DNA损伤修复基因多态与苯作业工人遗传损伤易感性关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:苯是重要的工业生产原料,近年来苯的生产和消费年均增长10%以上。苯对人体健康存在着极大的潜在性危害。职业流行病学调查发现,苯中毒的发生与个体易感性有关,是环境因素和遗传因素等共同作用的结果。本研究旨在较全面系统地探讨在当前卫生标准下职业性苯接触是否引起健康危害及其遗传损伤,并对苯作业工人健康监护的易感性生物标志物进行研究。方法:本研究应用职业流行病学调查方法,选取安徽省某汽车制造厂的接苯工人为研究对象,进行健康危害调查和职业接触评估,应用胞质分裂阻滞微核试验测定结果作为接苯工人外周血淋巴细胞染色体损伤的效应指标,探讨染色体损伤与苯接触之间的关系;应用聚合酶链反应(polymerase chain reaction,PCR)-限制性片段长度多态性(restriction fragment lengthpolymorphism,RFLP)和创造酶切位点的限制性片段长度多态性(create restrictionsite combined with restriction fragment length polymorphism,CRS-RFLP)检测技术检测与苯致染色体损伤相关的DNA损伤修复通路中几个关键基因的多态性,包括XRCC1基因、APE1基因、XPC基因、hOGG1基因、MGMT基因、和hMYH基因,分析各基因多态及相关因素对微核率的影响,应用SPSS16.0软件进行统计分析。结果:1)车间空气各监测点苯浓度均<0.6mg/m3,低于国家职业接触限值;接苯工人防护用品使用率仅为63.0%,工人自我防护意识较差;2)暴露工人发生失眠多梦、头晕头痛、牙龈出血、鼻腔出血、皮下瘀斑、月经异常等症状与苯暴露无相关性(P>0.05);低浓度苯接触会引起白细胞异常(波动、降低)率及红细胞降低率升高(P<0.001)。Logistic回归分析显示苯接触、接苯工龄及年龄是白细胞异常(波动、降低)的主要影响因素,苯接触是红细胞降低的主要影响因素,各组血红蛋白降低率及血小板降低率差异无统计学意义(P>0.05);3)苯暴露组外周血淋巴细胞微核率(2.12‰±1.87‰)明显高于对照组(1.19‰±1.68‰),差异有统计学意义(P<0.001)。多因素Poisson回归分析微核率影响因素发现女性、高龄(>35岁)和苯接触是微核率升高的危险因素。采用百分位数法,以对照组微核率95%的上限值作为界限值,认为本研究人群双核细胞微核发生率正常值界限值应为4‰,以该界限值作为判断苯作业工人是否发生遗传损伤的划分标准,超过该界限则认为个体发生了染色体损伤。依据白细胞分类的各接苯组微核率均高于对照组,其差异均有统计学意义(P<0.001),暴露组中白细胞正常组的微核率比非接苯对照组高54%,FR(95%CI)为1.54(1.23~1.95);4)对照组各基因型与微核率的关系分析发现携带XRCC1399基因AA型的个体与携带GG型的个体相比微核率升高,差异具有统计学意义(P<0.05),其FR(95%CI)为2.44(1.30~4.33)。携带XPC.PAT基因PAT+/+型的个体与携带PAT-/-型的个体相比微核率升高,差异具有统计学意义(P<0.05),其FR(95%CI)为2.40(1.44~3.92)。携带XPC499基因TT型和(CT+TT)型的个体与携带CC型的个体相比微核率降低,差异均具有统计学意义(P<0.05),其FR(95%CI)分别为0.28(0.08~0.68)和0.62(0.42~0.92)。携带XPC939基因AC型和(AC+CC)型的个体与携带AA型的个体相比微核率降低,差异均具有统计学意义(P<0.05),其FR(95%CI)分别为0.51(0.33~1.30)和0.54(0.37~0.79)。携带hOGG1326基因GG型的个体与携带CC型的个体相比微核率升高,差异具有统计学意义(P<0.05),其FR(95%CI)为1.97(1.10~3.84)。其余多态位点不同基因型与野生型相比微核率差异无统计学意义(P>0.05);5)接触组各基因型与微核率的关系分析发现携带XRCC1280基因AA型的个体与携带GG型的个体相比微核率显著降低,差异具有统计学意义(P<0.05),其FR(95%CI)为0.40(0.14-0.86)。携带MGMT84基因(CT+TT)型的个体与携带CC型的个体相比微核率降低,差异具有统计学意义(P<0.05),其FR(95%CI)为0.85(0.72-0.99)。其余多态位点不同基因型与野生型相比微核率差异无统计学意义(P>0.05);6)对照组多因素Poisson逐步回归分析微核率危险因素结果表明年龄、性别、饮酒、XPC939和APE1148为影响因素,其中,高龄(>35岁)和女性为危险因素,饮酒为保护因素,XPC939突变基因和APE1148突变基因为保护因素。接触组多因素Poisson逐步回归分析微核率危险因素结果表明年龄、XPC.PAT和MGMT84为影响因素,其中,高龄为危险因素,XPC.PAT(PAT+)基因和MGMT84突变基因为保护因素;7)XRCC1194,XRCC1280,XRCC1399三个等位基因双体型与微核率的关系分析显示,以携带AAA/AAA双体型的个体作为参比,携带AAA/BAA、AAB/AAB、ABA/ABA、ABB/ABB双体型的接苯工人微核率显著升高(P<0.05);XPC499、XPC.PAT和XPC939三个等位基因双倍型与微核率的关系分析显示,以携带AAA/AAA双体型的个体作为参比,携带ABB/ABB双体型的接苯工人微核率显著升高(P<0.05)。结论:在我国现行职业卫生标准下,职业性苯暴露仍可能造成遗传物质的损伤。以双核微核为基础的染色体损伤可以作为低浓度苯职业接触评估的一个参考指标,外周血淋巴细胞微核率作为评价低浓度苯暴露的效应指标具备一定的推广应用价值,部分DNA修复基因多态及双体型对苯接触所致染色体损伤具有修饰作用。
Objective: Benzene is an important raw materials in industrial production, and theproduction and consumption of benzene in recent years has been in the growth, theannual growth rate is over10%. Benzene has a major potential hazard to human health.Occupational epidemiological survey found that the benzene poisoning was associatedwith individual susceptibility, it was the result of the role of environmental factors andgenetic factors. This study aimed to explor whether occupational benzene exposure underthe current standards would cause heath hazards and genetic damage, and to detectsusceptibility biomarker of benzene-exposed workers. Methods: The subjects of thisstudy came from one automobile manufacturing factory of Anhui province in China. Thehealth status of benzene-exposed workers was obtained through health examination andgenetic damage detecting. The relationship between benzene exposure and chromosomedamage was explored in this study. Cytokinesis-block micronucleus (CB-MN) assay wasused to detect chromosome damage in peripheral lymphocyte. PCR-RFLP andCRS-RFLP technique was applied to detect genes polymorphisms. Through exploring theassociation between several key gene polymorphisms in DNA repair pathways and therisk of benzene-induced genetic damage, we identified the susceptible biomarkers,including XRCC1gene, APE1gene, the XPC gene, hOGG1gene, MGMT gene, andhMYH genes. SPSS16.0software was applicated in this study. Results:1) The benzeneconcentration of the workplace air monitoring sites<0.6mg/m3was lower than thenational occupational exposure limit; the utilization rate of protective equipment wasonly63.0%in benzene-exposed workers, and benzene-exposed workers had less aware ofself-protection.2) There was not associated between the clinical symptoms of workersand the benzene exposure, such as insomnia and more dreams, dizziness, headache,bleeding gums, nasal bleeding, ecchymosis, abnormal menstruation, et al (P>0.05); lowlevel benzene exposure could lead to the rate increases of white blood cells abnormality (fluctuation or reduction) and red blood cells reduction (P<0.001). Logistic regressionanalysis showed that the main factors of white blood cell abnormality (fluctuation orreduction) were benzene exposure, length of service and age, the main factor of red bloodcell reduction was benzene exposure. Hemoglobin and platelet count were no significantdifferences in different groups (P>0.05).3) The MN frequency of the exposed group(2.12‰±1.87‰) was significantly higher than that of the control group(1.19‰±1.68‰)(P<0.001), Multi-factor Poisson regression analysis found thatwomen, older age (>35years) and benzene exposure were the risk factors of increasingmicronucleus rate. The95-percentile of the controls CBMN (i.e.4‰) distribution, maybeused to define chromosomal damage caused by benzene-exposure, above which the MNfrequency may indicate an aberration from being normal, hence indicating chromosomaldamage; the MN frequency of the exposed groups according to the classification of WBCwas significantly higher than that of the control group (P<0.001), and the MN frequencyof benzene-exposed with WBC normal group was significantly higher than that of thecontrol group by54%, FR (95%CI) was1.54(1.23~1.95).4) In control group, this studyshowed that the MN frequency of the subjects with XRCC1399AA genotype wassignificantly higher than those with XRCC1399GG genotype (P<0.05), FR (95%CI)was2.44(1.30~4.33); the MN frequency of the subjects with XPC.PAT PAT+/+genotype was significantly higher than those