运动水果的形状描述方法与在线检测技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
果形是评价水果品质的重要特征之一。然而,由于自然形态差异大,水果形状的准确描述十分困难。目前形状描述方法存在执行复杂,对水果姿态要求严格,检测不全面等问题,不能满足高速分级过程中水果姿态多变情况下果形的描述。
     本文以苹果为主要研究对象,分别从二维和三维图像方面研究了水果形状的描述方法。研究了不同品种苹果的形状特征和单一品种不同等级苹果的形状特征的检测方法;构建了基于3相机的视觉检测系统,实现了姿态多变的运动水果的形状快速准确描述,确保姿态多变情况下水果形状判别的一致性。
     本文的主要研究内容、结果、结论如下
     (1)提出了一种FOFS背景分割与目标提取方法。针对水果颜色、大小、缺陷以及光照等多种因素变化导致OTSU等传统图像分割方法不能准确分割水果图像的问题,通过彩色图像的颜色分量融合、形态学开运算消噪、空间滤波去除锯齿状边界和自动阈值分割等步骤,准确地提取了目标。采用该方法对280幅苹果图像处理的结果表明:203幅图像分割偏差小于1%,占总量的72.50%;70幅图像分割偏差在1%-2%,占总量的25%;7幅图像偏差大于2%,占总量的2.50%;最大分割偏差为2.83%。结果表明,FOFS方法提取的目标偏差小于2.83%,边界光滑,具有良好的光照适应性,并可以较好地消除颜色、姿态、大小以及缺陷和果梗花萼对水果图像背景分割的影响。
     (2)提出了形心距离差指标的水果三维形状描述方法。针对水果二维形状描述方法只考虑水果的一个成像平面,形状描述不全面,精度差的问题,采用结构光三维成像技术采集水果的三维点云图像,根据形心距离差描述水果形状,对480幅三维点云图像进行处理的结果表明,对于具有端正果形的各品种苹果,形心距离差的描述方法可以100%区分细长形、近细长形、方圆形3种形状。结果表明,形心距离差三维形状描述方法可以描述水果细长形、近细长形、方圆形3种形状特征。
     (3)提出了对称指数、方形度、轮廓不平度、轮廓峭度、离心率等形状描述指标量,改进了傅里叶描述子、小波描述子以及各种矩的形状描述子。针对传统的形状特征量计算偏差大,不准确等问题,在对比分析了传统的描述方法的基础上,提出和改进了形状描述指标,对200个姿态多变的运动水果10次的形状检测试验证明,采用对称指数Os的离散度阈值区分形状端正果和畸变果的准确率达80.15%,采用改进的Zernike矩Z2-0阈值区分的准确率达66%以上;对440幅苹果图像处理的结果表明,采用Zernike矩Z3-1检测圆柱果和球形果的准确率达83.75%;对34组圆柱形和58组类球形,采用小波矩W3-8-1判定的准确率达93.10%。结果表明,对称指数Os、改进的Zernike矩、小波矩等形状描述子对检测水果形状具有一定的可行性。
     (4)提出了采用Zernike矩Z3-1和小波矩W3-8-1的阈值区分圆柱形果和类球形果的方法。针对目前形状检测主要关注的是单品种不同等级形状特征的描述,而不同品种的水果形状特征描述问题很少学者研究,本文以11个品种的苹果为研究对象,对比分析了244个形状描述指标,包括圆形度、占有率、对称指数、方形度、轮廓不平度、轮廓峭度、离心率、圆度、圆形比、内外接圆半径比,以及傅里叶描述子、小波描述子、Hu矩描述子、Zernike矩描述子和小波矩描述子。对440幅苹果图像处理的结果表明,采用Zernike矩Z3-1检测圆柱果和球形果的准确率达83.75%;对34组圆柱形和58组类球形,采用小波矩W3-8-1判定的准确率达93.10%。而采用多元线性回归模型,其判断准确率最高为56.52%。结果表明,采用Zernike矩Z3-1指标和小波矩W3-8-1指标的固定阈值对圆柱形和球形有一定的判别力,且比采用多元线性回归建立的模型分类准确率高,计算复杂度低。
     (5)提出了采用Zernike矩Z2-0的阈值判定多姿态水果形状是否端正,以及采用离心率Ec、圆形度C4、对称指数Os、Zernike矩Z5-3辅助判定特定姿态的水果形状是否端正的方法。针对目前形状描述方法主要研究的是特定姿态的水果形状,而多姿态的水果形状很少关注的问题,本文以采集于山东栖霞果园的29个富士苹果和36个乔纳金苹果为实验对象,根据形状人工将它们分成3个等级,对每个苹果采集了8幅不同姿态的图像。对比分析了244个形状描述指标,包括圆形度、占有率、对称指数、方形度、轮廓不平度、轮廓峭度、离心率、圆度、圆形比、内外接圆半径比,以及傅里叶描述子、小波描述子、Hu矩描述子、Zernike矩描述子和小波矩描述子。对520幅苹果图像处理的结果表明,采用Zernike矩Z2-0的阈值判别多姿态水果果形是否端正,对富士苹果和乔纳金苹果检测的准确率分别为67.24%和43.06%,而采用6种特征指标通过多元线性回归建立的线性模型判别,其对富士苹果和乔纳金苹果检测的准确率分别为11.21%和30.90%;果轴倾斜姿态,采用离心率Ec的阈值判别,其检测准确率对于富士苹果和乔纳金苹果分别为87.93%和79.17%。采用圆形度C4的阈值判别,其检测准确率对于富士苹果和乔纳金苹果分别为81.03%和65.28%。果轴竖直姿态,采用离心率Ec的阈值判别,其检测准确率对于富士苹果和乔纳金苹果分别为67.24%和59.72%。采用圆形度C4的阈值判别,其检测准确率对于富士苹果和乔纳金苹果分别为65.52%和59.72%。果轴水平姿态,采用Zernike矩Z5-3的阈值判别,其检测准确率对于富士苹果和乔纳金苹果分别为70.69%和52.08%。采用对称指数Os的阈值判别,其检测准确率对于富士苹果和乔纳金苹果分别为73.28%和59.03%。结果说明,根据Zernike矩Z2-0的阈值对多姿态苹果果形是否端正的判别有一定的可行性,且比采用多元线性回归建立的模型分类准确率高,计算复杂度低。在果轴竖直或者倾斜时,采用离心率Ec或者圆形度C4判别会更为准确;果轴水平时,采用Zernike矩Z5-3和对称指数Os对水果形状会更为准确。
     (6)设计了基于3相机的视觉系统,提出了采用Zernike矩Z2-0的阈值以及圆形度C4和对称指数Os的离散度阈值判定姿态多变运动水果的形状是否端正的方法。针对目前形状检测主要研究静止的固定姿态的水果,而姿态多变运动水果的形状检测一直是个难点。本文以水果市场购买的大小规格为90mm,80mm,70mm的三种红富士苹果为研究对象,对5个端正果,8个形变果,50次在线检测的1950幅图像处理的结果表明,采用Zernike矩Z2-0的阈值判别姿态多变运动水果的形状是否端正,5个形状端正果中有3个50次测试的检测结果都为端正果,其余2个50次均为错判;8个形变果中有5个50次测试的检测结果都为形变果,其余为部分错判。采用C4和Os的离散度判别,当C4的离散度小于10%时,判断其形状端正;当C4的离散度大于10%时,Os的离散度小于20%的判断其形状端正,该判定方法可以完全区分样本形状是否端正。进一步的验证实验,对100个端正果和100个形变果,10次在线检测的18000幅图像处理结果表明,采用3相机水果形状检测系统,设置采集一个工位的苹果3幅图像,根据这3幅图像的Zernike矩Z2-0的平均值的阈值判别水果形状,准确率约66%,平均每个苹果的检测时间约0.2063秒。设置采集一个苹果3个位置的9幅图像,根据这9幅图像的对称指数Os的离散度的阈值判别水果形状,准确率约80.15%,平均每个苹果的检测时间约1.649秒。结果表明,基于3相机视觉系统的水果形状检测,Zernike矩Z2-0阈值法和对称指数Os的离散度阈值法对果形是否端正具有一定的判别能力。采用Zernike矩Z2-0阈值法实时性好,采用对称指数Os的离散度阈值法准确率高。
Shape is one of the key quality characteritcs of fruits. But, it is very difficult to describe the fruit shape beacause of its big difference among natural morphological characteristics of different fruits. The existing shape description methods mostly are facing many problems: complex executing, special fruits'postures, unilateral detection and low accuracy. They are not suitable for shape detection of pose-varied fruits on the high speed production line.
