日光温室栽培下有机肥氮素供应特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,日光温室蔬菜栽培已成为北方地区重要的蔬菜种植方式,但日光温室栽培下过量施肥问题突出,不但影响温室蔬菜的产量和品质,而且导致设施栽培土壤退化,引发一系列生态环境问题。盲目的大量施用有机肥,使氮素养分投入过量,是造成施肥过量的重要原因。虽然关于有机肥供肥,特别是氮素供应特性已有大量研究,但由于日光温室栽培下环境条件与大田存在差异,再加上施用有机肥的种类多,性质差异大,如何确定有机肥的氮素投入量仍是一个尚未解决的问题。客观准确地评价日光温室栽培下有机肥氮素供应特性,是解决日光温室土壤养分过剩和生态环境危害的重要内容。
     因此,本文以陕西关中地区日光温室栽培基地施用的主要畜禽有机肥(鸡粪、猪粪及牛粪)为研究对象,在测定不同有机肥养分含量基础上,重点采用室内培养试验、盆栽生物耗竭试验与田间小区试验相结合的方法,研究了不同种类有机肥的氮素释放及利用特性,旨在为有效评价有机肥氮素供应特性提供依据。获得主要结论包括:
     (1)测定了陕西杨凌地区日光温室施用的40余个畜禽有机肥不同养分的含量。结果表明:测定的鸡粪、猪粪和牛粪平均有机碳含量分别为22.80%、14.96%和21.59%,鸡粪和牛粪的有机碳含量显著高于猪粪,鸡粪与牛粪间无显著性差异。鸡粪、猪粪和牛粪的平均全氮及全磷含量分别为2.47%及1.34%,1.65%及0.85%,1.78%及0.92%;鸡粪的全氮、全磷均显著高于猪粪和牛粪,猪粪和牛粪间无显著性差异。不同畜禽有机肥可溶性有机氮(SON)、NH+4-N及NO-3-N的平均含量分别为1.07g·kg~(-1)、0.49g·kg~(-1)及0.83g·kg~(-1),占有机肥全氮的平均比例分别为5.03%、2.31%及4.05%,说明可溶性有机氮是有机肥可溶性氮的主要组分。
     (2)采用室内培养法研究了9个不同有机肥的碳、氮矿化特性。结果表明:不同有机肥碳、氮的矿化量和矿化率(矿化量占总有机碳或氮的比例)存在明显差异,其中碳矿化率在22.24%~87.16%之间,变异系数达90.30%;氮矿化率在29.07%~84.87%之间,变异系数达67.37%。不同种类有机肥相比,鸡粪平均的碳、氮矿化累积量及矿化率显著高于猪粪和牛粪;猪粪与牛粪平均的碳、氮矿化累积量及矿化率无显著差异。同一种类有机肥,培养期间的碳、氮矿化累积量及矿化率也存在明显差异。供试有机肥碳、氮的矿化量与其全氮含量均呈线性关系,表明有机肥氮含量是影响矿化量的主导因子。
     (3)采用田间原位培养试验,研究了日光温室栽培季节不同种类有机肥(鸡粪、猪粪及牛粪各2个)在土壤中的氮素矿化特性。结果表明:培养期间(180d)供试的6个不同有机肥氮矿化率差异较大,在1.06%~19.09%之间,平均7.50%;不同种类有机肥相比,鸡粪的平均氮矿化量及矿化率最高,其次为牛粪及猪粪。各培养阶段有机肥的氮矿化量与相应阶段的土壤积温间的相关性未达显著水平,但随着春季土壤温度增加,同等时间段的有机肥氮素矿化量呈增加的趋势;培养期间有机肥的氮素累积矿化量与日光温室土壤的积温呈显著的线性关系,说明土壤温度是影响有机肥氮矿化的重要因素。
     (4)以多年日光温室栽培土壤为供试对象,采用盆栽试验连续栽培番茄的生物耗竭法,研究了不同有机肥(4个鸡粪、2个猪粪及3个牛粪)氮素的有效性。结果表明:施用鸡粪、猪粪和牛粪分别使番茄的地上部分生物量平均提高了28.63%、7.75%和12.28%,氮素吸收量分别提高了14.06%,6.61%和7.48%。不同有机肥的氮素利用率相比,鸡粪的平均氮素利用率(41.23%)显著高于猪粪和牛粪(9.17%和10.81%)。采用有机肥处理番茄吸氮量与化学氮肥处理吸氮量的比例(定义为有机肥的氮当量,MFE-N%)比较了不同有机肥氮素的有效性,发现供试鸡粪的氮当量平均为45.62%,也显著高于猪粪和牛粪(13.29%和15.66%)。同一种类有机肥的氮素利用率及氮当量也差异较大,以供试的3个牛粪为例,其氮素利用率及氮当量的变异系数达74.59%。
     (5)以新建日光温室耕层土壤为研究对象,采用盆栽试验连续栽培番茄的生物耗竭法,研究了不同种类有机肥(7个鸡粪和3个牛粪)氮素的有效性。结果表明:施用鸡粪和牛粪使番茄的地上部分生物量分别平均提高了104.01%和92.15%,番茄氮素吸收量分别平均提高了76.92%和51.88%。供试鸡粪的氮素利用率平均为32.79%,显著高于牛粪(22.92%);供试鸡粪氮当量的平均值为39.75%,显著高于牛粪(27.80%)。同一种类有机肥的氮素利用率及氮当量也差异较大,供试7个鸡粪的氮素利用率的变异系数达23.59%,3种猪粪氮素利用率的变异系数达24.95%。
     (6)在新建日光温室采用田间小区试验,研究了施用有机肥对番茄产量和土壤养分含量的影响。结果表明:与仅施化肥处理相比,增施有机肥显著提高了番茄产量。增施有机肥,也显著增加了番茄生长期间(施入一个月后)耕层土壤硝态氮含量;增施有机肥也显著提高了耕层土壤的电导率、有机质含量和硝态氮、有效磷的累积量。一季番茄对有机肥氮素的利用率为11.94%。有机肥用量相同,氮、磷及钾化肥用量分别降低16.03%、23.10%及5.28%,对番茄产量无显著影响,土壤养分及盐分累积有所缓解。说明施用有机肥的基础上,可以适当降低化肥用量。
In recent years, the greenhouse vegetable cultivation has become important vegetablecropping patterns in the northern region, but the problem of excessive fertilization in thegreenhouse cultivation, not only affect the yield and quality of greenhouse vegetables, butalso the Greenhouse soil degradation, triggering a series of ecological and environmentalproblems. Large amount of organic fertilizer caused the soil nitrogen nutrient inputs in excessand excessive fertilization problems. Although extensive researches have been done on thenitrogen supply characteristics of organic fertilizer, but there were differences in thegreenhouse cultivation and fields on environmental conditions. In addition, many kinds oforganic fertilizers have great differences. It is still an unresolved issue that how to determinethe amount of nitrogen input in organic fertilizer. Objective and accurate assessment of thecharacteristics of nitrogen supply from organic fertilizer in the greenhouse cultivation is animportant matter as to solving the sunlight greenhouse soil nutrient surplus andeco-environmental hazards.
