秋冬季南方单栋塑料温室小气候分析与温湿环境模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温室是一个封闭的农业生态系统,它内部的光照、温度、湿度及CO2浓度等环境条件是影响作物生长发育最重要因素。本文以南方单栋塑料温室为研究对象,在全面对比分析单膜和双膜覆盖状况下南方塑料温室的小气候环境特征基础上,充分考虑作物对环境的热力和动力作用,利用多种模型开展南方塑料温室不同覆盖状况和不同管理方式下各环境要素的数值模拟研究。主要研究内容和结果如下:1.两种覆盖状况下,除CO2浓度外,其他要素的室内值均与对应高度室外值有相似的日变化规律,太阳辐射、气温和地温表现为日出后先增大,正午达到峰值,然后逐渐减小;相对湿度与之相反,日出后先减小后增大。室外CO2浓度在一天中仅有微小的波动,而室内CO2浓度随着日出后太阳辐射和作物光合作用的由强到弱,呈现显著减小至下午15:30之后逐渐增大的日变化规律。温室内外对应要素值的差异在一天中呈现波动趋势,其规律与要素本身的日变化特征类似。与单膜覆盖相比,双膜覆盖能够更为显著提高温室内的气温和地温,平均差异分别约为5.0℃和4.0℃,在冬季有利于室内作物的正常生长。但双膜覆盖同时也减少了进入温室的太阳辐射,提高了室内的相对湿度。因此在使用多层覆盖温室时,针对其室内环境特点采取合理的调控措施十分必要。2.无论是室内温湿环境因子的平均值,还是其极值,都与室外气象要素具有显著的相关关系,多数关系均通过95%的显著性检验。表明基于室外气象要素,通过统计方法开展对室内环境因子的模拟和预测具有合理性和可行性。充分利用室内温湿要素的历史数据,提出将ARIMA模型(自回归移动平均模型)与多元回归模型相结合对温室内温湿条件尤其是极端温度进行模拟预测的方法。通过分析10分钟、1小时和逐日不同时间尺度上的效果发现,其精度在整体上超过传统的多元回归和神经网络方法,并且避免了神经网络方法稳定性差的缺点,在实际生产预报中可以推广。3.依据温室内外环境的能量平衡和质量守恒,分层构建单膜和双膜覆盖下的室内温湿环境物理模型。与单膜模型的差异在于双膜模型还必须考虑外膜与内膜之间的能量交换,外膜和内膜分别同两膜之间夹层空气的能量交换。利用实测资料对模型效果进行验证发现不同覆盖状况下,气温预测值与实测值的平均误差均低于7.0%,相对湿度预测值与实测值的平均误差均未超过8.0%,地温预测值与实测值的平均误差均小于5.0%,表明物理模型的预测效果较好。三种天气状况下,阴天的精度最高,多云天次之,晴天相对精度较低。4.利用室内外实测数据分别进行通风和不通风状况下温室内温湿环境的CFD(计算流体力学)数值模拟和验证。不通风状况下,利用CFD方法得到的气温模拟值与实测值之间的平均相对误差和均方根误差分别为4.47%和1.34℃,模拟结果与实测结果吻合良好。通风状况下,气温模拟值与实测值之间的平均相对误差和均方根误差分别为4.68%和1.54℃,精度略低于不通风时段;相对湿度模拟值与实测值之间的平均相对误差和均方根误差分别为5.22%和3.54%。CFD模拟的室内气温和相对湿度的空间分布规律与实测情况基本一致,说明该方法在温室环境模拟中的应用兼具可行性和合理性。其结果充分展示了不同垂直高度和不同方位的温湿差异,为温室环境的局部调控和精细化管理提供数据基础。5.采用CFD技术探讨了相同假设初始条件和边界条件下,不同通风时间、不同通风风速和不同通风口大小对温室通风效果的影响。随着通风时间的增加、风速的增大和通风口面积的扩大,降温效果在温室内部由北(进风口)向南(出风口),由低到高逐渐发挥作用,降温范围不断扩大。但气温下降的幅度差异并非随三个参数等梯度的变化而保持不变,表明当室内外空气的混合趋于均匀稳定时,三个参数改变带来的降温效应会逐渐减弱。实际生产实践中的自然通风状况比CFD模拟试验要复杂很多,虽然CFD模拟并不能完全真实反映现实情况,但其结果符合物理规律和理论预期,与人们的现实认知也比较一致,并且能够在三维空间上提供较为精细的技术数据,可以为实际生产中的温室环境尤其是局部区域的环境调控和优化提供一定的理论依据。
The internal environmental conditions including solar radiation, temperature, relative humidity and CO2 concentration are important to crops growth because the greenhouse looks like a closed agro-ecosystem.In this paper, the spatial and temporal characteristics of interior microclimate of single-span plastic greenhouse for South China in autumn and winter were analyzed. Taking full account of the thermal effect and dynamic effect of plants to indoor environment, the numerical simulations of environmental factors for plastic greenhouses with diverse covering layers and management methods were carried out using statistical models, physical models and computational fluid dynamics models. The main research contents and conclusions are as follows:1. The spatial and temporal characteristics of internal environmental conditions including solar radiation, air temperature, relative humidity, soil temperature and CO2 concentration of greenhouses with two cover types indicated that the diurnal variations of indoor meteorological factors except CO2 concentration were similar to that of outdoor meteorological factors in same height. Solar radiation, air temperature and soil temperature increased after sunrise, peaked in noon, and then decreased. While relative humidity showed the opposite pattern that first decreased after sunrise, and then gradually increased. Outdoor CO2 concentration presented only small fluctuations during a day. However, indoor CO2 concentration showed a significant diurnal variation that declined after sunrise and gradually rose until from 15:30 pm with the solar radiation and crop photosynthesis becoming strong to weak. The differences between indoor factors and corresponding outdoor factors also fluctuated during a day and the variation patterns were similar to that of the own factors. It was found that indoor air temperature and relative humidity differed from north to south. The air temperature of south part was greater than that of the north part, while the relative humidity of south part was smaller than that of the north part. The difference between east part and west part was not obvious. Double-layer covering greenhouse can offer higher air temperature and soil temperature compared to single-layer covering greenhouse, and was beneficial to crops growth in winter. But the solar radiation was smaller and the relative humidity was greater in double-layer covering