et al. Chlorinated and aromatic hydrocarbons in bottom sediments, fish and marine mammals in US coastal waters:laboratory and field studies of metabolism and accumulation. In:Walker, C.H., Livingstone, D.R. (Eds.), Persistent Pollutants inMarine Ecosystems. Pergamon, New York,1992,83-115.
    Vasseur P, Cossu-Leguille C. Biomarkers and community indices as complementary tools for environmental safety. Environment International,2003,28:711-717.
    Velisek J, Svobodova Z, Piackova V. Effects of Acute Exposure to Metribuzin on Some Hematological, Biochemical and Histopathological Parameters of Common Carp (Cyprinus carpio L.). Bulletin of Environmental Contamination and Toxicology,2009,82(4):492-495
    Vieira L R, Sousa A, Frasco M F, et al. Acute effects of Benzo[a]pyrene, anthracene and a fuel oil on biomarkers of the common goby Pomatoschistus microps (Teleostei, Gobiidae). Science of the Total Environment,2008,395:87-100.
    Vijayan M M, Pereira C, Forsyth R B, et al. Handling stress does not affect the expression of hepatic heat shock protein 70 and conjugation enzymes in rainbow trout treated with β-naphthoflavone. Life Sciences,1997,61(2):117-127
    Vijayan M M, Pereira C, Grau E G, et al. Metabolic responses associated with confinement stress in Tilapia:the role of cortisol. Comparative Biochemistry and Physiology C-toxicology & pharmacology,1997,116(1):89-95.
    Vines C A, Robbins T, Griffin F J, et al. The effects of diffusible creosote-derived compounds on development in Pacific herring (Clupea pallasi). Aquatic Toxicology,2000,51:225-239.
    Vives, Grimalt J O, Fernandez P, et al. Polycyclic aromatic hydrocarbons in fish from remote and high mountain lakes in Europe and Greenland. Science of the Total Environment,2004,324: 67-77
    Wahidulla S, Rajamanickam Y R. Detection of DNA damage in fish Oreochromis mossambicus induced by co-exposure to phenanthrene and nitrite by SI-MS/MS. Environmental Science& Pollution Research,2009,17(2):441-452
    Walczac B, Blunt B, Hodson P. Phagocytic function of monocytes and heamatological changes in rainbow trout injected intraperitoneally with Benzo[a]pyrene (BaP) and benzo[a]anthracene (BaA). Journal of Fish Biology,1987,31:251-253.
    Walker C H. Organophosphorous and carbamate insecticides. Walker, C.H. (Ed.), Organic Pollutants. An Ecotoxicological Perspective.2001.,New York, USA:Taylor & Francis.
    Walker M K, Peterson R E. Aquatic toxicity of dioxins and related chemicals. Schecter A, ed, Dioxins and health. New York:Plenum,1994:347-387.
    Walton D G, Fancey L L, Green J M, et al. Seasonal changes in aryl hydrocarbon hydroxylase activity of a marine fish Tautogolabrus adspersusu with and with out petroleum exposure. Comparative Biochemistry and Physiology,1983,76:246-253
    Wan Y, Jin X H, Hu J, et al. Trophic Dilution of Polycyclic Aromatic Hydrocarbons (PAHs) in a Marine Food Web from Bohai Bay, North China. Environmental Science & Technology,2007, 41:3109-3114
    Wang C X, Yediler A, Peng P A, et al. Photodegradation of phenanthrene in the presence of humic substances and hydrogen perocide. Chemosphere,1995,30(3):501-510
    Wang X H, Wang W X. Bioaccumulation and transfer of benzo(a)pyrene in a simplified marine food chain. Marine Ecology Progress Series,2006,312:101-111
    Warren C E. Biology and Water Pollution Control. W.B.Saunders, Company, Philadelphia,1971.
    Webb D, Gagnon M M. Metabolic enzyme activities in black bream (Acanthopagrus butcheri) from the Swan-Canning Esturay, Western Australia. Comparative Biochemistry and Physiology,Part C,2005,141:356-365.