     In this paper, apples are mainly research objects. Shape description methods based on machine vision were studied from2D and3D images. The description methods of shape characteristics among different varieties of apples were studied, and the description methods of shape characteristics among different grades of a variety of apples were researched. A three cameras machine vision detection system was constructed, and fast and exact description of shape of pose-varied moving fruit was realized, and consistency of fruit shape discriminant under changing posture circumstances was guaranteed.
     The main research contents, results and conclusions were listed as follows:
     (1) A novel background segmentaion and target extraction method called FOFS was proposed. Using OTSU method directly cannot get a complete target because of influence of the fruit color, size, defects and illumination. In order to improve the background segmentation precision and adaptability to different fruits, the R, G, B companents of one color image were fusioned firstly, then the fusional image was denoised by morphological opening method, then followed by removing zigzag boundary through the spatial filtering, finally the background was segmented and the target was extracted by automatic threshold segmentation method.280apple images were processed by this method, and the results show that203image segmentation deviation is less than1%, accounting for72.50%of the total;70image segmentation deviation in1%~1%, accounting for25%of the total;7image deviation is greater than2%, accounting for2.50%of the total; the largest segmentation deviation is2.83%. The results indicate that the FOFS method is good. Segmentation deviation is less than2.83%, and the extraction edge is smooth, and it has good illumination adaptability. The FOFS method can better eliminate the influence of color, position, size, defects and stem calyx to background segmentation.
     (2) A3D shape description method of centroid distance deviation was presented. A2D image is only one of imaging plane of the apple, so shape detection by the description methods based on2D images was incomplete, and its accuracy was low.480images of3D points clouds of10varieties of apples by structured light3D imaging technology were analyzed by the method of centroid distance deviation. The results show that, for regular shape apples, the method of centroid distance deviation can distinguish slender, near slender, square and round. This results indicate that centroid distance deviation can describe shape features of slender, near slender, square and round.
     (3) Two dimensional shape description methods of symmetry index, rectangularity, contour irregularities, contour kurtosis and eccentricity were presented. Fourier descriptors, wavelet descriptors, Hu descriptors, Zernike moments descriptors,wavelet moment descriptors were improved. The traditional shape description indexes are inaccurate and they often have big deviation.so some new indexes were presented and some were improved by contrastive analysis with traditional indexes. The different shape grades of the same apple variety were detected by this method. The results showed that ten times of shape online detection of200apples by dispersion threshold of symmetry index Os proved the accuracy was about80.15%. And the distinguishing accuracy of the method of the improved Zernike moment Z2-0threshold was above66%. The results of the440apple images processing showed that the distinguishing accuracy of the method of the improved Zernike moment Z3-1threshold was above83.75%. The results of the34cylindrical apples and58spherical apples images processing showed that the distinguishing accuracy of the method of the improved wavelet moment W3-8-1threshold was above93.10%. This results indicate that symmetry index Os, improved Zernike moment and wavelet moment are useful.
     (4) A method of using Zernike moment Z3-1and Wavelet moment W3-8-1's thresholds to classify the shape grade were proposed. In this paper,11varieties of apples were as research objects.244shape description indexes including circularity factor, complexity, occupancy, symmetry index, rectangularity, contour irregularities, contour kurtosis, eccentricity, roundness, circular ratio, the ratio of circumradius and Fourier descriptors, wavelet descriptors, Hu descriptors, Zernike moments descriptors, wavelet moment descriptors were analyzed. The results of440images processing show that the determining accuracy is above83.75%by setting Z3-1's threshold12. greater than12cylindrical fruit, less than12spherical fruit. The determining accuracy is above93.10%to34groups of cylindrical and58groups of spherical fruits according to setting W3-8-1's threshold5.5, greater than5.5clylindrical, less than5.5round. And using multiple linear regression model, its accuracy is56.52%. The results indicate that the Zernike moment Z3-1and Wavelet moment W3-8-1threshold method can recognize the shape of cylindrical and spherical. Its accuracy is higher than multiple liner regression model, and it has low computational complexity.