with XPC.PAT PAT-/-genotype (P<0.05),FR (95%CI) was2.40(1.44~3.92); the MN frequency of the subjects with XPC499TTor XPC499(CT+TT) genotype was significantly lower than those with XPC499CCgenotype (P<0.05), FR (95%CI) was0.28(0.08~0.68) or0.62(0.42~0.92); the MNfrequency of the subjects with XPC939AC or XPC939(AC+CC) genotype wassignificantly lower than those with XPC939AA genotype (P<0.05), FR (95%CI) was0.51(0.33~1.30) or0.54(0.37~0.79); the MN frequency of the subjects withhOGG1326GG genotype was significantly higher than those with hOGG1326CCgenotype (P<0.05), FR (95%CI) was1.97(1.10~3.84); others genetic polymorphismswere not significantly different compared with wild-type (P>0.05).5) Inbenzene-exposed workers, this study showed that the MN frequency of the subjects withXRCC1280AA genotype was significantly lower than those with XRCC1280GGgenotype (P<0.05), FR (95%CI) was0.40(0.14~0.86); the MN frequency of thesubjects with MGMT84(CT+TT) genotype was significantly lower than those withMGMT84CC genotype (P<0.05), FR (95%CI) was0.85(0.72~0.99); others geneticpolymorphisms were not significantly different compared with wild-type (P>0.05).6) Multivariate Poisson regression analysis suggested that the impact factors ofmicronucleus include age, gender, drinking, XPC939and APE1148in control group,older age (>35years) and female were risk factors, and drinking, XPC939mutant geneand APE1148mutant gene were protective factors. While age, XPC.PAT, and MGMT84were impact factors in exposure group, older age (>35years) was risk factors, andXPC.PAT (PAT+) gene and MGMT84mutant gene were protective factors.7) Diplotypeanalysis of relationship between MN frequency and diplotype of194,280,399sites ofXRCC1gene demonstrated that the MN frequency in subjects with AAA/BAA、AAB/AAB、ABA/ABA、ABB/ABB (A: wild allele; B: variant allele) was significantlyhigher than that in subjects with AAA/AAA in benzene-exposed group (P<0.05).Diplotype analysis of relationship between MN frequency and diplotype of499, PAT,939sites of XPC gene demonstrated that the MN frequency in subjects with ABB/ABB wassignificantly higher than that in subjects with AAA/AAA in benzene-exposed group (P<0.05). Conclusion: Occupational benzene exposure could induce chromosome damageeven when the exposure level was lower than the national occupational health standard ofChina. Chromosome damage based on CBMN could be a reference index to assessmentlow level occupational benzene exposure. MN frequency had certain application value asa effect biomarker in low level benzene exposure. Some of the polymorphisms of DNArepair genes and diplotypes may be associated with chromosome damage inbenzene-exposed workers.
引文
[1] McHale CM, Zhang L, Lan Q, et al. Global Gene Expression Profiling of aPopulation Exposed to a Range of Benzene Levels[J]. Environ Health Perspect,2011,119(5):628-634.
    [2] Baan R, Grosse Y, Straif K, et al. A review of human carcinogens-Part F:chemicalagents and related occupations[J]. Lancet Oncol,2009,10(12):1143-1144.
    [3] Smith MT. Advances in understanding benzene health effects and susceptibility[J].Annu Rev Public Health,2010,31(4):133-148.
    [4] Ross D. The role of metabolism and specific metabolites in benzene-inducedtoxicity:evidence and issues[J]. J Toxicol Environ Health A,2000,61(5-6):357-372.
    [5] Sul D, Lee D, Im H, et al. Single strand DNA breaks in T-and B-lymphocytes andgranulocytes in workers exposed to benzene[J]. Toxicol Lett.2002,134(1-3):87-95.
    [6] Amin RP, Witz G. DNA-protein crosslink and DNA strand break formation inHL-60cells treated with trans, trans-muconaldehyde, hydroquinone and theirmixtures[J]. Int J Toxicol.2001,20(2):69-80.
    [7] Qu QS, Shore R, Li GL, et al. Hematological changes among Chinese workers witha broad range of benzene exposures[J]. Am J Ind Med,2002,42(4):275-285.
    [8] Bloemen LJ, Youk A, Bradley TD, et al. Lymphohaematopoietic cancer risk amongchemical workers exposed to benzene[J]. Occup Environ Med,2004,61(3):270-274.
    [9]李芳红,杨杏芬.氢醌/Cu2+对小鼠骨髓细胞线粒体氧化损伤的研究[J].中华劳动卫生职业病杂志,2001,19(1):53-55.
    [10]张美荣,赵华硕,周建华.苯致小鼠淋巴细胞DNA RNA损伤作用[J].中国公共卫生.2006,22(8):975-977.
    [11] Badham HJ, LeBrun DP, Rutter A, et al. Transplacental benzene exposure increasestumor incidence in mouse offspring:possible role of fetal benzene metabolism[J].Carcinogenesis,2010,31(6):1142-1148.
    [12] Lau A, Belanger CL, Winn LM. In utero and acute exposure to benzene:Investigation of DNA double-strand breaks and DNA recombination in mice[J].Mutat Res,2009,676(1-2):74-82.
    [13]王黎明,郑佳瑞,阮元等.化学物苯对小鼠骨髓红细胞微核率的影响-苯对小鼠细胞遗传毒性结果分析[J].昆明医学院学报,2008,29(5):47-50,63.
    [14]张惠生,武在炎.慢性苯中毒致骨髓增生异常综合征三例[J].中华劳动卫生职业病杂志,2003,21(2):150-151.
    [15]陈晶,赵蓉.慢性苯中毒致继发骨髓增生异常综合征三例报[J].贵州医药,2006,30(3):248-249.
    [16] Yin SN, Hayes RB, Linet MS, et al. A cohort study of cancer among benzene-exposed workers in China:overall results[J]. Am J Ind Med,1996,29(3):227-235.
    [17]续薇,郑玉梅.76例苯中毒患者末梢血像及骨髓像观察[J].吉林医学.1995,16(2):97.
    [18] Lan Q, Zhang LP, Shen M, et al. Polymorphisms in cytokine and cellular adhesionmolecule genes and susceptibility to hematotoxicity among workers exposed tobenzene[J]. Cancer Res,2005,65(20):9574-9581.
    [19] Shen M, Lan Q, Zhang LP, et al. Polymorphisms in genes involved in DNAdouble-strand break repair pathway and susceptibility to benzene-inducedhematotoxicity[J]. Carcinogenesis,2006,27(10):2083-2089.
    [20] Lan Q, Zhang LP, Shen M, et al. Large-scale evaluation of candidate genes identifiesassociations between DNA repair and genomic maintenance and development ofbenzene hematotoxicity[J]. Carcinogenesis,2009,30(1):50-58.
    [21] Capleton AC, Levy LS. An overview of occupational benzene exposures andoccupational exposure limits in Europe and North America[J]. Chemico-BiologicalInteractions,2005,153-154:43-53.
    [22] Liang YX, Wong O, Armstrong T, et al. An overview of published benzeneexposure data by industry in China,1960-2003[J]. Chemico-Biological Interactions,2005,153-154(5):55-64.
    [23] Lan Q, Zhang LP, Li G, et al. Hematotoxicity in workers exposed to low levels ofbenzene[J]. Science,2004,306(5702):1774-1776.