     Therefore, the main kinds of manures (chicken manure, swine manure and cattle manure)are used in solar greenhouse production in Guanzhong, Shaanxi province were investigated inthis study. In order to effectively evaluate the N supplying properties of manure, based ondetermining the manure nutrient concentrations, indoor incubation experiment, integratedwith pot bio-depletion experiment and field experiment was conducted to investigate the Nmineralization and utilization properties of various kinds of manure. The main conclusionsinclude:
     1. Nutrient concentrations in more than forty different kinds of livestock and poultrymanures that utilized in solar greenhouses in Yangling, Shaanxi province were analysed. Theresults showed that the mean concentrations of organic carbon in chicken manure, swinemanure and cattle manure were22.80%,14.96%and21.59%, respectively the organic carboncontent of chicken manure and cattle manure were significantly higher than swine manure,and there were no significant difference between chicken manure and cattle manure. Theaverage total N and total P of chicken manure, swine manure and cattle manure were2.47%and1.34%,1.65%and0.85%,1.78%and0.92%, respectively. Total N and P of chickenmanure were significantly higher than those of swine manure and cattle manure; and there were no significant difference between swine manure and cattle manure. There were nosignificant differences in the total potassium among the three kinds of manure. The meanconcentrations of soluble organic nitrogen (SON), NH4+-N, and NO3--N in different kinds ofmanures were1.07g·kg~(-1),0.49g·kg~(-1)and0.83g·kg~(-1)respectively, accounted for5.03%,2.31%and4.05%of the total N (TN) in those manure. This indicated that SON was the largepart of the manure soluble N.
     2. Indoor incubation experiment was conducted to study the carbon (C) and Nmineralization characteristics of nine manure samples. The results showed that there weresignificant differences in the C and N mineralization and the mineralization rates (the ratio ofC or N mineralization to total organic C or total organic N) among the different manures. TheC mineralization rates of different manures ranged from22.24%to87.16%, with CV(coefficient of variation) of90.30%, the N mineralization rates of different manures werebetween29.07%and84.87%, with CV of67.36%. The mean amount of C and Nmineralization and mineralization rates of chicken manure were significantly higher thanthose of swine and cattle manures. there was no difference between swine and cattle manures.For the same type of manure, there were also significant differences in the C and Nmineralization and mineralization rates among the manures collected from different places.The amounts of C and N mineralization of manure were linearly related with their total Nconcentrations, indicating that the manure N concentration was a key factor in affecting the Cand N mineralization of manure.
     3. In-situ incubation experiment was carried out to study the N mineralizationcharacteristics of different kinds of manures (chicken, swine, and cattle manure) in the growthseason of vegetable crops in solar greenhouse. The results showed that there were significantdifferences in the N mineralization rates among the six manures during the incubation period(180days), which ranged from1.06to19.09%with average7.50%. The mineralized N andN mineralization rate of chicken manures were the highest, followed by cow manures, whileswine manures were the lowest. This might results from the higher C/N ratio of the chickenmanure. Although no significant relationship was found between the mineralized N and theaccumulated temperature of soil in each incubation period, the N mineralization tended toincrease with the rising of soil temperature in spring. The accumulated N mineralizationsignificantly linearly correlated to the soil accumulated temperature during the wholeincubation period, indicating soil temperature is a key factor in affecting manure Nmineralization.
     4. Old solar greenhouse topsoil was conducted for incubation and pot experiment withsuccessive cropping of tomato, which was conducted to investigate the N availability of fourchicken manure samples, two swine manure samples and three cattle manure samples through bio-depletion method. The results demonstrated that all the chicken, swine and cattle manureincreased the aboveground biomass and N uptake of tomato, with the aboveground biomassincreased by28.63%,7.75%and12.28%on average and the mean values of N uptakeincreased by14.06%,6.61%and7.48%, respectively. The average N use efficiency ofchicken manure (41.23%) was significantly higher than those of swine manure (9.17%) andcattle manure (10.81%). The ratio of N uptake in the manure treatment to that in the inorganicfertilizer treatment (being defined as N equivalent weight, MFE-N%) was used to comparethe N availability of various kinds of manure. It was observed that the average MFE-N%ofchicken manure was also significantly higher than those of swine manure (12.39%) and cattlemanure (15.66%). The same kind of manure has a big difference in N availability andMFE-N%among different samples, for example, both the coefficient of variation (CV) of theN availability and MFE-N%for the three cattle manure samples were74.59%.