     (5) A method of using Zernike moment Z2-0's threshold to judge deformation for all kinds of apple attitudes, and the method of eccentricity Ec, circularity factor C4, symmetry index Os, Zernike moment Z5-3's thresholds for special attitudes apple images were proposed. Most researchers are focusing on shape description of special attitude fruit, and few care about shape description of multitude pose fruits. In this paper,29Fuji apples and36Jonah gold apples were picked from Qixia' orchards in Shandong province. They were respectively selected to three shape grades according to their shape features by naked eyes. Each apple had8images from different attitudes.244shape description indexes including circularity factor, complexity, occupancy, symmetry index, rectangularity, contour irregularities, contour kurtosis, eccentricity, roundness, circular ratio, the ratio of circumradius and Fourier descriptors, wavelet descriptors, Hu descriptors, Zernike moments descriptors, wavelet moment descriptors were analyzed. The results of440images processing show that whatever any pose of apples, setting Z2-0's threshold12, greater than12for distortionless, less than12for deformation, the detecting accuracy was about67.24%for Fuji apples and about43.06%for Jonah golden apples. And the detecting accuracy was only11.21%for Fuji apples and about30.09%for Jonah golden apples by multiple linear regression model. When fruit axis was leaned, the detecting accuracy of setting Ec's threshold0.1was87.93%for Fuji apples and79.17%for Jonah golden apples. The detecting accuracy of setting C4's threshold0.92was81.03%for Fuji apples and65.28%for Jonah golden apples. When fruit axis was vertical, the detecting accuracy of setting Ec's threshold0.1was67.24%for Fuji apples and59.72%for Jonah golden apples. The detecting accuracy of setting C4's threshold0.92was65.52%for Fuji apples and59.72%for Jonah golden apples. When fruit axis was horizonal, setting Os's threshold0.9, greater than0.9for distortionless, less than0.9for deformation, the detecting accuracy was about73.28%for Fuji apples and about59.03%for Jonah golden apples. Setting Z5-3's threshold11.9, greater than11.5for distortionless, less than11.5for deformation, the detecting accuracy was about70.69%for Fuji apples and about52.08%for Jonah golden apples. The results indicate that Zernike moment Z2-0can determine deformation. When fruit axis was vertical or leaned, eccentricity Ec and circularity factor C4can get better discrimination. When fruit axis was horizonal, symmetry index Os and Zernike moment Z5-3can get better discrimination.
     (6) A three camaras machine vision system was designed, and a method of using Zernike moment Z2-0's threshold to judge deformation was proposed. And a method of using dispersion of circularity factor C4and symmetry index Os to judge deformation was presented. Most researchers are on shape description of fixed pose motionless fruit, and shape description of moving pose varied fruits is always difficult. From the fruits market, we bought Fuji apples that had3kinds of size specifications of90mm,80mm.70mm.5distortionless fruit and8deformational fruits were researched objects. And each apple must be tested for50times, and1950images were captured. According to the study on shape feature description methods of diffirent shape grades of the same apple variety, Zernike moment Z2-0, Z3-1, Z5-3and circularity factor C4, symmetry index Os, eccentricity Ec were analyzed mainly. The results show that setting Z2-0's threshold13. greate than13for distortionless, less than13for deformation,3apples in5distortionless fruits were discriminated as distortionless fruits for50times tests and other2apples got the wrong results. And5apples in8deformational fruits were discriminated as deformation for50times tests and other apples had some wrong discrimination in some tests. The dispersion of circularity factor C4and symmetry index Os was calculated by statistic analysis method. Setting C4's dispersion threshold10%, less than10%distortionless, when greater than10%. Os's dispersion less than20%distortionless, other deformation, this method can completely discriminate the shape deformation or not. In validation tests,2kinds of distornless and deformation Fuji apples were selected. Each kind had100samples, and each sample must be tested for10times. And9imges of3postions for each time were captured, so18000images were obtained in total. The results of image processing show that, based on3camaras machine vision system, setting capturing3images from only1position, and, the accuracy of processing3images was about66%by Zernike moment Z2-0threshold12.7and average detection time for each apple was about0.2063seconds. Setting capturing9images from3positions, the accuracy of processing9images was about80.15%by dispersion threshold of symmetry index Os and average detection time for each apple was about1.649seconds. The results indicate that the methods of Zernike moment Z2-0threshold and dispersion threshold of symmetry index Os based on3camaras machine vision can discriminate the shape. The Zernike moment Z2-0threshold method has good real-time and the method of dispersion threshold of symmetry index Os has high accuracy.
引文
[1]中华人民共和国国家统计局.中国统计年鉴.北京:中国统计出版社.[2013-4-7].http://www.stats.gov.cn/tjsj/ndsj/.
    [2]饶秀勤.基于机器视觉的水果品质实时检测与分级生产线的关键技术研究[博士学位论文].杭州:浙江大学.2007.
    [3]Equipment, C. S. [2013-4-9]. http://www.compacsort.com/wawcs0146768/Home.html.
    [4]MAFRODA. [2013-4-9]. http://www.maf-roda.com/
    [5]近藤直,门田冲司,野口伸.农业机器人Ⅰ基础与理论(Agri-Robot(I)--Fundamentals and Theory).北京:中国农业大学出版社.2009.
    [6]Kondo, N. Robotization in fruit grading system. Sensing and Instrumentation for Food Quality and Safety.2009,3(1):81-87.
    [7]Corporation, I. V. A. [2013-4-9]. http://www.industrvvisionautomation. com/product/P2pst.htm.
    [8]杭州博实生物机电有限公司.[2013-4-9].http://bsswid.machinervinfo.net/product/2124776.htm.
    [9]应义斌,韩东海.农产品无损检测技术.北京:化学工业出版社.2005.
    [10]UPOV. Malus_dom.apple(fruit varieties) geneva:international union for the protection of new varieties of plants.2005.
    [11]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T10651-2008.鲜苹果.北京:中国标准出版社.2008.
    [12]中华人民共和国农业部.NY/T 1075-2006.红富士苹果.北京:中华人民共和国农业部.2006.
    [13]中华人民共和国农业部.NY/T 439-2001.苹果外观等级标准.北京:中华人民共和国农业部.2001.
    [14]Union, t. E. L157 543/2011 of 7 June 2011.Fruit and vegetables:Marketing standards Europe:the European Union.2011.
    [15]Europe, t. U. N. E. C. f. UNECE STANDARD FFV-50 concerning the marketing and commercial quality control of APPLES.New York and Geneva:United Nations.2011.
    [16]Europe, t. U. N. E. C. f. Standard layout for unece standards on fresh fruit and vegetables 2011.New York and Geneva:United Nations.2011.
    [17]USDA. United States Standardsfor Grades of Apples.United States:United States Department of Agriculture.2002.
    [18]Moreda, G. P., Munoz, M. A., Ruiz-Altisent, M., Perdigones, A. Shape determination of horticultural produce using two-dimensional computer vision-A review. Journal of Food Engineering.2012,108(2):245-261.
    [19]Gonzalez., R. C., Woods., R. E. Digital Image Processing (Third Edition).2010.
    [20]Tao, Y., Morrow, C. T., Heinemann, P. H., Sommer, H. J. Fourier-based separation technique for shape grading of potatoes using machine vision. Transactions of the Asae.1995,38(3): 949-957.
    [21]Abdullah, M. Z., Fathinul-Syahir, A. S., Mohd-Azemi, B. M. N. Automated inspection system for colour and shape grading of starfruit (Averrhoa carambola L.) using machine vision sensor. Transactions of the Institute of Measurement and Control.2005,27(Compendex):65-87.
    [22]Abdullah, M. Z., Mohamad-Saleh, J., Fathinul-Syahir, A. S., Mohd-Azemi, B. M. N. Discrimination and classification of fresh-cut starfruits (Averrhoa carambola L.) using automated machine vision system. Journal of Food Engineering.2006,76(Compendex): 598-523.