    [24] Kiyohara C, Takayama K, Nakanishi Y. Association of genetic polymorphisms in thebase excision repair pathway with lung cancer risk:a meta-analysis[J]. Lung Cancer,2006,54(3):267-283.
    [25] Fenech M, Chang WP, Kirsch-Volders M, et al. HUMN project:detailed descriptionof the scoring criteria for the cytokinesis-block micronucleus assay using isolatedhuman lymphocyte cultures[J]. Mutat Res,2003,534(1-2):65-75.
    [26] Hoffmann H, Speit G. Assessment of DNA damage in peripheral blood of heavysmokers with the comet assay and the micronucleus test[J]. Mutat Res,2005,581(1-2):105-114.
    [27] Hoeijmkers JHJ. Genome maintenance mechanisms for preventing cancer[J]. Nature,2001,411(6835):366-374.
    [28] Goode EL, Ulrich CM, Potter JD. Polymorphisms in DNA repair genes andassociations with cancer risk[J]. Cancer Epidemiol Biomarkers Prev,2002,11(12):1513-1530.
    [29] Zienolddiny S, Campa D, Lind H, el a1. Polymorphisms of DNA repair genes andrisk of non-small cell lung cancer[J]. Carcinogenesis,2006,27(3):560-567.
    [30] Li H, Hao X, Zhang W, el a1. The hOGG1Ser326Cys polymorphism and lungcancer risk:A meta-analysis[J]. Cancer Epidemiol Biomarkers Prev,2008,17(6):1739-1745.
    [31] Yin J, Vogel U, Ma Y, et a1. Association of DNA repair gene XRCC1and lungcancer susceptibility among nonsmoking Chinese women[J]. Cancer GenetCytogenet,2009,188(1):26-31.
    [32] Hansen RD, S rensen M, Tj nneland A, XPA A23G, XPC Lys939Gln, XPDLys751Gln and XPD Asp312Asn polymorphisms, interactions with smoking,alcohol and dietary factors, and risk of colorectal cancer[J]. Mutat Res,2007,619(1-2):68-80.
    [33] Wan JX, Shi J, Hui L, et al. Association of genetic polymorphisms in CYP2E1,MPO, NQO1, GSTM1, and GSTT1genes with benzene poisoning[J]. EnvironHealth Perspect,2002,110(12):1213-1218.
    [34]孙品,张忠彬,吴芬,等. EPHX1基因及EPHX2基因多态与慢性苯中毒易感性的关系[J].复旦学报:医学版,2006,33(4):427-432,436.
    [35]孙品,张忠彬,万俊香,等. APE1基因和ADPRT基因多态与慢性苯中毒易感性的关系[J].中华劳动卫生职业病杂志,2006,24(7):385-389.
    [36] Zhang ZB, Wan JX, Jin XP, et al. Genetic polymorphisms in XRCC1, APE1,ADPRT, XRCC2, and XRCC3and risk of chronic benzene poisoning in a Chineseoccupational population[J]. Cancer Epidemiol Biomarkers Prev,2005,14(11):2614-2619.
    [37]顾寿永,张忠彬,曹多志,等.细胞色素P4501Al和2D6基因多态性与慢性苯中毒的危险性[J].中华劳动卫生职业病杂志,2006,24(5):266-269.
    [38]张忠彬,刘薇薇,顾寿永,等. hMTH1c.83及hOGG1c.326和hMYHc.335基因多态性与慢性苯中毒风险性的关系[J].中华劳动卫生职业病杂志,2006,24(3):134-138.
    [39] Gu SY, Zhang ZB, Wan JX, et al. Genetic polymorphisms in CYP1A1, CYP2D6,UGT1A6, UGT1A7, and SULT1A1genes and correlation with benzene exposure ina Chinese occupational population[J]. J Toxicol Environ Health A,2007,70(11):916-924.
    [40] Sun P, Qian J, Zhang ZB, et al. Polymorphisms in phase I and phase II metabolismgenes and risk of chronic benzene poisoning in a Chinese occupationalpopulation[J]. Carcinogenesis,2008,29(12):2325-2329.
    [41] Sun P, Qiu YL, Zhang ZB, et al. Association of genetic polymorphisms, mRNAexpression of p53and p21with chronic benzene poisoning in a chineseoccupational population[J]. Cancer Epidemiol Biomarkers Prev,2009,18(6):1821-1828.
    [42] Sun P, Zhang ZB, Wan JX, et al. Association of genetic polymorphisms inGADD45A, MDM2, and p14ARF with the risk of chronic benzene poisoning in aChinese occupational population[J]. Toxicol Appl Pharmacol,2009,240(1):66-72.
    [43] Wood RD, Mitchell M, Sgouros J, et al. Human DNA Repair Genes[J]. Science,2001,291(5507):1284-1289.
    [44] Chasman D, Adams RM. Predicting the functional consequences ofnon-synonymous single nucleotide polymorphism:structure-based assessment ofamino acid variation[J]. J Mol Biol,2001,302(2):683-706.
    [45]邢彩虹,李桂兰,李玉英,等.单细胞凝胶电泳法检测苯作业工人淋巴细胞DNA损伤[J].中华劳动卫生职业病杂志,2,000,18(5):257-259.
    [46]叶玲丽,林增,吴建波,等.苯对骨髓Cd34+细胞及单个核细胞凋亡的影响[J].中国公共卫生,2004,20(6):706-707.
    [47] Ruppert T, Scherer G, Tricker A R, et al. trans, trans-muconic acid as a biomarker ofnon-occupational environmental exposure to benzene[J]. Int Arch Occup EnvironHealth,1997,69(4):247-251.
    [48] Panev T, Popov T, Georgieva T, et al. Assessment of the correlation betweenexposure to benzene and urinary excretion of t, t-muconic acid in workers from apetrochemical plant[J]. Int Arch Occup Environ Health,2002,75(Suppl):97-100.
    [49] Scherer G, Renner T, Meger M. Analysis and evaluation of trans, trans-muconic acidas a biomarker for benzene exposure[J]. J Chromatogr B Biomed Sci Appl,1998,717(1-2):179-199.
    [50] Olmos V, Lenzken SC, Lopez CM, et a1. High-performance liquid chromatographymethod for urinary trans, trans-muconic acid Application to environmentalexposure to benzene[J]. J Anal Toxico1,2006,30(4):258-261.
    [51] Raghavan S, Basavaiah K. Biological monitoring among benzene-exposed workersin Bangalore city, India[J]. Biomarkers,2005,10(5):336-341.
    [52] Zhang L, Eastmond DA, Smith. MT The nature of chromosomal aberrations detectedin humans exposed to benzene[J]. Crit Rev Toxicol,2002,32(1):1-42.
    [53]练国坚,张志坚.制鞋厂苯作业环境健康危害和干预效果分析[J].中国公共卫生,2005,21(6):729-730.
    [54] Rothman N, Li GL, Dosemeci M, et al. Hematotoxocity among Chinese workersheavily exposed to benzene[J]. Am. J. Ind. Med,1996,29(3):236-246.
    [55] Ward E, Hornung R, Morris J, et al. Risk of low red or white blood cell count relatedto estimated benzene exposure in a rubberworker cohort(1940–1975)[J]. Am J IndMed,1996,29(3):247-257.
    [56] McHale CM, Zhang L, Smith MT. Current understanding of the mechanism ofbenzene-induced leukemia in humans:implications for risk assessment[J].Carcinogenesis,2012,33(2):240-252.
    [57] Smith MT, Zhang L, McHale CM, et al. Benzene, the exposome and futureinvestigations of leukemia etiology[J]. Chem Biol Interact,2011,192(1-2):155-159.
    [58] Swaen GM, van Amelsvoort L, Twisk JJ, et al. Low level occupational benzeneexposure and hematological parameters[J]. Chem Biol Interact,2010,184(1-2):94-100.
    [59] Pesatori AC, Garte S, Popov T, et al. Early effects of low benzene exposure on bloodcell counts in Bulgarian petrochemical workers[J]. Med Lav,2009,100(2):83-90.
    [60] Zhang LP, McHale CM, Rothman N, et al. Systems biology of human benzeneexposure[J]. Chem Biol Interact,2010,183(1-2):86-93.