     5. Newly-built solar greenhouse topsoil was used for incubation and pot experiment withsuccessive cropping of tomato, which was conducted to investigate the nitrogen availability ofseven chicken manure samples and three cattle manure samples through bio-depletion method.The results demonstrated that the chicken and cattle manures significantly increased thebiomass and N uptake of tomato, with the aboveground biomass increasing by104.01%and92.15%on average and the mean values of N uptake increasing by76.92%and51.88%. Theaverage N use efficiency of chicken manure was32.79%, significantly higher than that ofcattle manure (22.92%).The mean MFE-N%of chicken manure was39.75%, significantlyhigher than that of cattle manure (27.80%). The same kind of manure has a big difference inN availability and MFE-N%among different samples, for example, the CV of N useefficiency for the seven chicken manure samples was23.59%and the corresponding value forthe three swine samples was24.95%.
     6. Field experiment was conducted to research the effects of manure on tomato yield andsoil nutrient concentration. The results showed that manure significantly increased the tomatoyield. Manure also significantly increased the nitrate-N concentration of the topsoil during thegrowth period of tomato (one month after the application of manure). Topsoil electricalconductivity, organic matter concentration, nitrate-N content and available P contentsignificantly increased with the application of manure as well. N use efficiency of manurewas11.94%for one season of tomato. When the application rates of N, P and K chemicalfertilizer reduced16.03%,23.10%and5.28%, combining with equivalent amount of manure,the tomato yield has no significant change, but soil nutrient and salt accumulation wasmitigated. This indicated that the application of manure could reduce the input rates ofchemical fertilizer.
引文
鲍士旦.2000.土壤农化分析(第三版).北京:中国农业出版社.
    蔡道基,毛伯清.1980.紫云英对土壤有机质分解和积累的影响.土壤通报,11(3):19~23.
    陈川,张山泉,庄春,孙春梅,陈宗明,杨彩云.2007.黄潮土麦作期间有机肥供氮量的研究.江苏农业科学,1:196~197.
    董克虞.1998.畜禽粪便对环境污染及资源化途径.农业环境保护,17(6):281~283.
    董悦安,沈照理,钟佐.2001.农田区地下水氮污染和氮转化的实验研究.北京师范大学学报(自然科学版),37(2):199~204.
    董章杭.2006.山东省寿光市集约化蔬菜种植区农用化学品使用及其对环境影响的研究.[博士学位论文].北京:中国农业大学.
    杜新民,吴忠红,张永清,裴雪霞.2007.不同种植年限日光温室土壤盐分和养分变化研究.水土保持学报,21(2):78~80.
    范成五.2006.不同有机质肥料的有机氮矿化研究.贵州农业科学,34(增刊):57~58.
    范庆峰,张玉龙,陈重,张玉玲,王丽娜.2009.保护地土壤酸度特征及酸化机制研究.土壤学报,46(3):446~500.
    冯广和.2000.话说设施农业.设施农业,2:31.
    冯绍元,黄冠华.1997.试论水环境中的氮污染行为.灌溉排水,16(2):34~36.
    傅高明.1995.黑麦有机氮在土壤中矿化的研究.土壤肥料,3:4~9.
    高佳佳,雷金繁,陈竹君,周建斌.2012.施肥对新建日光温室番茄产量及土壤养分含量的影响.干旱地区农业研究,30(1):19~14.
    高家骅,章云,黄东迈,吴敬民,潘遵谱.1984.应用土壤氮矿化参数预报早稻施肥探讨.中国农业科学,5:67~72.
    葛祥书.1998.对发展设施农业的几点看法—由北京中以示范农场想到的.农村机械化,10:21~22.
    郭俊炜,郭文龙.2010.蔬菜日光温室施肥与土壤养分状况研究.中国农学通报,26(13):243~246.
    郭全忠.2007.安康市设施蔬菜施肥现状及土壤养分累积特性研究.安徽农业科技,35(20):6194~6195.
    韩秉进,陈渊,乔云发,韩晓增,孟凯.2004.连年施用有机肥料对土壤理化性状的影响.农业系统科学与综合开发,20(4):294~296.
    韩晓日,郑国砥,刘晓燕,孙振涛,杨劲峰,战秀梅.2007.有机肥与化肥配合施用土壤微生物量氮动态、来源和供氮特征.中国农业科学,40(4):765~772.
    何萍,王家骥.1999.非点源(NPS)污染控制与管理研究的现状、困境与挑战.农业环境保护,18(5):234~237.
    胡国臣,张清敏,王忠,常晓青.1999.地下水硝酸盐氮污染防治研究.农业环境保护,18(5):228~230.
    黄东迈,朱培立,高家弊.1982.有机、无机态肥料氮在水田和旱地的残留效应[J].中国科学(B辑),10:907~912.
    黄化刚,张锡洲,李廷轩,余海英.2007.典型设施栽培地区养分平衡及其环境风险.农业环境科学学报,26(2):676~682.
    黄焱宁,任小燕,陈年来,邵世禄,张涛.2000.甘肃中部日光温室土壤剖面理化特性.冰川冻土,31(3):577~581.
    黄耀,沈雨,周密,马瑞升.2003.木质素和氮含量对植物残体分解的影响.植物生态学报,27(2):183~188.
    黄真国,黄秀敏.1999.对发展现代设施农业的思考.河南农业科学,7:15~16.
    金维续,赵学蕴,王小平,曾木祥,余永年,张夫道.1985.厩肥与氮肥配合对蔬菜品质影响的研究.中国农业科学,18(3):52~56.
    金雪霞,范晓晖,蔡贵信.2005.菜地土氮素的主要转化过程及其损失.土壤,37(5):492~499.