    [23]Laykin, S., Alchanatis, V., Fallik, E., Edan, Y. Image-processing algorithms for tomato classification. Transactions of the Asae.2002,45(3):851-858.
    [24]Mebatsion, H. K., Paliwal, J., Jayas, D. S. A novel, invariant elliptic Fourier coefficient based classification of cereal grains. Biosystems Engineering.2012,111(4):422-428.
    [25]El-ghazal, A., Basir, O., Belkasim, S. Invariant curvature-based Fourier shape descriptors. Journal of Visual Communication and Image Representation.2012,23(4):622-633.
    [26]Frejlichowski, D. (2011) A three-dimensional shape description algorithm based on Polar-Fourier transform for 3D model retrieval, In 17 th Scandinavian Conference on Image Analysis, SCIA 2011, May 23,2011-May 27,2011, pp 457-466, Springer Verlag, Ystad, Sweden.
    [27]Papakostas, G. A., Koulouriotis, D. E., Karakasis, E. G. Computation strategies of orthogonal image moments:A comparative study. Applied Mathematics and Computation.2010,216(1): 1-17.
    [28]Gui, J., Zhou, W. Fruit shape classification using zernike moments, In International Conference on Image Processing and Pattern Recognition in Industrial Engineering (Du, Z., and Liu, B., Eds.).2010.
    [29]Wang, W., Mottershead, J. E., Mares, C. Mode-shape recognition and finite element model updating using the Zernike moment descriptor. Mechanical Systems and Signal Processing. 2009,23(7):2088-2112.
    [30]Kim, H. S., Lee, H. K. Invariant image watermark using Zernike moments. Circuits and Systems for Video Technology, IEEE Transactions on.2003,13(8):766-775.
    [31]Miao, Z. J. Zernike moment-based image shape analysis and its application. Pattern Recognition Letters.2000,21(2):169-177.
    [32]应义斌,桂江生,饶秀勤.基于Zernike矩的水果形状分类.江苏大学学报(自然科学版).2007,28(1):1-4.
    [33]Hu, M. Visual-pattern recognition by moment invariants. Ire Transactions on Information Theory.1962,8(2):179-187.
    [34]Zhang, H. F., Zhang, X. (2011) Shape recognition using a moment algorithm, In 2nd International Conference on Multimedia Technology,1CMT 2011, July 26,2011-July 28, 2011, pp 3226-3229, IEEE Computer Society, Hangzhou, China.
    [35]Zunic, J., Hirota. K., Rosin, P. L. A Hu moment invariant as a shape circularity measure. Pattern Recognition.2010.43(1):47-57.
    [36]Chen, Q., Petriu, E., Yang, X. (2004) A comparative study of fourier descriptors and Hu's seven moment invariants for image recognition, In Canadian Conference on Electrical and Computer Engineering; Technology Driving Innovation,2004, May 2,2004-May 5,2004, pp 0103-0106, Institute of Electrical and Electronics Engineers Inc., Niagara Falls, Canada.
    [37]Chen, C. C. Improved moment invariants for shape discrimination. Pattern Recognition.1993. 26(5):683-686.
    [38]Wang, F., Rao, X., Ying, Y. (2012) Research on description of fruit shape based on machine vision, In American Society of Agricultural and Biological Engineers Annual International Meeting 2012, July 29,2012-August 1,2012, pp 4324-4332, American Society of Agricultural and Biological Engineers, Dallas, TX, United states.
    [39]Xu, H., Li, P. Urban land cover classification from very high resolution imagery using spectral and invariant moment shape information. Canadian Journal of Remote Sensing.2010,36(3): 248-260.
    [40]Feng, Z., Shang-qian. L., Da-bao, W., Wei, G. Aircraft recognition in infrared image using wavelet moment invariants. Image and Vision Computing.2009,27(4):313-318.
    [41]Yadav, R. B., Nishchal, N. K., Gupta, A. K., Rastogi, V. K. Retrieval and classification of objects using generic Fourier, Legendre moment, and wavelet Zernike moment descriptors and recognition using joint transform correlator. Optics and Laser Technology.2008,40(3): 517-527.
    [42]Saito, Y, Hatanaka, T., Uosaki, K., Shigeto, H. (2003) Neural network application to eggplant classification, In 7th International Conference, KES 2003, September 3,2003-September 5, 2003, pp 933-940, Springer Verlag, Oxford, United kingdom.
    [43]Kang, S., Lee, K., Lee, H.-Y. Nondestructive cucumber quality evaluation system using machine vision. Key Engineering Materials.2006,321-323 Ⅱ:1205-1208.
    [44]Dapena, E. (2006) Proposal of a new classification of apple general shape based on biometrics criteria, In Report of a Working Group on Malus/Pyrus (Lateur, M., Maggioni, L., and Lipman, E., Eds.), Third Meeting,25-27 October 2006, Tbilisi, Georgia.
    [45]Van der Knaap, E., Lippman, Z. B., Tanksley, S. D. Extremely elongated tomato fruit controlled by four quantitative trait loci with epistatic interactions. Theoretical and Applied Genetics.2002,104(Compendex):241-247.
    [46]Van der Knaap, E., Tanksley, S. The making of a bell pepper-shaped tomato fruit: identification of loci controlling fruit morphology in Yellow Stuffer tomato. TAG Theoretical and Applied Genetics.2003,107(1):139-147.
    [47]Brewer, M. T., Lang, L. X., Fujimura, K., Dujmovic, N., Gray, S., van der Knaap, E. Development of a controlled vocabulary and software application to analyze fruit shape variation in tomato and other plant species. Plant Physiology.2006,141(1):15-25.
    [48]Kim, C.-S., Wright. M. E. (2000) Curvature Angular Descriptor (CAD) for Anomalous Shape Recognition, In 2000 ASAE Annual International Meeting, Technical Papers:Engineering Solutions for a New Century, July 9,2000-July 12,2000, pp 1493-1508, American Society of Agricultural and Biological Engineers, Milwaukee, WI, United states.
    [49]Morimoto, T., Takeuchi, T., Miyata, H., Hashimoto, Y. Pattern recognition of fruit shape based on the concept of chaos and neural networks. Computers and Electronics in Agriculture.2000, 26(2):171-186.
    [50]Anuar, F. M., Fauzi, M. F. A., Mansor, S. (2011) Improving shape descriptor complexity via wavelet decomposition, In 2nd IEEE International Conference on Open Systems,ICOS 2011, September 25,2011-September 28,2011, pp 26-31, IEEE Computer Society, Langkawi, Malaysia.
    [51]Banerji, S., Sinha, A., Liu, C. (2012) Scene image classification:Some novel descriptors, In 2012 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2012, October 14,2012-October 17,2012, pp 2294-2299, Institute of Electrical and Electronics Engineers Inc., Seoul, Korea, Republic of.