    [61]汪永红,邓明凤.体质指数年龄及性别对高血压血脂血糖及白细胞计数的影响[J].中国预防医学杂志,2011,(4):352-355.
    [62] Bonassi S, Au WW. Biomarkers in molecular epidemiology studies for health riskprediction[J]. Mutat Res,2002,511(1):73-86.
    [63] Fenech M. Cytokinesis-block micronucleus cytome assay[J]. Nature protocols,2007,2(5):1084-1104.
    [64] Kirsch-Volders M, Mateuca RA, Roelants M, et al. The effects of GSTM1andGSTT1polymorphisms on micronucleus frequencies in human lymphocytes invivo[J]. Cancer Epidemiol Biomarkers Prev,2006,15(5):1038-1042.
    [65]朱志良,庄志雄,黄钰,等.混苯作业工人外周血细胞Dna损伤的检测[J].现代预防医学,2002,29(4):498-499,505.
    [66]张巧,陈小玉,吴逸明,等,长期低剂量苯接触对人体细胞免疫及微核形成的影响[J].癌变.畸变.突变,2001,13(3):182-184.
    [67]程子英,王秋枫,文忠礼.空气中苯血象与微核的关系[J].卫生毒理学杂志,1997,11(2):112.
    [68]黄天负,鲁冰.苯中毒者粒细胞碱性磷酸酶活性和口腔上皮细胞微核观察[J].工业卫生与职业病,2,000,26(4):236-237.
    [69] Iarmarcovai G, Bonassi S, Botta A, et al. Genetic polymorphisms and micronucleusformation:A review of the literature[J]. Mutation Research,2008,658(3):215-233.
    [70] Fenech M, Bonassi S, Turner J, et al. Intra-and inter-laboratory variation in thescoring of micronuclei and nucleoplasmic bridges in binucleated humanlymphocytes[J]. Mutat Res,2003,534(1-2):45-64.
    [71] Fenech M, Holland N, Chang WP, et al. The HUman micronucleus project—aninternational collaborativestudy on the use of the micronucleus technique formeasuring DNA damage in humans[J]. Mutat Res,1999,428(1-2):271-283.
    [72] Bonassi S, Znaor A, Ceppi M, et al. An increased micronucleus frequency inperipheral blood lymphocytes predicts the risk of cancer in humans[J].Carcinogenesis,2007,28(3):625-631.
    [73] Collins AR. Molecular epidemiology in cancer research[J]. Mol. Aspects Med.1998,19(6):359-432.
    [74] Norppa H. Cytogenetic biomarkers and genetic polymorphisms[J]. Toxicol Lett,2004,149(1-3):309-334.
    [75] Li G, Yin S. Progress of epidemiological and molecular epidemiological studies onbenzene in China[J]. Ann N Y Acad Sci,2006,1076:800-809.
    [76] Aksoy H, Yilmaz S, Celik M, et al. Genotoxicity study in lymphocytes of offsetprinting workers[J]. J Appl Toxicol,2006,26(1):10-15.
    [77] Testa A, Festa F, Ranaldi R, et al. A multi-biomarker analysis of DNA damage inautomobile painters[J]. Environ Mol Mutagen,2005,46(3):182-188.
    [78]李晓玲,徐新云,郭玉芹,等.慢性苯接触对作业工人的血细胞与微核形成率的影响[J].环境与职业医学,2002,19(5):315-316.
    [79]廖日炎.箱包厂苯作业对接触工人职业健康状况的影响[J].实用预防医学,2008,15(4):1118-1120.
    [80]武南,黄芳.苯作业对工人外周血液的毒性作用[J].预防医学情报杂志,2005,21(3):271-272.
    [81] Trenz K, Lugowski S, Jahrsdorfer U, et al. Enhanced sensitivity of peripheral bloodlymphocytes from women carrying a BRCA1mutation towards the mutageniceffects of various cytostatics[J]. Mutat Res,2003,544(2-3):279-288.
    [82] Gorbunova V, Seluanov A. Making ends meet in old age:DSB repair and aging[J].Mech. Ageing Dev,2005,126(6-7):621-28.
    [83] Kazimirova A, Barancokova M, Dzupinkova Z, et al. Micronuclei and chromosomalaberrations, important markers of ageing:possible association with XPC and XPDpolymorphisms[J]. Mut Res,2009,661(1-2):35-40.
    [84] Chanvaivit S, Navasumrit P, Hunsonti P, et al. Exposure assessment of benzene inThai workers, DNA-repair capacity and influence of genetic polymorphisms[J].Mutat Res,2007,626(1-2):79-87.
    [85] Zhang L, Rothman N, Li G, et al. Aberrations in chromosomes associated withlymphoma and therapy-related leukemia in benzene-exposed workers[J]. EnvironMol Mutagen,2007,48(6):467-474.
    [86] McHale CM., Lan Q, Corso C, et al. Chromosome Translocations in WorkersExposed to Benzene[J]. J Natl Cancer Inst Monogr,2008,(39):74-77.
    [87] Bukvic N, Bavaro P, Elia G, et al. Sister chromatid exchange(SCE)andmicronucleus(MN)frequencies in lymphocytes of gasoline station attendants[J].Mutat Res,1998,415(1-2):25-33.
    [88] Monteiro Neto MA, Lazaro CC, Tavares DC, et al. Frequency of chromosomalaberrations in peripheral lymphocytes of tannery workers in Brazil[J]. EnvironToxicol Pharmacol,2010,29(1):3-6.
    [89]叶玲丽,朱淼勇,叶洪康,等.苯作业工人淋巴细胞微核形成与骨髓单个核细胞凋亡相关性分析[J].中华劳动卫生职业病杂志,2004,22(2):140-141.
    [90] Smith MT, Rothman N. Biomarkers in the molecular epidemiology ofbenzene-exposed workers[J]. J Toxicol Environ Health A,2,000,61(5-6):439-445.
    [91]夏昭林,孙品,张忠彬,等,苯的职业健康危害研究的回顾与展望[J].中华劳动卫生职业病杂志,2005,23(4):241-243.
    [92] Pedersen-Bjergaard J, Andersen MK, Christiansen DH, et al. Genetic pathways intherapy-related myelodysplasia and acute myeloid leukemia[J]. Blood,2002,99(6):1909-1912.
    [93] Smith MT. The mechanism of benzene-induced leukemia:a hypothesis andspeculations on the causes of leukemia[J]. Environ Health Perspect,1996,104(suppl6):1291-1225.
    [94]邵建华,张罗平.应用荧光原位杂交技术探测苯代谢产物的遗传毒性[J].中国工业医学杂志,1998,11(2):73-79.
    [95] Smith MT, Zhang L. Biomarkers of leukemia risk:benzene as a model[J]. EnvironHealth Perspect,1998,106(suppl4):937-946.
    [96]王学生,刘楠,关维俊,等.短期苯暴露对工人外周血象及淋巴细胞染色体的损伤[J].环境与职业医学,2010,27(8):464-467.
    [97]纪之莹,李桂兰,李凌凛,等.苯接触工人外周血淋巴细胞染色体畸变分析[J].卫生研究,2004,33(3):269-272.
    [98]李桂兰,李凌凛,郭卫红,等.接苯工人外周血染色体损伤研究[J].卫生研究,2002,31(6):410-413.
    [99]沈福海,张伟,肖淑玉,等.苯作业工人外周血淋巴细胞染色体畸变分析[J].工业卫生与职业病,2008,34(6):336-339.
    [100]高峰,王宝梅,梁玉珍,等.职业性三苯接触对人外周血淋巴细胞染色体结构的影响[J].环境与职业医学,2005,22(4):359-360.
    [101]黄丽静,方少波,陈传德,等.混苯对珠宝加工业女工外周血细胞DNA的损伤[J].现代预防医学,2010,37(13):2410-2411.
    [102]李秀梅,左惠芬,安金萍,等.混苯接触工人外周血淋巴细胞染色体畸变的研究[J].现代预防医学,2009,36(19):3635-3636,3639.
    [103]叶玲丽,林增,刘晓红,等.作业场所苯浓度与工人外周血淋巴细胞微核形成相关性调查分析[J].江西医学检验,2004,22(1):43-44.
    [104]Bindhya S, Balachandar V, Sudha S, et al. Assessment of Occupational CytogeneticRisk, Among PetrolStation Workers[J]. Bull Environ Contam Toxicol,2010,85(2):121-124.