greenhouse than in single-layer covering greenhouse. Therefore, it is necessary to take reasonable adjustment measures for its indoor environmental characteristics when using multi-layer covering greenhouse.2. The average values and the extreme values of indoor air temperature and relative humidity were both significantly related to the outdoor meteorological elements at 5% significance level. So it is reasonable and feasible to use statistical methods for simulating and predicting the indoor environmental factors based on the outdoor weather elements. Making full use of the historical indoor temperature and relative humidity data, multiple-regression method combined with autoregressive integrated moving average model (ARIMA model) was used to simulate and predict the indoor temperature and relative humidity, especially the extreme values of these factors. The accuracy of new method was higher than the traditional multiple-regression method and the BP neural network by analyzing the effect of three time scales including ten minute, one hour, and one day. This new method avoiding the short come of poor stability of the BP neural network method can be extended in the actual production weather forecast.3. The plastic greenhouse was divided into covering layer, indoor air, plant canopy and soil layer. Based on the mass and energy balance between indoor and outdoor environments, the physical models were established to estimate the air temperature and relative humidity for single-layer covering greenhouse and double-layer covering greenhouse respectively and were verified by measured meteorological data. The mean relative errors between simulated values and measured values of air temperature, relative humidity and soil temperature were less than 7.0%,8.0% and 5.0% respectively, indicating that the physical models exhibited high accuracy. The highest accuracy was found for overcast sky, followed by cloudy day.4. Based on the indoor and outdoor observed data, the simulation and verification of air temperature and relative humidity were carried out under ventilation and non-ventilation conditions by the use of computational fluid dynamics (CFD) technology. The mean relative errors and the root mean square error between simulated values and measured values of air temperature were 4.47% and 1.34℃under non-ventilation conditions. The mean relative errors and the root mean square error between simulated values and measured values of air temperature were 4.68% and 1.54℃, and were 5.22% and 3.54% for relative humidity under ventilation conditions. The spatial distributions of air temperature and relative humidity simulated by CFD models were consistent with the observed distributions, showing that this method is feasible and reasonable in the greenhouse environment simulation. The results fully demonstrating the differences of temperature and relative humidity between diverse vertical heights and diverse directions provided a data base for local control and refine management of greenhouse environment.5. The ventilation effects under different ventilation time, different ventilation velocities and different ventilation sizes were discussed based on the computational fluid dynamics (CFD) technology. With the increase of ventilation time, ventilation velocities and ventilation sizes, the cooling effect of ventilation played a role gradually from the north part to the south part, from lower part to higher part in the plastic greenhouse. However, the difference between decreasing magnitudes of temperature varied with the constant gradient of the three parameters, indicating that the cooling effect caused by the variation of these three parameters will be gradually weakened when the mixture of indoor and outdoor air was steady. Actual natural ventilation condition was more complex than the CFD experiment. Although the CFD simulation can not completely reflect the reality, the results were consistent with the physical laws and theoretical expectations and able to provide more refined data in three-dimensional space. It can be used to offer a theoretical basis for the control and optimization of greenhouse environment.