    Webb P W, Brett J R. Effects of Sublethal Concentrationso f Sodium Pentachlorophenate on Growth Rate, Food Conyersion Efficiency, and Swimming Performance in Underyearling Soikeye Salmon(Oncorhynchus nerka). Journal Fisherie of the Research Board of Canada,1973,30(4): 499-507.
    Weber D N. Spieler R E. Behavioral mechanisms of metal toxicity in fishes. Malins D C, Ostrander G K (Eds.)-Aquatic Toxicology:Molecular, Biochemical and Cellular Perspectives. London, UK:CRC Press,1994,421-467
    Weis J S, Weis P. Swimming performance and predator avoidance by mummichog (Fundulus heteroclitus) larvae after embryonic or larval exposure to methylmercury. Canadian Journal of Fisheries and Aquatic Sciences,1995,52:2168-2173.
    Westlake G F, Sprague J B, Hines R J, et al. Sublethal effects of treated liquid effluent from a petroleum refinery-Ⅲ. Avoidance and other locomotor responses of rainbow trout. Aquatic Toxicology,1983,4:235-245.
    Wetzel D L, Van Vleet E S. Accumulation and Distribution of Petroleum Hydrocarbons found in Mussels (Mytilus galloprovincialis) in the Canals of Venice, Italy. Marine Pollution Bulletin, 2004,48:927-936
    White J C, Triplett T. Polycyclic Aromatic Hydrocarbons (PAHs) in the Sediments and Fish of the Mill River, New Haven, Connecticut, USA. Bulletin of Environmental Contamination and Toxicology,2002,68:104-110
    Whyte A, Lynham J, Lindley E, et al. Leucocyte entry and endothelial e-selectin expression following intradermal Propionibacterium acnes administration. Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology,2000,122:177-184.
    Wilcke W, Amelung W, Martius C, et al. Biological sources of polycyclic aromatic hydrocarbons (PAHs) in the Amazonian Rain Forest. Journal of Plant Nutrition and Soil Science,2000,163: 27-30.
    Winston G W, Di Giulio R T. Prooxidant and antioxidant mechanisms in aquatic organisms. Aquatic Toxicology,1991,19:137-161.
    Winston G W, DiGiulio R T. Prooxidant and antioxidant mechanisms in aquatic organisms. Aquatic Toxicology,1991,19:137-191.
    Wu R S S, Carmel P A, Au D W T, et al. Evaluation of biomarkers of exposure and effect in juvenile areolated grouper(Epinephelus areolatus) on food borne exposure to beno[a]pyene. Environmenatal Toxicology and Chemistry,2003,22:1568-1573
    Wu W Z, Zhang Q H, Schramm K W, et al. Distribution, Transformation, and Long-Term Accumulation of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Different Tissues of Fish and Piscivorous Birds. Ecotoxicology and Environmental Safety,2000,46:252-257
    Wu Y Q, Wang C G, Wang Y, et al. Antioxidant responses to benzo[a]pyrene, tributyltin and their mixture in the spleen of Sebasticus marmoratus. Journal of Environmental Sciences,2007,19: 1129-1135
    Wu Y, Zhang J, Zhu Z J. Polycyclic aromatic hydrocarbons in the sediments of the Yalujiang Estuary, North China. Marine Pollution Bulletion,2003,46:619-625.
    Xie X J, Sun R Y. The bioenergetics of southern catfish (Sihurus meridionalis Chen):Resting metabolic rate as a function of body weight and temperature. Physiological Zoology,1990,63: 1181-1195.