    [105]Amin RP, Witz G. DNA-protein crosslink and DNA strand break formation inHL-60cells treated with trans, trans-muconaldehyde, hydroquinone and theirmixtures[J]. Int J Toxicol,2001,20(2):69-80
    [106]韦拔雄,麦剑平,陈月华,等.苯接触与淋巴细胞DNA损伤[J].中国工业医学杂志,2005,18(5):290-291.
    [107]Abraham RT. Cell cycle checkpoint signaling through the ATM and ATR kinases[J].Genes Develop,2001,15(17):2177-2196.
    [108]Wei Q, Spitz MR. The role of DNA repair capacity in susceptibility to lung cancer:areview[J]. Cancer Metastasis Rev,1997,16(3-4):295-307.
    [109]Miller MC, Mohrenweiser HW, Bell DA. Genetic variability in susceptibility andresponse to toxicants[J]. Toxicol Lett,2001,120(1-3):269-280.
    [110]Wormhoudt LW, Commandeur JN, Vermeulen NP. Genetic polymorphisms ofhuman N-acetyltransferase, cytochrome P450, glutathione-S-transferase, andepoxide hydrolase enzymes:relevance to xenobiotic metabolism and toxicity[J]. CritRev Toxicol,1999,29(1):59-124.
    [111]Amoli M, Ollier WE, Hajeer AH. A novel PCR-RFLP assay for the detection of apolymorphism in the3' of STAT6gene[J]. Genes Immun,2,000,1(5):349-350.
    [112]Hosseini SY, Sabahi F, Amini-Bavil-Olyaee S, et al. A novel accurate ACRS-PCRmethod with a digestion internal control for identification of wild type and YMDDmutants of hepatitis B virus strains[J]. J Virol Methods,2006,137(2):298-303.
    [113]Liao XY, Zhang YF, Gu XF. Technique of PCR-ACRS for the detection of CYP21gene mutations[J]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi,2003,20(5):449-451.
    [114]王威,金如锋,吴芬,等.多重PCR-RFLP检测XRCC1基因两位点多态性[J].中国工业医学杂志,2008,21(1):3-6.
    [115]Shi YY, He L. SHEsis, a powerful software platform for analyses of linkagedisequilibrium, haplotype construction, and genetic association at polymorphismloci[J]. Cell Res,2005,15(2):97-98.
    [116]陈竺,黄薇,傅刚.人类基因组计划现状与展望[J].自然杂志,2000,22(3):125-133
    [117]曾燕如,黄敏仁,王明庥.一种新的分子标记-单核苷酸多态(SNP)[J].南京林业大学学报(自然科学版),2003,27(3):84-88.
    [118]Ng PC, Henikoff S. Accounting for human polymorphisms predicted to affectprotein function[J]. Genome Res,2002,12(3):436-446.
    [119]Hou SM, Ryk C, Kannio A, et al. Influence of common XPD and XRCC1variantalleles on p53mutations in lung tumors[J]. Environ Mol Mutagen,2003,41(1):37-42.
    [120]Matullo G, Palli D, Peluso M, et al. XRCC1, XRCC3, XPD gene polymorphisms,smoking and(32)P-DNA adducts in a sample of healthy subjects[J]. Carcinogenesis,2001,22(9):1437-1445.
    [121]Lunn RM, Langlois RG, Hsieh LL, et al. XRCC1polymorphisms:effects onaflatoxin B1-DNA adducts and glycophorin A variant frequency[J]. Cancer Res,1999,59(11):2557-2561.
    [122]Shen H, Xu Y, Qian Y, et al. Polymorphisms of the DNA repair gene XRCC1andrisk of gastric cancer in a Chinese population[J]. Int J Cancer,2000,88(4):601-606.
    [123]Khan SG, Metter EJ, Tarone RE, et al. A new xeroderma pigmentosum group Cpoly(AT)insertion/deletion polymorphism[J]. Carcinogenesis,2000,21(10):1821-1825.
    [124]周荣秒,李琰,王娜等. XPC基因Ala499Val Lys939GIn多态与食管癌贲门癌发病风险的关联[J].癌症,2006,25(9):1113-1119.
    [125]仇玉兰,朱守民,刘静,等.氯乙烯致染色体损伤的易感性与Ape1和xrcc1基因多态关系研究[J].卫生研究,2007,36(2):132-136.
    [126]Wang Q, Ji F, Sun Y, et al. Genetic polymorphisms of XRCC1, HOGG1and MGMTand micronucleus occurrence in Chinese vinyl chloride-exposed workers[J].Carcinogenesis,2010,31(6):1068-1073.
    [127]Wu F, Zhang Z, Wan J, et al. Genetic polymorphisms in hMTH1, hOGG1andhMYH and risk of chronic benzene poisoning in a Chinese occupationalpopulation[J]. Toxicol Appl Pharmacol,2008,233(3):447-453.
    [128]王威,缪文彬,仇玉兰,等.双创造酶切位点聚合酶链反应-限制性片段长度多态性检测Mgmt基因多态性的应用[J].卫生研究2008,37(1):4-7.
    [129]Kim YJ, Choi JY, Cho YH, et al. Micronucleus-centromere assay in workersoccupationally exposed to low level of benzene[J]. Hum Exp Toxicol,2010,29(5):343-350.
    [130]Angelini S, Kumar R, Bermejo JL, et al. Exposure to low environmental levels ofbenzene:Evaluation of micronucleus frequencies and S-phenylmercapturic acidexcretion in relation to polymorphisms in genes encoding metabolic enzymes[J].Mutat Res,2011,719(1-2):7-13.
    [131]王秋艳.混合苯作业工人外周血淋巴细胞微核率研究[J].河北医药,2010,32(24):3532.
    [132]Bonassi S, Ugolini D, Kirsch-Volders M, et al. Human population studies withcytogenetic biomarkers:review of the literature and future prospectives[J]. EnvironMol Mutagen,2005,45(2-3):258-270.
    [133]Costa C, Teixeira JP, Silva S, et al. Cytogenetic and molecular biomonitoring of aPortuguese population exposed to pesticides[J]. Mutagenesis,2006,21(5):343-350.
    [134]Laffon B, Teixeira JP, Silva S, et al. Assessment of occupational genotoxic risk inthe production of rubber tyres[J]. Ann Occup Hyg,2006,50(6):583-592.
    [135]Leng S, Dai Y, Niu Y, et al. Effects of genetic polymorphisms of metabolic enzymeson cytokinesis-block micronucleus in peripheral blood lymphocyte amongcoke-oven workers[J]. Cancer Epidemiol Biomarkers Prev,2004,13(10):1631-1639.
    [136]Migliore L, Naccarati A, Coppede F, et al. Cytogenetic biomarkers, urinarymetabolites and metabolic gene polymorphisms in workers exposed to styrene[J].Pharmacogenet Genomics2006,16(2):87-99.
    [137]Tuimala J, Szekely G, Wikman H, et al. Genetic polymorphisms of DNA repair andxenobiotic-metabolizing enzymes:effects on levels of sister chromatid exchangesand chromosomal aberrations[J]. Mutat Res,2004,554(1-2):319-333.
    [138]Bonassi S, Neri M, Lando C, et al. Effect of smoking habit on the frequency ofmicronuclei in human lymphocytes:results from the human micronucleus project[J].Mutat Res,2003,543(2):155-166.
    [139]Bindhya S, Balachandar V, Sudha S, et al. Assessment of Occupational CytogeneticRisk, Among Petrol Station Workers[J]. Bull Environ Contam Toxicol,2010,85(2):121-124.
    [140]Ishikawa H, Tian Y, Yamauchi T, et al. Influence of gender, age and lifestylefactors on micronuclei frequency in healthy Japanese populations[J]. J OccupHealth,2003,45:179-181.
    [141]Qiu YL, Wang W, Wang T, et al. Genetic polymorphisms, messenger RNAexpression of p53, p21, and CCND1, and possible links with chromosomalaberrations in Chinese vinyl chloride-exposed workers[J]. Cancer EpidemiolBiomarkers Prev,2008,17:2578-2584.
    [142]Fousteri M, Mullenders LH. Transcription-coupled nucleotide excision repair inmammalian cells:molecular mechanisms and biological effects[J]. Cell Res,2008,18(1):73-84.