引文
[1]刘克长,任中兴,张继祥,等.山东日光温室温光性能的实验研究[J].中国农业气象,1999,(04):34-37
    [2]贺芳芳,吴元中.玻璃温室内植物层中总辐射分布规律[J].气象,2001,(02):25-29
    [3]郜庆炉,梁云娟,段爱旺.日光温室内光照特点及其变化规律研究[J].农业工程学报,2003,(03):200-204
    [4]杜军,王怀彬,杨励丹.温室内太阳净辐射分配及计算[J].太阳能学报,2001,(01):115-118
    [5]崔建云,董晨娥,左迎之,等.外部环境气象条件对日光温室气象条件的影响[J].气象,2006,(03)101-106
    [6]周绪元,顾三军.晴转阴天气日光温室内环境因素日变化研究[J].长江蔬菜,1997,(5):27-29
    [7]沈明卫,苗香雯,崔绍荣.华东型连栋塑料温室室内光环境的研究[J].浙江大学学报(农业与生命科学版),2000,(05):533-536
    [8]藏田患次.温室方位和地理纬度对太阳直射光透过率的影响[J].农业工程学报,1993,(02):52-56
    [9]刘洪,郭文利,李慧君.北京地区日光温室光环境模拟及分析[J].应用气象学报,2008,(03):351-356
    [10]郜庆炉,薛香,段爱旺.日光温室内温度特点及其变化规律研究[J].灌溉排水学报,2003,22(6):50-53
    [11]孙财水,塔娜.寒冷干旱地区温室内温度分布研究[J].北方园艺,2009,(08):158-160
    [12]吴元中,杨秋珍,贺芳芳,李军.大型玻璃自控温室逐时温度影响因子研究[J].中国生态农业学报,2004,(02):88-91
    [13]王鑫,魏瑞江,康西言.日光温室湿度日预测的季节时序模型应用研究[J].中国农学报,2010(22):407-412
    [14]刘可群,黎明锋,杨文刚.大棚小气候特征及其与大气候的关系[J].气象,2008,34(07):102-107
    [15]吴华兵,季国军,黄少华.苏南地区冬季日光温室内温度和相对湿度的研究[J].江苏农业科学,2010,(04):424-425
    [16]魏瑞江,王西平,常桂荣,等.连阴天气塑料日光温室内外温度的关系及调控[J].中国农业气象,2001,(03):56-61
    [17]周秉荣,李凤霞,罗生洲.青海东部塑料日光温室增温效益分析[J].青海气象,2002,(03):35-38
    [18]仲光嵬,信志红,徐长芹.日光温室内外气象要素变化特征对比分析[J].安徽农业科学,2011,(18):10986-10988
    [19]孙智辉,李宏群,郑小阳.延安日光温室冬季低温冻害天气分析与预报[J].中国农业气象,2005,(03):372-377
    [20]孙丽,陈景玲,王谦,等.日光温室边际区温度变化及其对茄子光合特性的影响[J].河南农业大学学报,2010,(06):641-646
    [21]白青,张亚红,傅理.极端低温条件下日光温室保温性能分析[J].西北农业学报,2010,(11):102-106
    [22]刘旭,李秀珍,薛晓萍.温室最低气温与气象因素相关分析[J].滨州学院学报,2008,(06):51-57
    [23]赵统利,朱朋波,邵小斌,等.4种天气条件下日光温室主要环境因子的日变化比较[J].江苏农业科学,2008,(02):217-220
    [24]金志凤,周胜军,朱育强,等.不同天气条件下日光温室内温度和相对湿度的变化特征[J].浙江农业学报,2007,(03):188-191
    [25]刘慧,张宏辉.油桃日光温室内外湿度变化规律观察研究[J].陕西农业科学,2010,(05):59-61
    [26]佟国红,车忠仕,王铁良,等.冬季日光温室内湿度分布测试分析[J].黑龙江农业科学,2009,(01):72-74
    [27]尉孝琴,李亚灵,温祥珍.太谷地区日光温室温湿度年变化规律的研究[J].北方园艺,2010,(15):76-79
    [28]王克安,李絮花,吕晓惠,等.不同结构日光温室温湿度变化规律及其对番茄产量和病害的影响[J].山东农业科学,2011,3:33-36
    [29]任志雨,乔晓军.春季日光温室的湿度分布及其变化规律[J].蔬菜,1999,8:18
    [30]魏珉.日光温室蔬菜CO_2施肥效应与机理及CO_2环境调控技术[D].南京农业大学,2000.