    [52]Priya, K. J., Rajesh, R. S. Local Fusion of Complex Dual-Tree Wavelet Coefficients Based Face Recognition for Single Sample Problem, In Proceedings of the International Conference and Exhibition on Biometrics Technology (Atkinson, G. A., Deepika, C. L., and Kandaswamy, A., Eds.), pp 94-100.2010.
    [53]Wu, J. C., Ren, Z. H. (2008) Research of Machine Visual Image Processing Based on Wavelet Analysis, In Proceedings of 2008 International Conference on Informationization, Automation and Electrification in Agriculture (Zhang, H., and Zhao, R. M. H., Eds.), pp 8-11, Orient Acad Forum, Marrickville.
    [54]Yadav, R. B., Nishchal, N. K., Gupta, A. K., Rastogi, V. K. Retrieval and classification of shape-based objects using Fourier, generic Fourier, and wavelet-Fourier descriptors technique: A comparative study. Optics and Lasers in Engineering.2007,45(6):695-708.
    [55]Kashi, R. S., Bhoj-Kavde, P., Nowakowski, R. S., Papathomas, T. V.2-D shape representation and averaging using normalized wavelet descriptors. Simulation.1996,66(3):164.
    [56]De Oliveira, W. A. A., Barcelos, C. A. Z., Giraldi, G., Guliato, D. (2012) HSD:A 3D shape descriptor based on the Hilbert curve and a reduction dimensionality approach, In 2012 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2012, October 14,2012-October 17,2012, pp 156-161, Institute of Electrical and Electronics Engineers Inc., Seoul, Korea, Republic of.
    [57]Gui, J. S., Rao, X. Q., Ying, Y. B. Fruit shape detection by level set. Journal of Zhejiang University-Science A.2007,8(8):1232-1236.
    [58]Moreda, G. P., Ortiz-Canavate, J., Garcia-Ramos, F. J., Ruiz-Altisent, M. Non-destructive technologies for fruit and vegetable size determination-a review. Journal of Food Engineering.2009,92(2):119-136.
    [59]Jiang, L., Zhu, B., Cheng, X., Luo, Y., Tao, Y.3d surface reconstruction and analysis in automated apple stem-end/calyx identification. Transactions of the Asabe.2009,52(5): 1775-1784.
    [60]Lee, I., Tariq Mahmood, M., Choi, T.-S. Adaptive window selection for 3D shape recovery from image focus. Optics and Laser Technology.2013,45(1):21-31.
    [61]Rakun, J., Stajnko, D., Zazula, D. Detecting fruits in natural scenes by using spatial-frequency based texture analysis and multiview geometry. Computers and Electronics in Agriculture. 2011,76(1):80-88.
    [62]Soheilian, B.. Paparoditis, N., Vallet, B. Detection and 3D reconstruction of traffic signs from multiple view color images. ISPRS Journal of Photogrammetry and Remote Sensing.2013,77: 1-20.
    [63]Peng, Z., Guo-Qiang, N. Simultaneous perimeter measurement for 3D object with a binocular stereo vision measurement system. Optics and Lasers in Engineering.2010,48(4):505-511.
    [64]Zhang, G., Wei, Z. A novel calibration approach to structured light 3D vision inspection. Optics & Laser Technology.2002,34(5):373-380.
    [65]Scharstein, D., Szeliski, R. (2003) High-accuracy stereo depth maps using structured light. In Computer Vision and Pattern Recognition,2003. Proceedings.2003 IEEE Computer Society Conference on, pp I-195-1-202 vol.191, IEEE.
    [66]Geng, J. Structured-light 3D surface imaging:a tutorial. Advances in Optics and Photonics. 2011,3(2):128-160.
    [67]Tabia, H., Colot, O., Daoudi, M., Vandeborre, J.-P. (2011) Non-rigid 3D shape classification using bag-of-feature techniques, In 201112th IEEE International Conference on Multimedia and Expo,ICME 2011, July 11,2011-July 15.2011, p IEEE Signal Processing Society; IEEE Communication Society:IEEE Circuit and System Society; IEEE Computer Society, IEEE Computer Society, Barcelona, Spain.
    [68]Tang, S., Godil, A. (2012) An evaluation of local shape descriptors for 3D shape retrieval, In 3-Dimensional Image Processing (3DIP) and Applications 11, January 24,2012-January 26, 2012, pp The Society for Imaging Science and Technology (IS and T); The Society of Photo-Optical Instrumentation Engineers (SPIE), SPIE, Burlingame, CA, United states.
    [69]Throop, J. A., Aneshansley, D. J., Upchurch, B. L., Anger, B. Apple orientation on two conveyors:Performance and predictability based on fruit shape characteristics. Transactions of the Asae.2001,44(1):99-109.
    [70]Throop, J. A., Aneshansley, D. J., Anger, W. C., Peterson, D. L. Quality evaluation of apples based on surface defects:development of an automated inspection system. Postharvest Biology and Technology.2005,36(3):281-290.
    [71]Whitelock, D. P., Brusewitz, G. H., Stone, M. L. Apple shape and rolling orientation. Applied Engineering in Agriculture.2006,22(1):87-94.
    [72]Niigaki, H., Fukui. K. (2009) Classification of similar 3D objects with different types of features from multi-view images-An approach to classify 100 apples, In 3rd Pacific Rim Symposium on Image and Video Technology, PSIVT 2009, January 13,2009-January 16, 2009, pp 1046-1057, Springer Verlag, Tokyo, Japan.
    [73]Zhu, B., Jiang, L., Tao, Y. Three-dimensional shape enhanced transform for automatic apple stem-end/calyx identification. Optical Engineering.2007,46(1):0172011-0172019.
    [74]Zhu, B., Jiang, L., Tao. Y. (2007) Automated 3D Surface Reconstruction and Analysis of apple Near-Infrared data for the application of apple stem-end/calyx identification, In 2007 ASABE Annual International Meeting, Technical Papers, June 17,2007-June 20,2007, pp American Society of Agricultural and Biological Engineers, ASABE, American Society of Agricultural and Biological Engineers, Minneapolis, MN, United states.
    [75]Reese, D., Lefcourt, A. M., Kim, M. S., Lo, Y. M. Using parabolic mirrors for complete imaging of apple surfaces. Bioresource Technology.2009,100(19):4499-4506.
    [76]Chong, V. K., Kondo, N., Ninomiya, K., Monta, M., Namba, K. (2004) Comparison on eggplant fruit grading between nir-color camera and color camera, In International Conference on Automation Technology for Off-road Equipment, ATOE 2004, October 7,2004-October 8,2004, pp 387-393, American Society of Agricultural and Biological Engineers, Kyoto, Japan.
    [77]Ninomiya, K., Kondo, N., Chong, V. K., Monta, M. (2004) Machine vision systems of eggplant grading system, In International Conference on Automation Technology for Off-road Equipment, ATOE 2004, October 7,2004-October 8,2004, pp 399-404, American Society of Agricultural and Biological Engineers, Kyoto, Japan.