    [143]Lu AL, Li X, Gu Y, et al. Repair of oxidative DNA damage:mechanisms andfunctions[J]. Cell Biochem Biophys,2001,35(2):141-170.
    [144]Hung RJ, Hall J, Brennan P, et al. Genetic polymorphisms in the base excisionrepair pathway and cancer risk:A HuGE Review[J]. Am J Epidemiol,2005,162(10):925-942.
    [145]Li N, Wu H, Yang S, et al. Ischemic preconditioning induces XRCC1, DNApolymerase-beta, and DNA ligase III and correlates with enhanced base excisionrepair[J]. DNA Repair(Amst),2007,6(9):1297-1306.
    [146]Thompson LH, West MG:XRCC1keeps DNA from getting stranded[J]. MutationResearch,2,000,459(1):1-18.
    [147]Kubota Y, Nash RA, Klungland A, et al. Reconstitution of DNA base excision-repairwith purified human proteins:interaction between DNA polymerase beta and theXRCC1protein[J]. EMBO J,1996,15(23):6662-6670.
    [148]Tebbs RS, Flannery ML, Meneses JJ, et al. Requirement for the Xrcc1DNA Baseexeision repair gene during early mouse development[J]. Dev Biol.1999,208(2):513-529.
    [149]Caldeeott KW, Tucker JD, ThomPson LH. Construction of human XRCCIMinigenes that fully correct the CHO DNA repair mutant EM9[J]. Nucleic AeidsRes,1992,20(17):4575-4579.
    [150]Shen MR, Zdzienicka MZ, Mohrenweiser H, et al. Mutations in hamsterSingle-strand break repair gene XRCC1causing defective DNA repair[J]. NucleicAcids Res,1998,26(4):1032-1037.
    [151]Nazarkina ZK, Khodyreva SN, Marsin S, et al. XRCC1interactions with baseexcision repair DNA intermediates[J]. DNA Repair(Amst),2007,6(2):254-264.
    [152]Monaco R, Rosal R, Dolan MA, et al. Conformational effects of a common codon399polymorphism on the BRCT1domain of the XRCC1protein[J]. Protein J,2007,26(8):541-546.
    [153]Lee JM, Lee YC, Yang SY, et al. Genetic polymorphisms of XRCC1and risk of theesophageal cancer[J]. Int J Cancer,2001,95(4):240-246.
    [154]Rothman N, Haas R, Hayes RB, et al. Benzene induces gene-duplicating but notgene-inactivating mutations at the glycophorin A locus in exposed humans. ProcNatl Acad Sci U S A,1995,92:4069-4073.
    [155]Lunn RM, Langlois RG, Hsieh LL, et al. XRCC1polymorphisms:effects onaflatoxin B1-DNA adducts and glycophorin A variant frequency[J]. CancerResearch,1999,59(11):2557-2561.
    [156]Relton CL, Daniel CP, Fisher A, et al. Polymorphisms of the DNA repair geneXRCC1and the frequency of somatic mutations at the glycophorin A locus innewborns. Mutat Res,2002,502:61-68.
    [157]Thompson LH, West MG. XRCC1keeps DNA from getting stranded[J]. MutationResearch,2,000,459(1):1-18.
    [158]Chanvaivit S, Navasumrit P, Hunsonti P, et al. Exposure assessment of benzene inThai workers, DNA-repair capacity and influence of genetic polymorphisms[J].Mutat Res,2007,626(1-2):79-87.
    [159]朱守民,王爱红,许祖德,等.氯乙烯致大鼠肝细胞Dna损伤与Dna修复基因表达[J].中华劳动卫生职业病杂志,2004,22(3):173-175.
    [160]Evans AR, Limp-Foster M, Kelley MR. Going APE over ref-1[J]. Mutat Res,2,000,461(2):83-108.
    [161]Singer B, Hang B. Mammalian enzymatic repair of etheno and para-benzoquinoneexocyclic adducts derived from the carcinogens vinyl chloride and benzene[J].IARC Sci Publ,1999,(150):233-247.
    [162]Hang B, Chenna A, Sagi J, et al. Differential cleavage of oligonucleotidescontaining the benzene-derived adduct,1, N6-benzetheno-dA, by the major humanAP endonuclease HAP1and Escherichia coli exonuclease III and endonucleaseIV[J]. Carcinogenesis,1998,19(8):1339-1343.
    [163]Hang B, Rothwell DG, Sagi J, et al. Evidence for a common active site for cleavageof an AP site and the benzene-derived exocyclic adduct,3, N4-benzetheno-dC, inthe major human AP endonuclease[J]. Biochemistry,1997,36(49):15411-15418.
    [164]Xanthoudakis S, Smeyne RJ, Wallace JD, et al. The redox/DNA repair protein,Ref-1, is essential for early embryonic development in mice[J]. Proc Natl Acad SciU S A,1996,93(17):8919-8923.
    [165]Hadi MZ, Coleman MA, Fidelis K, et al. Functional characterization of Ape1variants identified in the human population[J]. Nucleic Acids Res,2,000,28(20):3871-3879.
    [166]Hu JJ, Smith TR, Miller MS, et al. Amino acid substitution variants of APE1and XRCC1genes associated with ionizing radiation sensitivity[J]. Carcinogenesis,2001,22(6):917-922.
    [167]Friedberg EC. How nucleotide excision repair protects against cancer[J]. Nat RevCancer,200l,1:22-23.
    [168]Vogel U, Overvad K, Wallin H, et al. Combinations of polymorphisms in XPD,XPC and XPA in relation to risk of lung cancer[J]. Cancer Lett,2005,222(1):67-74.
    [169]Maltseva EA, Rechkunova NI, Gillet LC, et al. Crosslinking of the NER damagerecognition proteins XPC-HR23B, XPA and RPA to photoreactive probes thatmimic DNA damages[J]. Biochim Biophys Acta,2007,1770(5):781-789.
    [170]Chen Z, Xu X S, Yang J, et al. Defining the function of XPC protein in psoralen andcisplatin-mediated DNA repair and mutagenesis[J]. Carcinogenesis,2003,24(6):1111-1121.
    [171]Blankenburg S, Konig IR, Moessner R, et al. No association between threexeroderma pigmentosum groups C and one group G gene polymorphisms and riskof cutaneous melanoma[J]. Eur J Hum Genet,2005,13(2):253-255.
    [172]Lee GY, Jang J-S, Lee SY, et al. XPC polymorphisms and lung cancer risk[J]. Int JCancer,2005,115(5):807-813.
    [173]Blankenburg S, Konig IR, Moessner R, et al. Assessment of3xerodermapigmentosum group C gene polymorphisms and risk of cutaneous melanoma:acase-control study[J]. Carcinogenesis,2005,26(6):1085-1090.
    [174]Zhu Y, Yang H, Chen Q, et al. Modulation of DNA damage/DNA repair capacity byXPC polymorphisms[J]. DNA Repair(Amst),2008,7(2):141-148.
    [175]胡志斌,王永岗,马红霞,等. DNA修复基因XPCAla499Val Lys939Gln多态与肺癌易感性[J].中华医学遗传学杂志,2005,22(4):415-418.
    [176]Francisco G, Menezes PR, Eluf-Neto J, et al. XPC Polymorphisms play a role intissue-specific carcinogenesis:a meta-analysis[J]. Eur J Hum Genet,2008,16(6):724-734.
    [177]Chen M, Kamat AM, Huang M, et al. High-order interactions among geneticpolymorphisms in nucleotide excision repair pathway genes and smoking inmodulating bladder cancer risk[J]. Carcinogenesis,2007,28(10):2160-2165.
    [178]Forsti A, Angelini S, Festa F, et al. Single nucleotide polymorphisms in breastcancer[J]. Oncol Rep,2004,11(4):917-922.
    [179]Festa F, Kumar R, Sanyal S, et al. Basal cell carcinoma and variants in genes codingfor immune response, DNA repair, folate and iron metabolism[J]. Mutat Res,2005,574(1-2):105-111.
    [180]Vogel U, Overvad K, Wallin H, et al. Combinations of polymorphisms in XPD,XPC and XPA in relation to risk of lung cancer[J]. Cancer Lett,2005,222(1):67-74.