    [31]马成芝,孙立德,梁志兵,等.日光温室大棚辣椒CO_2浓度变化规律分析[J].安徽农业科学,2010,(29):16156-16157,16190
    [32]李胜利,孙治强.巨型塑料大棚内CO_2浓度的变化分析[J].中国农业气象,2009,(04):543-546
    [33]侯新村,高东升,李萌,等.油桃温室CO_2气体的分布及变化规律[J].北方果树,2007,(01):7-10
    [34] Businger. J A. The glasshouse climate. Physics of Plant environment, (ed. W. R. van Wjik). Amsterdam:North- Holland Publishing Company,1963,277-318
    [35] J.N Walker. Predicting temperatures in ventilated greenhouses[J]. Transactions of the ASAE,1965, 8(3):445-448.
    [36] I wakiri, S. Temperature regime and heat transfer in a glasshouse at the daytime. J. Agric. Meteorol. Tokyo,1971,26:197-207.
    [37] Seginer I, Levav N. Models and tools in greenhouse climate design. Technion Agric.Eng.Dep.Publ.115, Technion-Israel Inst. Technol, Haifa, Israel,1971.
    [38] B. A. Kimball. Simulation of the energy balance of a greenhouse. Agric. Meteor,1973,11:243-260.
    [39] Takami, S, A model of the greenhouse with a storage-type heat exchanger and its verification. J. Agric. Meteorol,1977,33:155-165.
    [40] Froehlich D P et al. Stead-periodic analysis of glasshouse thermal environment. Trans of the ASAE,1979,22(2):387-399.
    [41] Kind elan. M., Dynamic modeling of greenhouse environment. Trans. ASAE,1980,23:1232-1239.
    [42] Avissar. R. Verification study of a numerical greenhouse microclimate model. Trans. ASAE,1982,25: 1711-1720.
    [43] X. Yang. The microclimate and transpiration of a greenhouse cucumber crop. Trans of the ASAE, 1989,32(6):2143-2150
    [44] J.G..Pieters,J.M.Deltour et al. Condensation and static heat transfer through greenhouse Covers during night. Trans of the ASAE,1994,37(6):1965-1971
    [45] T. Taka Kura, T. O. Manning, G. A. Giacomelli et al. Feed forward control for a floor heat greenhouse. Trans of the ASAE,1994,37(3):939-945
    [46] M. Teitel, J. Tanny. Radioactive heat transfer from heating tubes in a greenhouse. J. Agric. Eng. Res, 1998,69(2):185-188
    [47] M. Teitel, I. Segal. Net. thermal radiation under shading screens. J. Agric. Eng. Res,1995,61(1): 19-26
    [48] Person. S, A. E. Echelon, P. Hadley. Radiation transmission and fluorescence of nine greenhouse cladding materials. J. Agric. Eng. Res,1995,62(1):61-70
    [49] S. Kurpaska, Z. Slipek. Mathematical model of heat and mass exchange in a garden subsoil during warm-air heating.J.Agric.Eng.Res,1996,65(4):305-312
    [50] Wang shao-jin, J. Delton. Impact of the main structural parameters on the greenhouse climate. Transaction of the CSAE,1995,9:101-107
    [51] Wang shao-jin, Zhu Song-ming. Simulation and measurement of tunnel greenhouse climate. Transaction of the CSAE,1997,12:139-144.
    [52]李良晨.保护地设施内的热湿状态的计算方法[J].西北农业大学学报,1991,19(4):25-32.
    [53]李元哲,吴德让,于竹.日光温室微气候的模拟与实验研究[J].农业工程学报,1994,3:130-136.
    [54]陈端生.中国节能日光温室建筑与环境研究进展[J].农业工程学报,1994,3:123-129.