    [78]Kondo, N., Chong, V, Ninomiya, K., Nishi, T., Monta, M. (2005) Application of NIR-color CCD camera to Eggplant Grading Machine, In 2005 ASAE Annual International Meeting, Technical Papers, Florida,17-20 July 2005.
    [79]Kondo, N. Automation on fruit and vegetable grading system and food traceability. Trends in Food Science & Technology.2010,21(3):145-152.
    [80]Blasco, J., Aleixos, N., Cubero, S., Gomez-Sanchis, J., Molto, E. Automatic sorting of satsuma, (Citrus unshiu) segments using computer vision and morphological features. Computers and Electronics in Agriculture.2009,66(1):1-8.
    [81]Seng, W. C., Mirisaee, S. H., Ieee. (2009) A New Method for Fruits Recognition System, In 2009 International Conference on Electrical Engineering and Informatics, Vols 1 and 2, pp 125-129, Ieee, New York.
    [82]Pornpanomchai, C., Srikeaw, K., Harnprasert, V., Promnurakkit, K. (2009) Thai Fruit Recognition System (TFRS), In 1st International Conference on Internet Multimedia Computing and Service,ICIMCS 2009, November 23,2009-November 25,2009, pp 108-112, Association for Computing Machinery, Kunming, Yunnan, China.
    [83]Omid, M., Khojastehnazhand, M., Tabatabaeefar, A. Estimating volume and mass of citrus fruits by image processing technique. Journal of Food Engineering.2010,100(2):315-321.
    [84]应义斌.水果形状的傅里叶描述子研究.生物数学学报.2001,16(2):234-240.
    [85]应义斌,景寒松,马俊福,赵匀,蒋亦元.黄花梨果形的机器视觉识别方法研究.农业工程学报.1999,15(1):192-196.
    [86]应义斌.水果图像的背景分割和边缘检测技术研究.浙江大学学报(农业与生命科学版).2000,26(1):35-38.
    [87]高华,王雅琴.基于计算机视觉的农产品形状分级研究.计算机工程与应用.2004,40(14):227-229.
    [88]郭志涛,袁金丽,岳大为,梁晓艳.基于L-M神经网络的苹果形状快速分级.农业网络信息.2007,(7):28-30.
    [89]薛之听.水果和根茎蔬菜形状的计算机辅助分析.计算机测量与控制.2005,13(6):598-599.
    [90]林开颜,吴军辉,徐立鸿.基于计算机视觉技术的水果形状分级方法.农业机械学报.2005,36(6):71-74.
    [91]李秀智.基于机器视觉的苹果形状分级系统研究[硕士学位论文].南京:南京农业大学.2003.
    [92]赵彦如.基于虚拟仪器的鸭梨品质检测计算机视觉系统研究[硕士学位论文].保定:河北农业大学.2004.
    [93]袁金丽.计算机视觉在苹果外部品质检测与分级方面的应用研究[硕士学位论文].北京:中国农业大学.2005.
    [94]侯文军.基于机器视觉的苹果自动分级方法研究[硕士学位论文].南京:南京林业大学.2006.
    [95]郝敏,麻硕士,郝小冬.基于Zernike矩的马铃薯薯形检测.农业工程学报.2010,26(2):347-350.
    [96]谭佐军,李俊,谢静,后德家.利用Zernike矩计算储粮害虫图像倾斜角度.农业工程学报.2009,25(10):182-185.
    [97]丁筠,殷涌光,王旻.蔬菜中大肠杆菌的机器视觉快速检测.农业机械学报.2012,43(2):134-139,145.
    [98]赵文仓,王军欣.杂草种子视觉不变特征提取及其种类识别.农业工程学报.2011,27(3):158-161.
    [99]张建华,冀荣华,袁雪,李慧,祁力钧.基于径向基支持向量机的棉花虫害识别.农业机械学报.2011,42(8):178-183.
    [100]张水发,王开义,王书峰,刘忠强,毛璐.基于优化矩不变特征的鲜切菜在线分级技术.农业工程学报.2011,27(10):354-358.
    [101]李先锋,朱伟兴,滨,纪.,刘波.基于特征优化和LS-SVM的棉田杂草识别.农业机械学报.2010,41(11):168-172.
    [102]崔建江,宋星月,陈国坤,陈大力.基于几何形状和小波矩的静脉特征提取与匹配.东北大学学报(自然科学版).2009,30(9):1236-1240.
    [103]骆伟.基于计算机视觉的纽荷尔脐橙图像形状识别方法研究.农业与技术.2009,29(2):158-161.
    [104]张建华.基于计算机视觉的硬皮甜瓜外部品质自动化分级研究[硕士学位论文].兰州:甘肃农业大学.2009.
    [105]向光蓉.基于图像识别的苹果分级研究[硕士学位论文].大连:大连海事大学.2003.
    [106]吕秋霞,张景鸿.基于神经网络的水果自动分类系统设计.安徽农业科学.2009,37(35): 17392-17394.
    [107]齐晓娜.鸭梨品质检测与分级计算机视觉系统的研究[硕士论文].保定:河北农业大学.2005.
    [108]白菲.基于机器视觉的柑橘水果外形识别方法研究[硕士学位论文].北京:中国农业大学.2005.
    [109]郭峰,曹其新,谢国俊,周金良.基于OHTA颜色空间的瓜果轮廓提取方法.农业机械学报.2005,36(11):113-116.
    [110]桂江生.二维水果形状检测与分类算法研究[博士学位论文].杭州:浙江大学.2007.
    [111]李庆中.苹果自动分级中计算机视觉信息快速获取与处理技术的研究[博士学位论文].北京:中国农业大学.2000.
    [112]谢国俊,曹其新,刘建政,郭峰,周金良.基于多方位视觉的果实形状特征的提取研究.农业工程学报.2007,23(7):127-132.
    [113]Zou, X. B., Zhao, J. W., Li, Y. X., Holmes, M. In-line detection of apple defects using three color cameras system. Computers and Electronics in Agriculture.2010,70(1):129-134.
    [114]Kendall, D. A survey of the statistical theory of shape. Statistical Science.1989,4(2):87-99.
    [115]Kendall, D. G. Shape manifolds, procrustean metrics, and complex projective spaces. Bulletin of the London Mathematical Society.1984,16(2):81-121.
    [116]童晶,向学勤,田洪波,潘志庚,张明敏.利用飞行时间三维相机的非刚体形状三维重建.计算机辅助设计与图形学学报.2011,23(3):377-384.
    [117]Kolb, A., Barth, E., Koch, R., Larsen, R. Time-of-Flight Cameras in Computer Graphics. Computer Graphics Forum.2010,29(1):141-159.
    [118]Vasara, A., Turunen, J., Friberg, A. T. Realization of general nondiffracting beams with computer-generated holograms. JOSA A.1989,6(11):1748-1754.