    [181]Khan SG, Metter EJ, Tarone RE, et al. A new xeroderma pigmentosum group Cpoly(AT)insertion/deletion polymorphism[J]. Carcinogenesis.2000,21(10):1821-1825.
    [182]Hu ZB, Wang YG, Ma HX. Association of two exonic genetic polymorphisms inthe DNA repair gene XPC with risk of lung cancer in Chinese population[J].Zhonghua Yi Xue Yi Chuan Xue Za Zhi,2005,22(4):415-418.
    [183]Shen M, Berndt SI, RothlllanN, et al. Polymorphisms in the DNA nueleotideexeision repair genes and lung cancer risk in Xuan Wei[J]. China. Int J Cancer.2005,116(5):768-773.
    [184]赵友光.膀胱癌组织XPC表达及9号17号染色体等位基因杂合性缺失的相关性研究[D].第三军医大学硕士学位论文,2010:10
    [185]de Verdier PJ, Sanyal S, Bermejo L, et al. Genotypes, haplotypes and diplotypes ofthree XPC polymorphisms in urinary-bladder cancer patients[J]. Mutat Res,2010,694(1-2):39-44.
    [186]Qiu YL, Wang ZX, Shi XQ, et al. Associations between XPC polymorphisms andrisk of cancers:A meta-analysis[J]. Euro Journal of Cancer,2008,44(15):2241-2253.
    [187]Weiss JM, Weiss NS, Ulrich CM, et al. Interindividual variation in nucleotideexcision repair genes and risk of endometrial cancer[J]. Cancer EpidemiolBiomarkers Prev,2005,14(11Pt1):2524-2530.
    [188]Aka P, Mateuca R, Buchet JP, et al. Are genetic polymorphisms in OGG1, XRCC1and XRCC3genes predictive for the DNA strand break repair phenotype andgenotoxicity in workers exposed to low dose ionising radiations[J]? MutationResearch,2004,556(1-2):169-181.
    [189]Takashi K, Hideo K, Kaoru T, el a1. Association of the OGG1-Ser326Cyspolymorphism with lung adenocarcinoma risk[J]. Cancer Sci,2006,97(8):724-728.
    [190]Zienolddiny S, Campa D, Lind H, el a1. Polymorphisms of DNA repair genes andrisk of non-small cell lung cancer[J]. Carcinogenesis,2006,27(3):560-567.
    [191]Park J, Chena L, Tockmana M, el a1. The human8-oxoguanine DNA N-glycosylase1(hOGG1)DNA repair enzyme and its association with lung cancer risk[J].Pharmacogenetics,2004,14(2):103-109.
    [192]Li H, Hao X, Zhang W, el a1. The hOGG1Ser326Cys polymorphism and lungcancer risk:A meta-analysis[J]. Cancer Epidemiol Biomarkers Prev,2008,17(6):1739-1745.
    [193]Kohno T, Shinmura K, Tosaka M, et al. Genetic polymorphisms and alternativesplicing of the hOGG1gene, that is involved in the repair of8-hydroxyguanine indamaged DNA[J]. Oncogene1998,16(25):3219-3225.
    [194]Sugimura H, Kohno T, Wakai K, et al. hOGG1Ser326Cys polymorphism and lungcancer susceptibility[J]. Cancer Epidemiol Biomarkers Prev,1999,8(8):669-674.
    [195]Takezaki T, Gao CM, Wu JZ, et al. hOGG1Ser(326)Cys polymorphism andmodification by environmental factors of stomach cancer risk in Chinese[J]. Int JCancer,2002,99(4):624-627.
    [196]Coppede F, Mancuso M, Lo Gerfo A, et al. A Ser326Cys polymorphism in the DNArepair gene hOGG1is not associated with sporadic Alzheimer's disease[J]. NeurosciLett,2007,414(3):282-285.
    [197]Gu Y, Parker A, Wilson TM, et al. Human MutY homolog, a DNA glycosylaseinvolved in base excision repair, physically and functionally interacts withmismatch repair proteins human MutS homolog2/human MutS homolog6[J]. JBiol Chem,2002,277(13):11135-11142.
    [198]Parker A, Gu Y, Mahoney W, et al. Human homolog of the MutY repairprotein(hMYH)physically interacts with proteins involved in long patch DNA baseexcision repair[J]. J Biol Chem,2001,276(8):5547-5555.
    [199]Boiteux S, Radicella JP. The human OGG1gene:structure, functions, and itsimplication in the process of carcinogenesis[J]. Arch Biochem Biophys,2,000,377(1):1-8.
    [200]Mitra S, Kaina B. Regulation of repair of alkylation damage in mammaliangenomes[J]. Prog Nucleic Acid Res Mol Biol,1993,44:109-142.
    [201]Deng C, Xie D, Capasso H, et al. Genetic polymorphism of humanO6-alkylguanine-DNA alkyltransferase:identification of a missense variation in theactive site region[J]. Pharmacogenetics,1999,9(1):81-87.
    [202]Wu MH, Lohrbach KE, Olopade OI, et al. Lack of evidence for a polymorphism atcodon160of human O6-alkylguanine-DNA alkyltransferase gene in normal tissueand cancer[J]. Clin Cancer Res,1999,5(1):209-213.
    [203]Manuguerra M, Matullo G, Veglia F, et al. Multi-factor dimensionality reductionapplied to a large prospective investigation on gene-gene and gene-environmentinteractions[J]. Carcinogenesis,2007,28(2)414-422.
    [1] Chasman D, Adams RM. Predicting the functional consequences of non-synonymoussingle nucleotide polymorphism:structure-based assessment of amino acidvariation[J]. J Mol Biol,2001,302(2):683-706.
    [2] Hoeijmkers JHJ. Genome maintenance mechanisms for preventing cancer[J]. Nature,2001,411(6835):366-374.
    [3] Wood RD, Mitchell M, Sgouros JG, et al. Human DNA Repair Genes[J]. Science,2001,291(5507):1284.
    [4] Lu AL, Li X, Gu Y, et al. Repair of oxidative DNA damage:mechanisms andfunctions[J]. Cell Biochem Biophys,2001,35:141-170.
    [5] Hung R, HaIl J, Brennan P, et al. Genetic polymorphisms in the base excision repairpathway and cancer risk:A HuGE Review[J]. Am J Epidemiol,2005,162:925-942.
    [6] Takashi K, Hideo K, Kaoru T, el a1. Association of the OCC1-Ser326Cyspolymorphism with lung adenocarcinoma risk[J]. Cancer Sci,2006,97:724-728.
    [7] Zienolddiny S, Campa D, Lind H, el a1. Polymorphisms of DNA repair genes andrisk of non-small cell lung cancer[J]. Carcinogenesis,2006,27(3):560-567.
    [8] Park J, Chena L, Tockmana M, el a1. The human8-oxoguanine DNA N-glycosylase1(hOGG1)DNA repair enzyme and its association with lung cancer risk[J].Pharmacogenetics,2004,14:103-109.
    [9] Li H, Hao X, Zhang W, el a1. The hOGG1Ser326Cys polymorphism and lungcancer risk:A meta-analysis[J]. Cancer Epidemiol Biomarkers Prev,2008,17(6):1739-1745.
    [10]Hao B, Miao X, Li Y, el a1. A novel T-77C polymorphism in DNA repair geneXRCC1contributes to diminished promoter activity and increased risk of non-smallcell lung cancer[J]. Oncogene,2006,25:3613-3620.
    [11]Crnogorac-Jurcevic T, Efthimiou E, Nielsen T, et a1. Expression profiling ofmicrodissected pancreatic adenocarcinomas[J]. Oncogene,2002,21(29):4587-4594.
    [12]Yin J, Vogel U, Ma Y, et a1. Association of DNA repair gene XRCC1and lungcancer susceptibility among nonsmoking Chinese women[J]. Cancer GenetCytogenet,2009,188(1):26-31
    [13]Ruyck K, Szaumkessel M, Rudder I, et a1. Polymorphisms in base-excision repairand nucleotide-excision repair genes in relation to lung cancer risk[J]. Mutat Res,2007,631:101-110.
    [14]Abdel-Rahman SZ, Soliman AS, Bondy ML, et al. Inheritance of the194Trp and the399Gln variant alleles of the DNA repair gene XRCC1are associated with increasedrisk of early-onset colorectal carcinoma in Egypt[J]. Cancer Lett,2000,159(1):79-86.