    [55]孙忠富,李佑祥,吴毅明,等.北京地区典型日光温室直射光环境的模拟与分析——设施农业光环境模拟分析研究之四[J].农业工程学报
    [56]陈青云,汪政富.节能型日光温室热环境的动态模拟[J].农业工程学报,1996,12(1):67-71
    [57]佟国红,李保明.日光温室内各表面太阳辐射照度的模拟计算[J].中国农业大学学报,2006,11(1):61-65
    [58]刘洪,郭文利,李慧君.北京地区日光温室光环境模拟及分析[J].应用气象学报,2008,19(3):350-355
    [59]李小芳.日光温室的热环境数学模拟及其结构优化[D].中国农业大学,2005
    [60]孟力力,杨其长,Gerard.P.A.Bot等.日光温室热环境模拟模型的构建[J].农业工程学报,2009,25(1):164-170
    [61]张亚红.日光温室空气湿度环境及除湿技术研究——Ⅰ.日光温室空气湿度环境[J].宁夏农学院学报,2000,21(1):32-36
    [62]杨晓光,陈端生,郑海山.日光温室气象环境综合研究(四)——日光温室地温场模拟初探[J].农业工程学报,1994,10(1):150-156
    [63]马春生,张静,王双喜.日光温室地温模型及数值模拟[J].山西农业大学学报(自然科学版),2004,82-84
    [64]汪小旵,丁为民,罗卫红,等.利用BP神经网络对江淮地区梅雨季节现代化温室小气候的模拟与分析[J].农业工程学报,2004,(02):235-238
    [65]佟国红,王铁良.日光温室墙体传热及节能分析[J].农业系统科学与综合研究,2003,19(2):101-102.
    [66]李树海,马承伟,张俊芳,等.多层覆盖连栋温室热环境模型构建[J].农业工程学报,
    [67]何芬,马承伟.温室湿度环境的主成分分析人工神经网络建模研究[J].上海交通大学学报(农业科学版),2008,(05):428-431
    [68]王鑫,魏瑞江,康西言.日光温室湿度日预测的季节时序模型应用研究[J].中国农学报,2010(22):407-412
    [69]何芬,马承伟.遗传算法优化人工神经网络模型在日光温室湿度预报中的应用[J].中国农学通
    报,2008(01):492-495
    [70]柳芳,王铁,刘淑梅.天津市二代节能型日光温室内部温湿度预测模型——以西青为例[J].中国农业气象,2009,(01):86-89
    [71]余朝刚,王剑平,应义斌.基于径向基函数神经网络的温室室内温度预测模型[J].生物数学学报,2006,(04):549-553
    [72]汪小旵,丁为民,罗卫红,等.利用BP神经网络对江淮地区梅雨季节现代化温室小气候的模拟与分析[J].农业工程学报,2004,(02):235-238
    [73]符国槐,张波,杨再强,等.塑料大棚小气候特征及预报模型的研究[J].中国农学通报,2011,(13):242-248
    [74]金志凤,符国槐,黄海静,等.基于BP神经网络的杨梅大棚内气温预测模型研究[J].中国农业气象,2011,(03):362-367
    [75]左志宇,毛罕平,张晓东,等.基于时序分析法的温室温度预测模型[J].农业机械学报,2010,(11):173-178
    [76] Hemant J. Patil, Alok K. Srivastava, Sudheer Kumar et al. Selective isolation, evaluation and characterization of antagonistic actinomycetes against Rhizoctonia solani[J]. World Journal of Microbiology and Biotechnology,2010,12:2163-2170
    [77] Ferreira et al. Use of neural networks for monitoring surface water quality changes in a Neotropical urban stream [J]. Environmental Monitoring and Assessment,2008,1:527-538
    [78] Haxaire R, Boulard T, Mennier M. Greenhouse natural ventilation by wind forces[C].In Proceedings of the International Conference and British-Israeli Worship on Greenhouse Techniques towards the 3rd Millennium,1999,534(8):31-40
    [79] Haxaire R, Boulard T, Mennier M. Greenhouse natural ventilation by wind forces [J]. Acts Horticulturae,2000,534:31-40
    [80] Murat Kacira, Sadanori Sase, Limi Okushima. Effects of side vents and span numbers on wind-induced natural ventilation of a Gothic multi-span greenhouse [J]. JARQ 2004,38(4):227-233
    [81] Ould khaoua S A, Bournet P E, Migeonet C, et al. Analysis of Greenhouse Ventilation Efficiency based on Computation Fluid Dynamics [J]. Bio systems Engineering,2006,95(1):83-98
    [82] Lee I, Short T H. Two-dimensional numerical simulation of natural ventilation in a multi-span greenhouse [J]. Transactions of the ASAE,2000,43(3):745-753
    [83] Reichrath S, Davies T W. Computational fluid dynamics simulations and validation of the Pressure distribution on the roof of a commercial multi-span Venlo type glasshouse [J]. wind Engineering and Industrial Aerodynamics,2002a, (90):139-149
    [84]李永欣,李保明,李真,等Venlo型温室夏季自然通风降温的CFD数值模拟[J].中国农业大学学报,2004,9(6):44-48
    [85]王健,汪小旵,丁为民.风压通风的单栋温室内部流场的ANSYS CFD模拟[J].农业机械学报,2007:38(3):114-119
    [86]佟国红,李保明,David M. Christophe,等.用CFD方法模拟日光温室温度环境初探[J].农业工程学报,2007:23(7):178-185
    [87]沈明卫,郝飞麟.连栋塑料温室自然通风流场的稳态模拟——防虫网对温室内流场的影响[J].浙江大学学报,2006:40(11):1852-1857
    [88] Wang shao-jin, J. Deltou. Impact of the main structural parameters on the greenhouse climate.