    巨晓棠,边秀举,刘学军,张福锁,毛达如.2000.旱地土壤氮素矿化参数与氮素形态的关系.植物营养与肥料学报,6(3):251~259.
    巨晓棠,李生秀.1996.旱地土壤氮素矿化强度及数量预报模式的检验.西北农业大学学报,4:17~21.
    巨晓棠,刘学军,张福锁.2002.尿素配施有机物料时土壤不同氮素形态的动态及利用.中国农业大学学报,7(3):52~56.
    巨晓棠.2002.尿素配施有机物料时土壤不同氮素形态的动态及利用.中国农业大学学报,7(3):52~56.
    柯福源,汪寅虎,张明芝,陈春宏,顾永明.1994.上海郊区有机肥的组成和施用状况调查.土壤通报,25(7):30~32.
    李程.2004.宁夏日光温室土壤次生盐碱化对黄瓜生长发育影响的研究.[硕士学位论文].北京:中国农业大学.
    李崇光,包玉泽.2010.我国蔬菜产业发展面临的新问题与对策.中国蔬菜,15:1~5.
    李俊良,东先旺,梁素娥,崔德杰,孟祥霞.1994.有机肥料不同培养法氮素释放特点及其与作物吸氮关系的研究.莱阳农学院学报,1l(4):245~248.
    李俊良,韩琅丰,江荣风,张福锁.1996.碳、氮比对有机肥料氮素释放和植物吸氮的影响.中国农业大学学报,1(5):57~61.
    李明锐,沙丽清.2005.西双版纳不同土地利用方式下土壤氮矿化作用研究.应用生态学报,16(1):54~58.
    李鹏,齐广海.2006.饲料添加剂的使用安全研究进展.饲料工业,27(18):7~10.
    李萍萍.2002.设施农业的现状与发展趋势.农业装备技术,1:4~6.
    李庆康,吴雷,刘海琴,蒋永忠,潘玉梅.2000.我国集约化畜禽养殖场粪便处理利用现状及展望.农业环境保护,19(4):251~254.
    李世清,李生秀.2001.有机物料在维持土壤微生物体氮库中的作用.生态学报,21(1):136~142.
    李书田,刘荣乐,陕红.2009.我国主要畜禽粪便养分含量及变化分析.农业环境科学学报,28(1):179~184.
    廖允成,王立祥,温晓霞.1998.设施农业——我国农业资源高效利用的重要途径.资源科学,20(3):20~25.
    林葆.2003.化肥与无公害农业.北京:中国农业出版社,78.
    林心雄,文启孝,徐宁.1984广州地区土壤中植物残体的分解速率.土壤学报,22(1):47~55.
    刘翠花,张澈.2006.西藏高原设施蔬菜大棚土壤特性调查研究.土壤通报,37(4):827~828.
    刘德,吴凤芝.1998.哈尔滨市郊区蔬菜大棚土壤盐分状况及影响.北方园艺,6:1~21.
    刘利军,闫双堆,杜慧平,李伟林.2009.不同肥力水平大棚土壤氮素转化的研究.山西农业科学,37(2):32~35.
    刘玲,杨海霞,张月玲.2009.2009年寿光市农村生活饮用水水质监测结果分析.医学动物防疫,26(5):478~479.
    刘荣乐,李书田,王秀斌,王敏.2005.我国商品有机肥料和有机废弃物中重金属的含量状况与分析.农业环境科学学报,24(2):392~397
    刘荣乐,李书田.2002.我国商品有机肥料和有机废弃物中重金属的含量状况与分析.中国农学通报,18(4):178~183.
    柳敏,张璐,宇万太,沈善敏.2007.有机物料中有机碳和有机氮的分解进程及分解残留率.应用生态学报,18(11):2503~2506.
    鲁彩艳,陈欣.2003.不同施肥处理土壤及不同C/N比有机物料中有N的矿化进程.土壤通报,34(4):276~271.
    鲁如坤.2000.土壤农业化学分析方法.北京:中国农业科技出版社.
    罗佳,蒋小芳,孟琳,黄启为,徐阳春,沈其荣,杨兴明.2010.不同堆肥原料的有机无机复合肥对油菜生长及土壤供氮特性的影响.土壤学报,47(1):97~106.
    马俊永,李科江,曹彩云,证春莲.2007.有机-无机肥长期配施对潮土土壤肥力和作物产量的影响.植物营养与肥料学报,13(2):236~241.
    马力,杨林章,颜廷梅,王建国,李斗争,殷士学.2010.长期施肥水稻土氮素剖面分布及温度对土壤氮素矿化特性的影响.土壤学报,47(2):286~294.
    马文奇.1999.山东省作物施肥现状、问题与对策.[硕士学位论文].北京:中国农业大学资环学院植物营养系.
    马晓丽,贾志宽,肖恩时,韩清芳,聂俊峰,杨宝平,侯贤青,卫婷,高飞.2011.旱区有机培肥对土壤肥力及酶活性的影响.西北农林科技大学学报(自然科学版),39(1):144~150.
    马正华,宋维秀,魏国良.2002.菜地土壤有机肥转化试验.青海大学学报(自然科学版),20(3):53~56.
    孟琳,张小莉,蒋小芳,黄启为,徐阳春,杨兴明,沈其荣.2009.有机肥料氮替代部分无机氮对水稻产量的影响及替代率研究.植物营养与肥料学报,15(2):290~296.
    穆兴民,樊小林.1999.土壤氮素矿化的生态模型研究.应用生态学报,10(1):114~118.
    宁建凤,邹献中,杨少海,魏岚,巫金龙.2007.有机无机氮肥配施对土壤氮淋失及油麦菜生长的影响.农业工程学报,11(23):95~100.
    农业部.2008.中国农业统计资料.北京:中国农业出版社.
    潘以楼.1992.菜田土壤的适宜酸碱度.蔬菜,2:37.