    [119]Wang, H., Li, Y., Jin, H., Yin, C., Su, X., Chen, W. Three-dimensional visualization of shape measurement data based on a computer generated hologram. Journal of Optics A:Pure and Applied Optics.2003,5(5):S195.
    [120]Kim, Y. S., Kim, T., Poon, T.-C., Kim, J. T. Three-dimensional display of a horizontal-parallax-only hologram. Applied Optics.2011,50(7):B81-B87.
    [121]贾甲,王涌天,刘娟,李昕,谢敬辉.计算全息三维实时显示的研究进展.激光与光电子学进展.2012,49(2012):050002-050001-050002-050009.
    [122]王华英,王广俊,洁,赵.,谢建军,王大勇.数字全息显微系统的成像分辨率分析.中国激光.2007,34(12):1670-1675.
    [123]王华英.数字全息显微成像的理论和实验研究[博士学位论文].北京:北京工业大学.2008.
    [124]王广俊.数字全息技术及其在测量中的应用研究[博士学位论文].北京:北京工业大学.2011.
    [125]金卫凤,王亚伟,卜敏,王先凯,姜守望,岳去畏.生物细胞相位显微技术研究进展.激 光生物学报.2011,20(3):417-424.
    [126]董可平,钱晓凡,张磊,张永安.数字全息显微术对细胞的研究.光子学报.2007,36(11):2013-2016.
    [127]吴丽华,冯建平,何书前.基于单幅图像的海南生态资源三维图像重构与建模方法.计算机与数宇工程.2012,40(12):133-136.
    [128]万美婷.基于面结构光的航空发动机叶片三维测量研究[硕士学位论文].南昌:南昌航空大学.2012.
    [129]李托拓,胡锋,耿征.基于结构光的三维成像技术.网络新媒体技术.2012,1(1):22-33.
    [130]Rocchini, C., Cignoni, P., Montani, C., Pingi, P., Scopigno, R. (2001) A low cost 3D scanner based on structured light, In Computer Graphics Forum, pp 299-308, Wiley Online Library.
    [131]Cheng, J., Zheng, S., Wu, X. Structured light-based shape measurement system. Signal Processing.2013,93(6):1435-1444.
    [132]Yang, Q. S. Apple stem and calyx identification with machine vision. Journal of Agricultural Engineering Research.1996,63(3):229-236.
    [133]Piron, A., van der Heijden,F., Destain. M. F. Weed detection in 3D images. Precision Agriculture.2011,12(5):607-622.
    [134]Su, C.-C, Cormack, L. K., Bovik, A. C. Color and depth priors in natural images. Ieee Transactions on Image Processing.2013,22(6):2259-2274.
    [135]项荣,应义斌,蒋焕煜,彭永石.基于双目立体视觉的番茄定位.农业工程学报.2012,28(5):161-167.
    [136]蔡健荣,孙海波,李永平,孙力,陆化珠.基于双目立体视觉的果树三维信息获取与重构农业机械学报.2012,43(3):152-156.
    [137]赵梅芳,沈邦兴,吴晓明,蒋登峰.多目立体视觉在工业测量中的应用研究.计算机测量与控制.2003,11(11):833-849.
    [138]丁菁汀.立体视觉在实际应用中的若干问题研究[博士学位论文].杭州:浙江大学.2012.
    [139]Prakoonwit, S., Benjamin, R.3D surface reconstruction from multiview photographic images using 2D edge contours.3D Research.2012,3(4):1-12.
    [140]Bilir, S. C., Yemez, Y. Non-rigid 3D shape tracking from multiview video. Computer Vision and Image Understanding.2012,116(11):1121-1134.
    [141]Beeler, T., Bickel, B., Noris, G., Beardsley, P., Marschner, S., Sumner, R. W., Gross, M. Coupled 3D reconstruction of sparse facial hair and skin. ACM Transactions on Graphics. 2012,31(4).
    [142]Shen, J., Yang, W., Liao, Q. Multiview human pose estimation with unconstrained motions. Pattern Recognition Letters.2011,32(15):2025-2035.
    [143]Komorowski, J.3D object reconstruction from stereo images sequence. Advances in Intelligent and Soft Computing.201l,102:199-207.
    [144]Son, J.-Y., Javidi, B., Yano, S., Choi, K.-H. Recent developments in 3-D imaging technologies. IEEE/OS A Journal of Display Technology.2010,6(10):394-403.
    [145]Hyun, M.-H., Kim, S.-Y., Kang, Y.-S., Ho, Y.-S. Multiview foreground extraction and composition to multiview background using trimap sharing for natural 3D scene generation. International Journal of Imaging Systems and Technology.2010,20(3):285-293.
    [146]Moses, Y, Shimshoni, I.3D shape recovery of smooth surfaces:Dropping the fixed-viewpoint assumption. Ieee Transactions on Pattern Analysis and Machine Intelligence.2009,31(7): 1310-1324.
    [147]Kolev, K., Klodt, M., Brox, T., Cremers, D. Continuous global optimization in multiview 3D reconstruction. International Journal of Computer Vision.2009,84(1):80-96.
    [148]周祖锷.农业物料学.北京:农业出版社.1994.
    [149]Nixon, M. S., Aguado, A. S. Feature Extraction and Image Processing (Second Edition). Elsevier.2008.
    [150]Bradski, G.,Kaehler, A.学习 OpenCV (中文版).北京:清华大学出版社.2009.
    [151]Moore, G. A. Automatic scanning and computer processes for the quantitative analysis of micrographs and equivalent subjects. Pattern Recognition.1968, Pictorial Pattern Recognition(Thomson):52.
    [152]Freeman, H. On the encoding of arbitrary geometric configurations. Electronic Computers, IRE Transactions on.1961, (2):260-268.
    [153]Freeman, H. Computer processing of line-drawing images. ACM Computing Surveys (CSUR). 1974,6(1):57-97.
    [154]Kondo, N., Monta, M., Noguchi, N. Agri-Robert(I)-Fundamentals and Theory. Tokyo, Japan: Corona Publishing Co., Ltd.2004.
    [155]Boggess, A., J.Narcowich, F. A First Course in Wavelets with Fourier Analysis (Second Edition).北京:电子工业出版社.2010.
    [156]Zahn, C. T., Roskies, R. Z. Fourier descriptors for plane closed curves. IEEE Transactions on Computers.1972,100(3):269-281.
    [157]Persoon, E., Fu, K. S. Shape discrimination using Fourier descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence.1986, (3):388-397.
    [158]Daubechies, I. Ten Lectures of Wavelets. Springer-Verlag.1992.
    [159]Morlet, J., Arens, G., Fourgeau, E., Giard, D. Wave propagation and sampling theory---Part Ⅱ: Sampling theory and complex waves. Geophysics.1982,47(2):222-236.
    [160]Morlet, J., Arens, G., Fourgeau, E., Glard, D. Wave propagation and sampling theory---Part Ⅰ: Complex signal and scattering in multilayered media. Geophysics.1982,47(2):203-221.