    Transaction of the CSAE,1995,9:101-107
    [89] Wang shao-jin, Zhu Song-ming. Simulation and measurement of tunnel greenhouse climate. Transaction of the CSAE,1997,12:139-144.
    [90] Reichrath S, Ferioil F, Davies T W. A simple computational fluid dynamics model of a tomato glasshouse[C].In Proceedings of the International Conference and British-Israeli Worshop on Greenhouse Techniques towards the 3rd Millennium,2000,534(8):197-204
    [91]傅宁,刘德义.温室大棚气流场的CFD数值模拟[J].天津农业科学,2006:12(3):17-19
    [92] Boulard T, Wang S. Experimental and numerical studies on the heterogeneity of crop transpiration in a plastic tunnel [J]. Computers and Electronics in Agriculture,2002, (34):173-190
    [93] Bartzanas T, Boulard T, Kittas C. Effect of Vent Arrangement on Wind ward Ventilation of a Tunnel Greenhouse [J]. Bio systems Engineering,2004,88(4):479-490
    [94] Fernandez J E, Bailey B J. The influence of fans on environmental conditions in greenhouses [J]. Agricultural Engineering Research,1994, (58):201-210
    [95] Teitel M, Ziskind G, Liran O, et al. Effect of wind direction on greenhouse ventilation rate airflow patterns and temperature distributions [J]. Bio systems engineering,2008, (101):351-369
    [96]李永欣Venlo型温室自然通风降温的实验研究与CFD模拟[D].北京:中国农业大学,2004
    [97]李本卿.强制通风条件下Venlo型温室内气流场和温度场的CFD数值模拟研究[D].镇江,江苏大学硕士学位论文,009.
    [98]吴飞青,张立彬,胥芳,等.机械通风条件下玻璃温室热环境数值模拟[J].农业机械学报,2010,41(1):153-158
    [99]程秀花,毛罕平,伍德林,等.栽有番茄的玻璃温室内气流场分布CFD数值模拟[J].江苏大学学报(自然科学版),2010,31(5):510-514
    [1]刘克长,任中兴,张继祥,等.山东日光温室温光性能的实验研究[J].中国农业气象,1999,(04):34-37
    [2]贺芳芳,吴元中.玻璃温室内植物层中总辐射分布规律[J].气象,2001,(02):25-29
    [3]郜庆炉,梁云娟,段爱旺.日光温室内光照特点及其变化规律研究[J].农业工程学报,2003,,(03):200-204
    [4]崔建云,董晨娥,左迎之,等.外部环境气象条件对日光温室气象条件的影响[J].气象,2006,(03)101-106
    [5]周绪元,顾三军.晴转阴天气日光温室内环境因素日变化研究[J].长江蔬菜,1997,(5):27-29
    [6]刘洪,郭文利,李慧君.北京地区日光温室光环境模拟及分析[J].应用气象学报,2008,(03):351-356
    [7]吴元中,杨秋珍,贺芳芳,等.大型玻璃自控温室逐时温度影响因子研究[J].中国生态农业学报,2004,(02):88-91
    [8]刘可群,黎明锋,杨文刚.大棚小气候特征及其与大气候的关系[J].气象,2008,34(07):102-107
    [9]魏瑞江,王西平,常桂荣,等.连阴天气塑料日光温室内外温度的关系及调控[J].中国农业气象,2001,,(03):56-61
    [10]仲光嵬,信志红,徐长芹.日光温室内外气象要素变化特征对比分析[J].安徽农业科学,2011,(18):10986-10988
    [11]孙智辉,李宏群,郑小阳.延安日光温室冬季低温冻害天气分析与预报[J].中国农业气象,2005,(03):372-377
    [12]王克安,李絮花,吕晓惠,等.不同结构日光温室温湿度变化规律及其对番茄产量和病害的影响[J].山东农业科学,2011,3:33-36
    [13]魏珉.日光温室蔬菜CO_2施肥效应与机理及CO_2环境调控技术[D].南京农业大学,2000.