    彭靖里,安华轩,马敏象,刘建中.2001.国内外设施农业栽培技术发展及云南省的差距.农业系统科学与综合研究,17(3):236~240.
    申泰雄,姚玉林,包颖.1999.设施农业的国内外现状与我省的发展对策.农机化研究,1:5~10.
    沈其荣,沈振国,史瑞和.1992.有机肥氮素的矿化特征及与其化学组成的关系.南京农业大学学报,15(1):59~64.
    史奕,张璐,鲁彩艳,宇万太.2003.不同有机物料在潮棕壤中有机碳分解进程.生态环境,12(1):56~58.
    汤丽玲,陈清,李晓林,陈永智,丁光国.2005.日光温室秋冬茬番茄氮素供应目标值的研究.植物营养与肥料学报,11(2):230~235.
    唐继伟,林治安,许建新,戚剑,王云华.2006.有机肥与无机肥在提高土壤肥力中的作用.中国土壤与肥料,3:44~47.
    陶勤南,吴良欢,方萍.1993.稻田土壤氮矿化速率的研究.土壤学报,30(3):237~244.
    田昆,陈宝昆,贝荣塔,罗开华,王有位,杨永兴.2003. In-Situ方法在研究退化土壤氮库时空变化中的应用.生态学报,23(9):1937~1943.
    田茂洁.2004.土壤氮素矿化模型研究进展.四川环境,23(4):37~42.
    田茂洁.2004.土壤氮素矿化影响因子研究进展.西华师范大学学报(自然科学版),25(3):298~303.
    王朝辉,宗志强,李生秀,陈宝明.2002.蔬菜的硝态氮累积和菜地土壤的硝态氮残留.环境科学,23(3):79~83.
    王代长,蒋新,卞永荣,徐仁扣,贺纪正.2002.酸沉降下加速土壤酸化的影响因素.土壤与环境,11(2):152~157.
    王辉,董元华,安琼,孙红霞.2005.高度集约化利用下蔬菜地土壤酸化及次生盐渍化研究——以南京市南郊为例.土壤,37(5):530~533.
    王家玉,王胜佳,陈义,郑纪慈,李超英,计小江.1996.稻田土壤中氮素淋失的研究.土壤学报,33(1):28~35.
    王敬国.2011.设施菜田退化土壤修复与资源高效利用.北京:中国农业大学出版社.
    王敬华,张效年,余天仁.1994.华南红壤对酸雨敏感性的研究.土壤学报,31(4):348~354.
    王娟.2010.设施菜田土壤溶解性有机物质的淋洗特点分析.[硕士学位论文].北京:中国农业大学.
    王克安,杨宁,李絮花,郭佩秋,吕晓惠,柴秀乾.2010.不同种植年限日光温室土壤养分变化规律研究.山东农业科学,9:56~59.
    王龙昌,玉井理,永田雅辉,长友由隆.1998.水分和盐分对土壤微生物活性的影响.垦殖与稻作,3:40~42.
    王淑平,周广胜,孙长占,姜亦梅,姜岩,刘孝义.2003.土壤微生物量氮的动态及其生物有效性研究.植物营养与肥料学报,9(1):87~90.
    王铁军,郑西来,崔俊芳.2006.莱西地区施肥对地下水硝酸盐污染的过程.中国海洋大学学报,36(2):307~312.
    王文山,张美荣,蔡典雄,张镜清,王维敏.1986植物残体在北京潮褐土中的分解.土壤肥料,5:29~33.
    王学征.2004.设施环境盐分胁迫对番茄生长发育及膜系统影响研究.[硕士学位论文].哈尔滨:东北农业大学.
    王岩,刘国顺.2006.绿肥中养分释放规律及对烟叶品质的影响.土壤学报,43(2):273~280.
    王艳博,黄启为,孟琳,沈其荣.2006.有机无机肥料配施对盆栽菠菜生长和土壤供氮特性的影响.南京农业大学学报,29(3):44~48.
    王艳萍,李松龄,秦艳,吕家珑.2011.不同年限日光温室土壤盐分及养分变化研究.干旱地区农业研究,29(3):161~164.
    魏自民,席北斗,王世平,赵越,杨延梅,何连生,刘鸿亮.2006.垃圾堆肥对难溶性磷转化及土壤磷素吸附特性影响.农业工程学报,22(2):142~146.
    吴多三.1996.有机农业与蔬菜有机肥的施用.蔬菜,4:4~5.
    奚振邦,王寓群,杨佩珍.2004.中国現代农业发展中的有机肥问题.中国农业科学,37(12):1874~1878.
    夏立忠,杨林章.2003.大棚番茄优化施肥与土壤养分和盐分的变化特征.中国蔬菜,2:4~7.
    邢文英,李荣.1999.中国有机肥料养分数据库.北京:中国科学技术出版社.
    熊汉琴,王朝晖,罗贵斌.2006.不同种植年限蔬菜大棚次生盐碱化发生机理的研究.陕西林业科技,3:22~26.
    徐福利,梁银丽,陈志杰.2003.延安市日光温室蔬菜施肥现状与环境效应.西北植物学报,23(5):797~801.
    徐福利,梁银丽,杜社妮,陈志杰.2003.陕北日光温室大棚黄瓜和番茄施肥存在的问题及改进措施.陕西农业科技,1:35~37.
    徐福利,梁银丽,杜社妮,陈志杰.2003.杨凌示范区日光温室蔬菜施肥现状及存在问题对策.西北农业学报,12(3):124~128.
    徐仁扣,季国亮.1998. PH对酸性土壤中铝的溶出和铝离子形态分布的影响.土壤学报,35(2):162~170.
    徐阳春,沈其荣.2004.有机肥和化肥长期配合施用对土壤及不同粒级供氮特性的影响.土壤学报,41(1):87~93.