    Xu F L, Wu W J, Wang J J et al. Residual levels and health risk of polycyclic aromatic hydrocarbons in freshwater fishes from Lake Small Bai-Yang-Dian, Northern China [J]. Ecological Modelling, 2011,222(2):275-286
    Xu F L, Wu W J, Wang J J, et al. Residual levels and health risk of polycyclic aromatic hydrocarbons in freshwater fishes from Lake Small Bai-Yang-Dian, Northern China. Ecological Modelling,2011,222(2):275-286
    Xu W J, Li Y Y, Wu Q Y, et al. Effects of phenanthrene on hepatic enzymatic activities in tilapia (Oreochromis niloticus (?) X O. aureits (?)). Journal of Environmental Sciences,2009,21: 854-857
    Yadav A, Gopesh A, Pandey R S, et al. Acetylcholineesterase:apotential biochemical indicator for biomonitoring of fertilizer industry effluent toxicity in fresh water teleost, Channa striatus. Ecotoxicology,2009,18,325-333.
    Yang G P. Polycyclic aromatic hydrocarbons in the sediments of the South China Sea. Environmental Pollution,2000,108:163-171.
    Yang S P, Wu Z H, Jian J C, et al. Effect of marine red yeast Rhodosporidium paludigenum on growth and antioxidant competence of Litopenaeus vannamei. Aquaculture,2010,309:62-65
    Yin Y, Jia H X, Sun Y Y, et al. Bioaccumulation and ROS generation in liver of Carassius auratus exposed to phenanthrene. Comparative Biochemistry and Physiology, Part C,2007,145(20): 288-293.
    Yuan D X, Yang D N, Wade T L, et al. Status of persistent organic pollutants in the sediment from several estuaries in China. Environmentaol Pollution,2001,114,101-111.
    Yuen B B H, Au D W T. Temporal changes of ethoxyresorufin-Odeethylase (EROD) activities and lysosome accumulation in intestine of fish on chronic exposure to dietary benzo[o]pyrene: linking EROD induction tocytological effects. Environmental Toxicology and Chemistry,2006, 25,2593-2600.
    Yuen B B H, WongC K C, Woo N Y S, et al. Induction and recovery of morphofunctional changes in the intestine of juvenile carnivorous fish (Epinephelus coioides) upon exposure to foodborne benzo[a]pyrene. Aquatic Toxicology,2007,82:181-194
    Chen Y Y, Zhu L Z, Zhou R B. Characterization and distribution of polycyclic aromatic hydrocarbon in surface water and sediment from Qiantang River,China. Journal of Hazardous Materials, 2007,141(1):148-155.
    Zapata-Perez O, Ceja-Moreno V, Dominguez J, et al. Biomarkers and pollutants in the tilapia Oreochromis Niloticus in four lagoons from Reforma, Chiapas, Mexico:a case study. Marine Environmental Research,2004,58:311-319.
    Zhang J, Cai L Z, Yuan D X et al., a. Distribution and sources of polynuclear aromatic hydrocarbons in Mangrove surficial sediments of Deep Bay, China. Marine Pollution Bulletion,2004,49: 479-486.
    Zhang X Y, Wang D H. Energy metabolism, thermogenesis and body mass regulation in Brandt's voles (Lasiopodomys brandtu) during cold acclimation and rewarming. Hormones and Behavior,2006,50:61-69.
    Zhang Z L, Hong H S, Zhou J L et al.,b. Phase association of polycyclic aromatic hydrocarbons in the Minjiang River Estuary, China. Science of the Total Environment,2004,323:71-86.
    Zhou J L, Filman W T, Evans S, et al. Fluoranthene and pyrene in the suspended particulzte matter and surface sediment of the Humber Estuary, UK. Marine Pollution Bulletin,1998,36(8): 587-597
    Zhou T, Weis J S. Predator avoidance in mummichog larvae from a polluted habitat. Journal of Fish Biology,1999,54:44-57.
    Zhou T, Weis J S. Swimming behavior and predator avoidance in three populations of Fundulus heteroclitus larvae after embryonic and/or larval exposure to ethylmercury. Aquatic Toxicology, 1998,43:131-148.
    Zhou X X, Tian Z Q, Wang Y B, et al. Effect of treatment with probiotics as water additives on tilapia(Oreochromis niloticus) growth performance and immune response. Fish Physiology and Biochemistry,2010,36:501-509