    [14]李胜利,孙治强.巨型塑料大棚内CO_2浓度的变化分析[J].中国农业气象,2009,(04):543-546
    [1]符国槐,张波,杨再强,等.塑料大棚小气候特征及预报模型的研究[J].中国农学通报,2011,(13):242-248
    [2]柳芳,王铁,刘淑梅.天津市二代节能型日光温室内部温湿度预测模型——以西青为例[J].中国农业气象,2009,(01):86-89
    [3]MATLAB中文论坛MATLAB神经网络30个案例分析[M].北京:航空航天大学出版社,2010:1
    [4]何芬,马承伟.温室湿度环境的主成分分析人工神经网络建模研究[J].上海交通大学学报(农业科学版),2008,(05):428-431
    [5]余朝刚,王剑平,应义斌.基于径向基函数神经网络的温室室内温度预测模型[J].生物数学学报,2006,(04):549-553
    [6]汪小旵,丁为民,罗卫红,等.利用BP神经网络对江淮地区梅雨季节现代化温室小气候的模拟与分析[J].农业工程学报,2004,(02):235-238
    [7]王鑫,魏瑞江,康西言.日光温室湿度日预测的季节时序模型应用研究[J].中国农学报,2010(22):407-412
    [8]左志宇,毛罕平,张晓东,等.基于时序分析法的温室温度预测模型[J].农业机械学报,2010,(11):173-178
    [9]孟力力.基于VB和MATLAB的日光温室热环境模型构建于结构优化[D].中国农业科学院,2008
    [1]李兆力.温室微气候数学建模与动态模拟[D].天津大学机械工程学院,2004
    [2]马承伟,张俊芳,覃密道,等.基于覆盖层能量平衡法的园艺设施覆盖材料传热系数理论解析与验证[J].农业工程学报,2006,22(4):1-5
    [3]毕玉革.北方干旱地区日光温室小气候环境预测模型与数字化研究[D].内蒙古农业大学,2010
    [4]杨纯,葛新石,程曙霞.温棚系统中传热问题的理论与实验研究[J].太阳能学报,1994,1:25-35
    [5]邵玉芳,郑金土.锯缘青蟹(Scylla serrata)越冬日光温室的热环境模拟研究[J].浙江大学学报,2003,29(2):175-180
    [6]张太平.温室微气候模型的建立与计算机模拟[D].天津大学硕士学位论文,1986
    [7]太阳能热利用的理论基础,中国太阳能学会
    [8]陈青云,汪政富.节能型日光温室热环境的动态模拟[J].中国农业大学学报,1996,1(1):67-72
    [9] Elena Palomo Del Barrio. Analysis of the green roofs cooling potential in buildings[J].Energy and Buildings,1998 (27):179-193
    [10] Cecilia Stanghellini, Taeke de Jong. A model of humidity and its applications in a greenhouse[J].Agricultural and Forest Meteorology,1995 (76):129-148
    [11]戴剑锋.基于模型的温室加温控制目标设定系统的研究[D].南京农业大学,2006
    [12] T.Boulard, S.Wang. Greenhouse crop transpiration simulation from external climate conditions[J].Agricultural and Forest Meteorology,2000 (100):25-34
    [13]程秀花.温室环境因子时空分布CFD模型构建及预测分析研究[D].江苏大学,2011
    [14]汪小旵.南方现代化温室小气候模拟及其能耗预测研究[D].南京农业大学,2003
    [15] F.de Zwart. Analyzing energy-saving options in greenhouse cultivation using a simulation model[D]. Wageningen, TheNetherlands:Wageningen Agricultural University,1996
    [1] Haxaire R, Boulard T, Mennier M. Greenhouse natural ventilation by wind forces [J]. Acts Horticulturae,2000,534:31-40
    [2] Murat Kacira, Sadanori Sase, Limi Okushima. Effects of side vents and span numbers on wind-induced natural ventilation of a Gothic multi-span greenhouse [J]. JARQ 2004,38(4):227-233
    [3] Ould khaoua S A, Bournet P E, Migeonet C, et al. Analysis of Greenhouse Ventilation Efficiency based on Computation Fluid Dynamics [J]. Bio systems Engineering,2006,95(1):83-98
    [4] Lee I, Short T H. Two-dimensional numerical simulation of natural ventilation in a multi-span greenhouse [J]. Transactions of the ASAE,2000,43(3):745-753