    闫世霞.2001.我国设施农业现状分析.北方园艺,6:4~5.
    闫世霞.2002.我国工厂化农业的现状与展望.中国农学通报,18(2):75~76.
    杨路华,沈荣开,覃奇志.2004.土壤氮素矿化研究进展.土壤通报,34(6):569~571.
    杨蕊,李裕元,魏红安,高茹,石辉,吴金水.2011.畜禽有机肥氮、磷在红壤中的矿化特征研究.植物营养与肥料学报,17(3):600~607.
    杨少海,姚丽贤,李国良,何兆恒.2006.集约化养殖禽畜粪主要化学物质调查与分析.广东省土壤学会第九次会员代表大会暨学术交流年会论文集,17(1):23~29.
    杨小红,董云社,齐玉春,耿元波,刘立新.2005.锡林河流域温带草原土壤的净氮矿化研究.农业工程学报,21(12):179~205.
    杨玉爱.1996.我国有机肥料研究及展望.土壤学报,33(4):414~453.
    姚丽贤,周修冲.2005.有机肥对环境的影响及预防研究.中国生态农业学报,13(2):113~115.
    叶静,安藤丰,符建荣,佐佐木由佳,角田宪一.2008.不同有机肥对土壤中的氮素矿化及对化肥氮固持的影响.浙江农业学报,20(3):176~180.
    伊田.2010.杨凌地区不同种植年限对设施栽培土壤环境质量的影响和评价.[硕士学位论文].杨凌:西北农林科技大学.
    尹承军,黄德华,陈佐忠.1994.内蒙古草原4种植物凋落物分解速率与气候因子之间的定量关系.生态学报,14(2):149~154.
    宇万太,姜子绍,马强,周桦.2009.使用有机肥对土壤肥力的影响.植物营养与肥料学报,15(5):1057~1064.
    袁新民,同延安,杨学云,李晓林,张福锁.2000.有机肥对土壤NO–3–N累积的影响.土壤与环境,9(3):197~200.
    曾希柏,白玲玉,苏世鸣,李莲芳.2010.山东寿光不同种植年限设施土壤的酸化与盐渍化.生态学报,30(7):1853~1859.
    张贵龙,任天志,邱建军,李志宏,刘宏斌,邹国元.2009.日光温室白萝卜生产系统的氮素利用与平衡研究.农业环境科学,28(7):1500~1507.
    张贵龙.2009.蔬菜保护地氮素利用与去向研究.[博士研究论文].北京:中国农业科学院.
    张建华,杨发荣.2004.大理市蔬菜地土壤酸化的原因与调控措施.云南农业科技,2:4~6.
    张金锦,段增强.2011.设施菜地土壤次生盐渍化的成因、危害及其分类与分级标准的研究进展.土壤,43(3):361~366.
    张树清,张夫道,刘秀梅,王玉军,邹绍文,何绪生.2005.规模化养殖畜禽粪主要有害成分测定分析研究.植物营养与肥料学报,11(6):822~829.
    张树清.2004.甘肃有机肥资源分布与利用潜力.西北农业学报,13(3):126~130.
    张亚丽,张娟,沈其荣,王金川.2002.秸秆生物有机肥的施用对土壤供氮能力的影响.应用生态学报,13(12):1575~1578.
    张玉玲,张玉龙,虞娜,姬景红.2008.长期不同施肥对水稻土有机氮素矿化特性影响的研究.植物营养与肥料学报,14(2):272~276.
    张真和,陈青云,高丽红,王娟娟,沈军,李中民,张雪艳.2010.我国设施蔬菜产业发展对策研究.蔬菜,5:1~3.
    章家恩,廖宗文.2000.试论土壤的生态肥力及其培育.土壤与环境,9(3):253~256.
    赵红,袁培民,吕贻忠,李季.2011.施用有机肥对土壤团聚体稳定性的影响.土壤,43(2):306~311.
    赵满兴,周建斌,陈竹君,杨绒.2007.有机肥中可溶性有机碳、氮含量及其特性.生态学报,27(1):397~403.
    赵明,蔡葵,赵征宇,于秋华,王文娇.2007.不同有机肥料中氮素的矿化特性研究.农业环境科学学报,26(增刊):146~149.
    周博,高佳佳,周建斌.2011.日光温室栽培下不同种类有机肥氮素矿化特性研究.植物营养与肥料学报,17(6):1531~1537.
    周才平,欧阳华.2001.温度和湿度对暖温带落叶阔叶林土壤氮矿化的影响.植物生态学报,25(2):204~209.
    周建斌,李生秀.1998.碱性过硫酸钾法测定溶液中全氮含量法氧化剂的选择.植物营养与肥料学报,4(3):299~304.
    周建斌,翟丙年,陈竹君,许安民,冯武焕.2006.西安市郊区日光温室大棚番茄施肥现状及土壤养分累积特性.土壤通报,37(2):2287~2290.
    朱本岳.1989.菜地土壤酸化原因及其对番茄生产的影响.浙江农业大学学报,15(3):273~277.
    朱大威,黄耀,卢燕宇.2006.有机肥氮素释放动态模型的初步研究.南京农业大学学报,29(3):146~150.
    朱培立,黄东迈.1986.土壤水湿状况和肥料碳氮比对稻田肥料氮素转化的研究.土壤学报,23(3):251~260.
    朱兆良,文君孝.1992.中国土壤氮素.南京:江苏科学技术出版社.
    朱兆良.1989.关于土壤氮素研究中的几个问题.土壤学进展,17(2):1~9.
    朱兆良.1990.土壤氮素有效指标与土壤供氮量的预测.土壤,22(3):177~180.