    [15]Zhu SM, Xia ZL, Wang AH, et al. Polymorphisms and haplotypes of DNA repair andxenobiotic metabolism genes and risk of DNA damage in Chinese vinyl chloridemonomer(VCM)-exposed workers[J]. Toxicol Lett,2008,178:88-94.
    [16]Zhang ZB, Wan JX, Jin XP, et al. Genetic polymorphisms in XRCC1, APE1, ADPRT,XRCC2, and XRCC3and risk of chronic benzene poisoning in a Chineseoccupational population[J]. Cancer Epidemiol. Biomark. Prev,2005,14:2614-2617
    [17]Kiuru A, Lindholm C, Heilimo I, et al. Influence of DNA repair gene polymorphismson the yield of chromosomal aberrations[J]. Environ. Mol. Mutagen,2005,46:198-205.
    [18]Mateuca RA, Roelants M, Larmarcovai G, et al. hOGG1326, XRCC1399andXRCC3241polymorphisms influence micronucleus frequencies in humanlymphocytes in vivo[J]. Mutagenesis,2008,23:35-41.
    [19]Chanvaivit S, Navasumrit P, Hunsonti P, et al. Exposure assessment of benzene inThai workers, DNA-repair capacity and influence of genetic polymorphisms[J].Mutat. Res,2007,626:79-87.
    [20]Kim YJ, et al. Association of theNQO1, MPO, and XRCC1polymorphisms andchromosome damage among workers at a petroleum refinery[J]. Toxicol. Environ.Health A,2008,71:333-341.
    [21]Pachkowski BF, et al. XRCC1genotype and breast cancer:functional studies andepidemiologic data show interactions between XRCC1codon280His andsmoking[J]. Cancer Res,2006,66:2860-68.
    [22]Hanawalt PC, Ford JM, Lloyd DR. Functional characterization of global genomicDNA repair and its implications for cancer[J]. Mutat Res,2003,544(2-3):107-114.
    [23]Friedberg EC. How nucleotide excision repair protects against cancer[J]. Nat RevCancer,200l,1:22-23.
    [24]Butkiewicz D, Rusin M, Harris CC, et al. Identification of four single nucleotidepolymorphisms in DNA repair genes:XPA and XPB(ERCC3)in Polish population[J].Hum Mutat,2,000,15(6):577-578.
    [25]Larsen LK, Amri EZ, Mandrup S, et al. Genomic organization of the mouseperoxisome proliferator-activated receptor beta/delta gene:alternative promoter usageand splicing yield transcripts exhibiting differential translational efficiency[J].Biochem J,2002,366(3):767-775.
    [26]Miller KL, Karagas MR, Kraft P, et al. XPA, haplotypes, and risk of basal andsquamous cell carcinoma[J]. Carcinogenesis,2006,27(8):1670-1675.
    [27]Pan J, Lin J, Izzo J G.. Genetic susceptibility to esophageal cancer:the role of thenucleotide excision repair pathway[J]. Carcinogenesis,2009,30(5):785-792.
    [28]Wu X, Zhao H, Wei Q, et al. XPA polymorphism associated with reduced lungcancer risk and a modulating effect on nucleotide excision repair capacity[J].Carcinogenesis,2003,24(3):505-509.
    [29]Wang F, He Y, Guo H, et al. Genetic Variants of Nucleotide Excision Repair GenesAre Associated with DNA Damage in Coke Oven Workers[J]. Cancer EpidemiolBiomarkers Prev,2010,19(1):211-218.
    [30]Lin J, Swan GE, Shields PG, et al. Mutagen Sensitivity and Genetic Variants inNucleotide Excision Repair Pathway:Genotype-Phenotype Correlation[J]. CancerEpidemiol. Biomarkers Prev,2007,16(10):2065-2071.
    [31]Nelson HH, Christensen B, Karagas MR. The XPC poly-AT polymorphism innon-melanoma skin cancer[J]. Cancer Lett,2005,222(2):205-209.
    [32]Qiu L, Wang ZX, Sh XQ, et al. Associations between XPC polymorphisms and riskof cancers:A meta-analysis[J]. Euro Journal of Cancer,2008,44:2241-2253.
    [33]Blankenburg S, Konig I R, Moessner R, et al. No association between threexeroderma pigmentosum groups C and one group G gene polymorphisms and risk ofcutaneous melanoma[J]. Eur J Hum Genet,2005,13(2):253-255.
    [34]Lee GY, Jang J-S, Lee SY, et al. XPC polymorphisms and lung cancer risk[J]. Int JCancer,2005,115(5):807-813.
    [35]Blankenburg S, Konig I R, Moessner R, et al. Assessment of3xerodermapigmentosum group C gene polymorphisms and risk of cutaneous melanoma:acase-control study[J]. Carcinogenesis,2005,26(6):1085-1090.
    [36]Tuteja N, Tuteja R. Unraveling DNA repair in human:molecular mechanisms andconsequences of repair defect[J]. Crit Rev Biochem Mol Biol,2001,36:261-290.
    [37]Ruth ML, Kathy JH, Parshad R, et a1. XPD polymorphisms:effects on DNA repairproficiency[J]. Carcinogenesis,2,000,21:551-555.
    [38]Spitz MR, Wu X, Wang Y, et a1. Modulation of nucleotide excision repair capacityby XPD polymorphism in lung cancer patients[J]. Cancer Res,200l,61(4):1354-1357.
    [39]Yeh CC, Sung FC, Tang R, et al. Polymorphisms of the XRCC1, XRCC3,&XPDgenes, and colorectal cancer risk:a case-control study in Taiwan[J]. BMC Cancer,2005,5:12.
    [40]Benhamou S, Sarasin A. ERCC2/XPD gene polymorphisms and lung cancer:a HuGEreview[J]. Am J Epidemiol,2005,161(1):1-14.
    [41]Hansen RD, S rensen M, Tj nneland A, XPA A23G, XPC Lys939Gln, XPDLys751Gln and XPD Asp312Asn polymorphisms, interactions with smoking, alcoholand dietary factors, and risk of colorectal cancer[J]. Mutat Res,2007,619(1-2):68-80.
    [42]Kiyohara C, Yoshimasu K. Genetic polymorphisms in the nucleotide excision repairpathway and lung cancer risk:A meta-analysis[J]. Int J Med Sci.2007,4(2):59-71.
    [43]Khanna KK, Jackson SP. DNA double-strand breaks:signaling, repair and the cancerconnection[J]. Nat Genet,2001,27:247-254.
    [44]Liu G, Zhou W, Christiani DC. Molecular epidemiology of non-small cell lungcancer[J]. Semin Respir Crit Care Med,2005,26:265-272.
    [45]Auranen A, Song H, Waterfall C, et a1. Polymorphisms in DNA repair genes andepithelial ovarian cancer risk[J]. Int J Cancer,2005,117(4):611-618.
    [46]Giuseppe M, Domenico P, Marco P, et a1. XRCCl, XRCC3, XPD genepolymorphism, smoking and32P-DNA adducts in a sample of health subjects[J].Carcinogenesis,2001,22:1437-1445.
    [47]Han S, Zhang HT, Wang Z, et a1. DNA repair gene XRCC3Polymorphisms andCancer risk:a meta-analysis of48case-control studies[J]. Eur J Hum Genet,2006,14(10):1136-1144.
    [48]Knudsena NΦ, Andereena S, Lützena A, et a1. Nuclear translocation contributes toregulation of DNA excision repair activities[J]. DNA Repair,2009,8:682-689.
    [49]Wang YC, Lu YP, Tseng RC, et a1. Inactivation of hMLH1and hMSH2by promotermethylation in primary non-small cell lung tumors and matched sputum samples[J]. JClin Invest,2003,111(6):887-895.
    [50]Deng DJ, Zhou J, Zhu BD, et al. Silencing-specific methylation and single nucleotidepolymorphism of hMLHl promoter in gastric carcinomas[J]. World J Gastroenterol,2003,9(1):26-29.
    [51]Yamamoto H, Itoh F, Nakamura H, et a1. Genetic and clinical features of humanpancreatic ductal adenocarcinomas with widespread microsatellite instability[J].Cancer Res,2001,61(7):3139-3144.