    [5] Reichrath S, Davies T W. Computational fluid dynamics simulations and validation of the Pressure distribution on the roof of a commercial multi-span Venlo type glasshouse [J]. wind Engineering and Industrial Aerodynamics,2002a, (90):139-149
    [6]李永欣,李保明,李真,等.Venlo型温室夏季自然通风降温的CFD数值模拟[J].中国农业大学学报,2004,9(6):44-48
    [7]王健,汪小旵,丁为民.风压通风的单栋温室内部流场的ANSYS CFD模拟[J].农业机械学报,2007:38(3):114-119
    [8]佟国红,李保明,David M. Christophe,等.用CFD方法模拟日光温室温度环境初探[J].农业工程学报,2007:23(7):178-185
    [9]沈明卫,郝飞麟.连栋塑料温室自然通风流场的稳态模拟——防虫网对温室内流场的影响[J].浙江大学学报,2006:40(11):1852-1857
    [10] Wang shao-jin, J. Deltou. Impact of the main structural parameters on the greenhouse climate. Transaction of the CSAE,1995,9:101-107
    [11] Wang shao-jin, Zhu Song-ming. Simulation and measurement of tunnel greenhouse climate. Transaction of the CSAE,1997,12:139-144.
    [12] Reichrath S, Ferioil F, Davies T W. A simple computational fluid dynamics model of a tomato glasshouse[C].In Proceedings of the International Conference and British-Israeli Worshop on Greenhouse Techniques towards the 3rd Millennium,2000,534(8):197-204
    [13]傅宁,刘德义.温室大棚气流场的CFD数值模拟[J].天津农业科学,2006:12(3):17-19
    [14] Boulard T, Wang S. Experimental and numerical studies on the heterogeneity of crop transpiration in a plastic tunnel [J]. Computers and Electronics in Agriculture,2002, (34):173-190
    [15] Bartzanas T, Boulard T, Kittas C. Effect of Vent Arrangement on Wind ward Ventilation of a Tunnel Greenhouse [J]. Bio systems Engineering,2004,88(4):479-490
    [16] Fernandez J E, Bailey B J. The influence of fans on environmental conditions in greenhouses [J]. Agricultural Engineering Research,1994, (58):201-210
    [17] Teitel M, Ziskind G, Liran O, et al. Effect of wind direction on greenhouse ventilation rate airflow patterns and temperature distributions [J]. Bio systems engineering,2008, (101):351-369
    [18]李永欣Venlo型温室自然通风降温的实验研究与CFD模拟[D].北京:中国农业大学,2004
    [19]李本卿.强制通风条件下Venlo型温室内气流场和温度场的CFD数值模拟研究[D].镇江,江苏大学硕士学位论文,009.
    [20]吴飞青,张立彬,胥芳等.机械通风条件下玻璃温室热环境数值模拟[J].农业机械学报,2010,41(1):153-158
    [21]程秀花,毛罕平,伍德林,等.栽有番茄的玻璃温室内气流场分布CFD数值模拟[J].江苏大学学报(自然科学版),2010,31(5):510-514
    [22]王瑞金FLUENT技术基础与应用实例[M].清华大学出版社,2007
    [23]程秀花.温室环境因子时空分布CFD模型构建及预测分析研究[D].江苏大学,2011
    [24]邢兰.倾斜式日光温室冬季热环境的模拟研究[D].哈尔滨工业大学,2006
    [25]覃文洁,胡春光,郭良平,等.近壁面网格尺寸对湍流计算的影响[J].北京理工大学学报,2006,26(5):388-392
    [26]陈雨,许志浩,马国川.关于自然通风CFD算法几点讨论[J].制冷与空调,2011 25(1):78-81
    [27] Majdoubi H, Boulard T, Fatnassi H, et al. Airflow and microclimate patterns in a one-hectare Canary type greenhouse:An experimental and CFD assisted study [J].Agricultural and Forest Meteorology, 2009,(149):1050-1062.
    [28]邵磊Venlo型温室热湿环境数值分析研究[D].浙江工业大学,2009