    庄恒扬,曹卫星,陆建飞.2002.还田秸秆分解与氮素释放的动态模拟.生态学报,22(8):1358~1362
    邹绍文,孙建奇,王秋生.2004.江西省有机肥资源利用现状及发展对策.中国农学通报,20(5):170~173.
    Agehara S, Warncke D.2005. Soil moisture and temperature effects on nitrogen release from organicnitrogen sources. Soil Sci. Soc. Am. J,12:69~73.
    Bolan N S, Adriano D C.2003. Effects of organic amendments on the reduction and phytoavail abilityof chromate in mineral soil. Journal of Environmental Quality,32(1):120~128.
    Bothe H, Ferguson S J, Newton W E.2007. Biology of the Nitrogen Cycel. Elsevier Science,1~427.
    Bottner P, Austrui F, Cortez J, Billes G, Couteaux M.1998. Decomposition of14C and15N-labelledplant material under controlled conditions in coniferous forest soils from a north-south climatic sequence inWestern Europe. Soil Biology&Biochemistry,30:597~610.
    Cao Z H, Huang J F, Zhang C S.2004. Soil quality evolution after land use chang form paddy soil tovegetable land. Environment Geochemistry and Health,26(2):97~103.
    Chantigny M H.2003. Dissolved and water-extractable organi matter in soils: a review on theinfluence of land use and management practices.Geoderma,113:357~380.
    Chen Y, Barak P.1982. Iron nutrition of plants in calcareous soils. Advances in Agronomy,35:217~240.
    Cordovil C, Cabral F, Coutinho J.2007. Potential mineralization of nitrogen from organic wastes toryegrass and wheat crops. Bioresource Technology,98:3265~3268.
    Curtin D, Campbell C A, Jalil A.1998. Effects of acidity on mineralization: pH-dependence of organicmatter mineralization in weakly acidic soils. Soil Biology&Biochemistry,30:57~64.
    Dams T M, Adams S N.1983. The effects of liming and soil pH on carbon and nitrogen contained inthe soil biomass. Journal of Agricultural Science Cambridge,101:553~558.
    Fink M, Scharpf H C.2000. Apparent nitrogen mineralization and recovery of nitrogen supply in fieldtrials with vegetable crops. Journal of Horticultural Science and Biotechnology,75(6):723~726.
    Grattan S R, Grieve C M.1999. Salinity-mineral nutrient relations in horticultural crops. SeientiaHorticulture,78:127~157.
    Guo R Y, Nendelb C, Rahn C, Rahn C, Jiang C, Chen Q.2010. Tracking nitrogen losses in agreenhouse crop ration experiment in north China using the EU-Rotate N simulation model. EnvironmentalPollution,158:2218~2229.
    Gutser R, Ebertseder Th, Weber A, Schraml1M, Schmidhalter U.2005. Short-term and residualavailability of nitrogen after long-term application of organic fertilizers on arable land. J. Plant Nutr. SoilSci.,168:439~446.
    Hansen S, Jensen H E, Nielsen N E, Svendsen H.1991. Simulation of nitrogen dynamics and biomassproduction in winter wheat-using the Danish simulation model DAISY. Fertilizer Research,27:245~259.
    Hao X, Chang C, Travis G R, Zhang F.2003. Soil carbon and nitrogen response to25annual cattlemanure applications. J. Plant Nutr. Soil Sci.,166:239~245.
    Hasegawa H, Labavitch J M, McGuire A M.1999. Testing CERES model predictions of N releasefrom legume cover crop residue. Field Crops Research,63:255~267.
    Henriksen T M, Breland T A.1999. Nitrogen availability effects on carbon mineralization, fungal andbacterial growth and enzyme activities during decomposition of wheat straw in soil. Soil Biology andBiochemistry,31:1121~1134.
    Hochmuth G J.1994. Efficiency ranges for nitrate nitrogen and potassium for vegetablepetiolesapquick test. Hort Technology,4:218~222.
    Houba V J G, Novozamsky I, Huybregts A W M, Van der Lee J J.1986. Comparison of soil extractionsby0.01M CaCl2, by EUF and by some conventional extraction procedures. Plant Soil,96:433~437.
    Isabelle Bertrand, Olivier Delfosse, Bruno Mary.2007. Carbon and nitrogen mineralization in acidic,limed and calcareous agricultural soils: Apparent and actual effects. Soil Biology&Biochemistry,39:276~288.
    J O Azeez, W Van Averbeke.2010. Nitrogen mineralization potential of three animal manures appliedon a sandy clay loam soil. Bioresource technology,101:5645~5651.
    Jensen E S.1994. Mineralization-immobilization of nitrogen in soil amended with low C:N ratio plantresidues with different particle sizes.Soil Biol Biochem,26:519~521.
    Joergensen R G, Potthoff M.2005. Microbial reaction in activity, biomass, and community structureafter long-term continuous mixing of a grassland soil. Soil Biology and Biochemistry,37:1249~1258.
    Jonsson H, Bergetrom L, Jansson P.1987. Simulated nitrogen dynamics and losses in a layeredagricultural soil. Agric. Ecosystem Environ.,18:333~356.
    Jorgensen S E.1986. Fundamentals of ecological modeling. New York: Elsevler Science PublishingCompany Inc.,98~101.
    Ju X T, Kou C L, Zhang F S, Christie P.2006. Nitrogen balance and groundwater nitratecontamination: compares on among three intensive cropping systems on the North China Plain. Environ.Pollut.,143:117~125.
    Kalbitz K, Schwesig D, Rethemeyer J, Matzner E.2005. Stabilization of dissolved organic matter bysorption to the mineral soil. Soil Biology&Biochemistry,37:1~13.
    Kim K R, Craig H.1993. Nitrogen-15and oxygen-18characteristics of nitrous oxide:a globalperspective. Science,262:1855~1857.