    [161]Mallat, S. G. A theory for multiresolution signal decomposition:The wavelet representation. Pattern Analysis and Machine Intelligence, IEEE Transactions on.1989,11(7):674-693.
    [162]Wunsch, P., Laine, A. F. Wavelet descriptors for multiresolution recognition of handprinted characters. Pattern Recognition.1995,28(8):1237-1249.
    [163]Drolon, H., Druaux, F., Faure, A. Particles shape analysis and classification using the wavelet transform. Pattern Recognition Letters.2000,21(6-7):473-482.
    [164]Chuang, G. C. H., Kuo, C. C. J. Wavelet descriptor of planar curves:Theory and applications. Image Processing. IEEE Transactions on.1996,5(1):56-70.
    [165]Antoine, J. P., Barachea, D.. Cesar. R.. da Fontoura Costa. L. Shape characterization with the wavelet transform. Signal Processing.1997,62(3):265-290.
    [166]Osowski. S., Nghia, D. D. Fourier and wavelet descriptors for shape recognition using neural networks-a comparative study. Pattern Recognition.2002,35(9):1949-1957.
    [167]刘仰龙,王从庆,高珏,许荣华.基于小波描述子的水果果形分类.浙江大学学报(农业与生命科学版),2010,36(3):7.
    [168]张明恒,韩月林,赵一兵,郑雨.基于改进Hu不变矩的路面交通标识识别.大连理工大学学报.2012,52(6):6.
    [169]王振海.融合HU不变矩和SIFT特征的商标检索.计算机工程与应用.2012,48(1):4.
    [170]Zernike, F. Beugungstheorie des schneidenverfahrens und seinerverbesserten form. der phasenknontrastmethods. Physica.1934.1:689-704.
    [171]Khotanzad, A., Hong, Y. H. INVARIANT IMAGE RECOGNITION BY ZERNIKE MOMENTS. Ieee Transactions on Pattern Analysis and Machine Intelligence.1990,12(5): 489-497.
    [172]Shen, D., Ip, H. H. S. Discriminative wavelet shape descriptors for recognition of 2-D patterns. Pattern Recognition.1999,32(2):151-166.
    [173]Chen, G. Y., Xie, W. F. Wavelet-based moment invariants for pattern recognition. Optical Engineering.2011,50(7):00772051-00772059.
    [174]Teh, C. H., Chin, R. T. On image analysis by the methods of moments. Pattern Analysis and Machine Intelligence, IEEE Transactions on.1988,10(4):496-513.
    [175]Blum, H. A transformation for extracting new descriptors of shape. Models for the perception of speech and visual form.1967,19(5):362-380.
    [176]Borsuk, K., Dydak, J. What is the theory of shape? Bulletin of the Australian Mathematical Society.1980,22(02):161-198.
    [177]Mardevsic, S. Thirty years of shape theory. Mathematical Communications.1997,2(2):12.
    [178]Small, C. G. The statistical theory of shape. New York:Springer Verlag.1996.
    [179]Kimia, B., Tannenbaum, A., Zucker, S. (1990) Toward a computational theory of shape:An overview, In Computer Vision-ECCV 90 (Faugeras, O., Ed.), pp 402-407, Springer Berlin/ Heidelberg.
    [180]Mokhtarian, F. A Theory of Multiscale, Curvature-Based Shape Representation for Planar Curves. Ieee Transactions on Pattern Analysis and Machine Intelligence.1992,14:789-805.
    [181]Malladi, R., Sethian, J. A., Vemuri, B. C. Shape modeling with front propagation-a level set approach. Ieee Transactions on Pattern Analysis and Machine Intelligence.1995,17(2): 158-175.
    [182]Cao, F., Lisani, J. L., Morel, J. M., Muse, P., Sur, F. A theory of shape identification. Springer.2008.
    [183]Math Works. (2012) Matlab2012a Product Help Document, MathWorks Inc.
    [184]Xie, L., Ying. Y., Ying, T. Rapid determination of ethylene content in tomatoes using visible and short-wave near-infrared spectroscopy and wavelength selection. Chemometrics and Intelligent Laboratory Systems.2009,97(2):141-145.
    [185]饶秀勤,应义斌.基于机器视觉的水果尺寸检测误差分析.农业工程学报.2003,19(1):121-123.
    [186]北京凌云光视数字图像技术有限公司.(2012)图像和机器视觉产品手册,p260.
    [187]Bayer, B. E. Color imaging array.the United States.United States Patent.3971065.1979-7-20.
    [188]中国大恒(集团)有限公司北京图像视觉技术分公司.(2012)镜头产品型录.
    [189]李江波,饶秀勤,应义斌,马本学,郭俊先.基于掩膜及边缘灰度补偿算法的脐橙背景及表明缺陷分割.农业工程学报.2009,25(12):133-137.
    [190]于仕琪,刘瑞祯.OpenCV中文网站.[2013-4-7].http://www.opencv.org,cn/index,php/%E9%A6%96%E9%A1%B5.
    [191]OTSU, N. Threshold selection method from gray-level histograms. Ieee Transactions on Systems Man and Cybernetics.1979,9(1):62-66.
    [192]Tabb, A., Peterson, D., Park, J. (2006) Segmentation of apple fruit from video via background modeling, (St. Joseph, M., Ed.), p 11, ASABE Paper:No.063060.
    [193]伍学千,廖宜涛,樊玉霞,成芳.基于KFCM和改进分水岭算法的猪肉背最长肌分割技术.农业机械学报.2010,41(1):5.
    [194]耿楠,于伟,宁纪锋.基于水平集和先验信息的农业图像分割方法.农业机械学报.2011,42(9):6.
    [195]彭辉,吴鹏飞,翟瑞芳,刘善梅,吴兰兰,景秀.基于视差图像的重叠果实图像分割算法.农业机械学报.2012,43(6):7.
    [196]Linker, R., Cohen, O., Naor, A. Determination of the number of green apples in RGB images recorded in orchards. Computers and Electronics in Agriculture.2012,81:45-57.
    [197]张玉珠,毛罕平,张艳诚,陈树人.基于多光谱融合图像的背景分割.农机化研究.2008,(10):122-124.
    [198]李正明,王森,孙俊.图像分割在成熟茄子目标识别中的应用.农业机械学报.2009,40(9):105-108.
    [199]Hannan, M., Burks, T., Bulanon, D. M. A Machine Vision Algorithm Combining Adaptive Segmentation and Shape Analysis for Orange Fruit Detection. Agricultural Engineering International:CIGR Journal.2010, (0).
    [200]王福杰,饶秀勤,应义斌.苹果图像的背景分割与目标提取.农业机械学报.2013,44(1):196-199.
    [201]赵杰文.基于三摄像系统的苹果缺陷快速判别.江苏大学学报(自然科学版).2006,27(4):287-290.