    Kirschbaum M U F.1995. The temperature dependence of soil organic matter decomposition and theeffect of global warmingon soil organic C storage. Soil Biol. Biochem.,27:753~760.
    Li L, Wu G.1999. Numerical simulation of transport of four heavy metals in Kaolinite Clay. EnvironEng.,125(4):314~324.
    Lind A M, Debosz K K, Maag M.1995. N balance for mineral N on spring barley cropped sandy loamand coarse sandy soil with mineral and organic fertilizers. Act Agriculture Scandinavica,45(1):39~50.
    M E Probert, R J Delveb, S K Kimanic, J P Dimesd.2005. Modelling nitrogen mineralization frommanures: representing quality aspects by varying C:N ratio of sub-pools.Soil Biology&Biochemistry,37:279~287.
    Marcel Dekker.1981. Microbial biomass in soil: Measurement and turnover. Soil biochemistry,5:415~472.
    Marschner B, Kalbitz K.2003. Controls of bioavaililability and biodegrability of dissovvled orgnicmatter in soil. Geoderma,113:211~235.
    Masakazu Aoyama, Tomohiro Nozawa.1993. Microbial biomass nitrogen and mineralizationimmobilization processes of nitrogen in soils incubated with various organic materials. Soil Science andPlant Nutrition,39(1):23~32.
    Minotti P L, Hankinson T, Grubinger J.1989. Whole leaves versus petioles for assessing the nitrogenstatus of tomatoes. Hort Science,24:84~86.
    Molina J A E, Hadas A, Clapp C E.1990. Computer simulation of nitrogen turnover in soil andpriming effect. Soil Biology and Bio-chemistry,22:349~353.
    Mueller T, Magid J, Jensen L S.2003. Decomposition of plant residues of different quality in soil-DAISY model calibration and simulation based on experimental data. Ecological Modelling,166:3~18.
    Nicholson F A, Chambers B J, Williams J R, Unwin R J.1999. Heavy metal contents of livestockfeeds and animal manures in England and Wales. Bioresour Technol.,70:23~31.
    Palm C A, Gachengo C N, Delve R J, Cadisch G, Giller K E.2001. Organic inputs for soil fertilitymanagement in tropical agroecosystems: application of an organic resource database. Agriculture,Ecosystems and Environment,83:27~42.
    Petersen B M, Jensen L S, Hansen S.2005. CN-SIM: a model for the turnover of soil organic matter.Soil Biol Biochem,37:375~393.
    Ren T, Christie P, Wang J G, Chen Q, Zhang F S.2010. Root zone soil nitrogen management tomaintain high tomato yield and minium nitrogen losses to environment. Scientia Hotri culture,125:22~33.
    S Agehara, D Warncke.2005. Soil moisture and temperature effects on nitrogen release from organicnitrogen sources. Soil Science Society of America Journal.12:69~73.
    Schloter M, Bach H J, Metz S, Sehy U, Munch J C.2003. Influence of precision farming on themicrobial community structure and functions in nitrogen turnover. Agriculture, Ecosystems andEnvironment,98:295~304.
    Sorensen L H.1983. The influence of stress treatments on the micro-bial biomass and the rate ofdecomposition of humified matter in soils containing different amounts of clay. Plant and Soil,75:107~119.
    Sorensen P, Amato M.2002. Remineralisation and residual effects of N after application of pig slurryto soil. Eur. J. Agron,16:81~95.
    Stanford G, Fere M, Schwaninger D.1973. Temperature coefficient of soil nitrogen mineralization.Soil Sci.,119:222-226.
    Stanford G, Smith S J.1972. Nitrogen mineralization potentials of soils. Soil Sci Soc Am Proc,36:465~472.
    Stevenson B A, Verburg P S.2006. Effluxed CO2-13C from sterilized and unsterilized treatments of acalcareous soil. Soil Biology&Biochemistry,38:1727~1733.
    Stout W L, Schnabel R R, Priddy W E, Elwinger G F, Fales S A, Muller L D.1997. Nitrate leachingfrom cattle urine and feces in Northeast USA.Soil Sci Soci Amer,61(6):1787~1794.
    Thanh H, Dao a, Robert C, Schwartz b.2010. Mineralizable phosphorus, nitrogen, and carbonrelationships in dairy manure at various carbon-to-phosphorus ratios. Bioresource Technology,101:3567~3574.
    Vanlauwe B, Nwoke O C, Sanginga N, Merckx R.1996. Impact of residues quality on the C and Nmineralization of leaf and root residuesof three agroforestry species. Plant and Soil,183:221~231.
    Vanvee J A, Ladd J N, Amato M.1985. Turnover of carbon and ni-trogen through the microbialbiomass in a sandy loan and aclay soil incubated with [14C(U)] glucose and [15N(NH4)SO4under differentmoisture regmes. Soil Biol Biochem,17:747~756.
    Verdonck O, Szmidt R A K.1998. Compost specifications. Acta Horticulturae,469:169~177.
    Weier U, van Riesen U, Scharpf H C.2001. Nil-N-plots: system to estimate the amount of the nitrogentopdressing of vegetables. Acta Hort,563:47~52.
    Zhong Z, Makeschin F.2003. Soluble organic nitrogen in temperate forest soils. Soil Biology&Biochemistry,35:333~338.
    Zhou J B, Chen Z J, Liu X J, Zhai B N, Powlson D S.2010. Nitrate accumulation in soil profiles underseasonally open ‘sunlight greenhouses’ in northwest China and potential for leaching loss during summerfallow. Soil Use Manage.,26:332~339.
    Zhu J H, Li X l, Christie P, Li J L.2005. Environmental implications of low nitrgen use efficiency inexcessively fertilized hot pepper (Capsicum frutescens L) cropping systems. Agriculture, Ecosystems andEnvironment,111:70~80.