苹果[Malus Pumila Mill.]S6PDH基因cDNA的克隆及其植物表达载体构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
山梨醇是蔷薇科植物主要的光合产物、运输糖和贮藏物质,起着其他植物中
    蔗糖的作用。山梨醇还是一种小分子渗透物质,可以改变细胞渗透势,因而与植物抗性密切相关。另外,果实的味道在很大程度上决定于山梨醇转变成的糖的类型。酶对山梨醇的代谢起关键作用, 6-磷酸山梨醇脱氢酶(S6PDH)是山梨醇合成最重要的一种酶,催化6-磷酸葡萄糖转化为6-磷酸山梨醇,再通过6-磷酸山梨醇磷酸酯酶转变为山梨醇。鉴于此 ,一些学者对S6PDH进行了大量研究,取得了一定进展。本研究通过苹果S6PDH cDNA的基因克隆、序列分析及其植物表达载体的构建,为该基因转化其他非蔷薇科果树奠定重要基础,为进一步研究山梨醇的代谢及提高非蔷薇科果树抗性提供一种新途径。
    本试验首先以“皇家嘎拉”苹果叶片为试材,采用三种方法提取了总RNA并加以比较。结果表明三种方法均可提取出高质量的RNA,但三种方法繁琐程度不同,最后选择方法一并稍作改动用于以后的研究。
    RT-PCR涉及的因素较多,本研究对RT-PCR体系中各物质量进行了研究,建立了稳定高效的反应体系,获得了符合大小的目的片段。RT体系:dNTPs(2mmol/L)2.5μl;5×Buffer 4μl;RNasin(50U/μl)1μl;Oligo(dT)(10μmol/L)0.5μl;总RNA模板4μl;Mo-MLV Rtase(200U/μl)1μl;DEPC水补足20μl。PCR体系:dNTPs(2mmol/L)5μl;10×Buffer 2.5μl;MgCl2(25mmol/L)2.4μl;LD03(10μmol/L)2μl;LD04(10μmol/L)2μl;Taq 酶(5U/μl)0.3μl; RT产物4μl;DEPC水补足25μl。
    本研究进一步对RT-PCR的产物进行了克隆、测序及分析。结果表明该片段全长933bp,编码310个氨基酸。经过序列同源性分析,其与Kanayama等发表的序列有4个核苷酸不同,但由于密码子存在简并性,使得两片段所编码的氨基酸序列只在第四位不同,即在我们研究的片段中为甘氨酸,而在Kanayama等发表的序列中为颉氨酸。同时还对该基因的酶切位点进行了分析。
    为了进行以后的研究,本试验借助pUCm-T载体和pGEm-7Zf载体将S6PDH全长cDNA插入到植物表达载体pBI121的多克隆位点上,构建了含有S6PDH全长cDNA的植物表达载体pBIS,并通过直接导入法将其导入农杆菌EHA105。
Sorbitol is the major photosynthetic product、translocating sugar alcohol and storage carbohydrate in Rosaceae plants, the role sorbitol played is like sucrose in other plants. As low-molecular-weight osmotic compounds, it can adjust infiltrative level, so it’s correlated with resistance. In addition, fruit flavor is most dependent on sugar types transformed from sorbitol. Enzyme plays the most important role in sorbitol metabolism. S6PDH is the key enzyme for the biosynthesis of sorbitol, which catalyzed the conversion between glucose-6-phosphate and sorbitol-6-phosphate. So lots of work has done by many researchers, and gain large progress. The aim of the study is to lay foundations for transferring the gene encoding S6PDH, by means of cloning and sequence analysis of S6PDH gene and constructing of the plant expression vector.
    At first, the three methods were adopted to extract RNA from apple leaves. The results showed that three methods were all suitable for RNA extraction. The first method is the simplest one.
     Second,the factor that affect RT-PCR were studied and highly efficient RT-PCR detection system was established and optimized. As for the 20μl RT system: dNTPs(2mmol/L)2.5μl; 5×Buffer4μl; RNasin(50U/μl)1μl; Oligo(dT)(10μmol/L)0.5μl; template RNA4μl; Mo-MLV Rtase(200U/μl)1μl.. As for the 25μl PCR system: dNTPs(2mmol/L)5μl; 10×Buffer2.5μl; MgCl2(25mmol/L)2.4μl; LD03(10μmol/L)2μl; LD04(10μmol/L)2μl; Taq DNA ploymerase(5U/μl)0.3μl; cDNA 4μl.
    Third, the special fragment of RT-PCR was used to cloning and sequence analysis. The cDNA of S6PDH cloned from apple leaves, consisted of 930bp,encoding a protein of 310 amino acids. Obtained sequence was compared with that of Kanayama’s research, there were 4 different bases in 930 nucleotides. There was only one different amino acid due to code degeneracy. Simultaneity, restriction sites analysis was done.
    Finally, the plant expression vector pBIS was constructed containing complete S6PDH cDNA via pUCm-T and pGEm-7Zf,and combinant was transferred into agrobacterium tumefacien by direct DNA transfer and the transformant was identified with PCR.
引文
娄成后.植物生理学.北京:农业出版社,1980
    阎隆飞等.基础生物化学. 北京:农业出版社,1985
    周睿等.高等植物中的山梨醇及其代谢.植物生理学通讯,1993,29(5):384~390
    白宝璋等.蔷薇科果树中山梨醇的研究概况.吉林农业大学学报,1995,17(增刊):57~62
    李嘉瑞等. 蔷薇科果树山梨醇的研究.果树科学,1991,8(2):111~115
    丁平海等. 新红星苹果叶片和果实碳水化合物的动态变化. 河北林果研究,1997,12(1):45~52
    夏国海等.苹果幼树休眠前后可溶性糖和氨基酸的变化. 园艺学报,1998,25(2):129~137
    柴成林等. 水分胁迫期间及胁迫解除后桃树叶片中碳水化合物代谢.植物生理通讯,2001,37(6):495~498
    徐迎春等. 水分胁迫期间及胁迫解除后苹果树源叶碳同化物代谢规律的研究. 果树学报,2001,18(1):1~6
    马锋旺等. 杏愈伤组织的超低温保存. 西北植物学报,1999,19(1):67~70
    马锋旺等. 杏原生质体的超低温保存. 园艺学报,1998,25(4):329~333
    马锋旺等. 山梨醇作碳源对苹果微体繁殖的效应.西北农业大学学报,1996,24(4):102~104
    马锋旺等. 杏离体繁殖的研究. 西北农业大学学报,1999,27(4):12~15
    林顺全等. 枇杷原生质体植株再生. 园艺学报,1996,23(4):313~318
    林顺全等. 山梨醇对枇杷原生质体分离和培养的效应. 福建农业大学学报,1997,26(4):401~406
    陈昆松等.猕猴桃成熟果实中脂氧合酶基因的克隆.园艺学报,1998,25(3):230~235
    王新力等.香蕉果实特异性ACC合酶的cDNA克隆及全序列分析.生物工程学报, 2000,6(2):134~136
    黄代青等.荔枝R基因同工酶源序列的克隆与分析.福建师范大学学报(自然科学版),2002,18(4):86~90
    李英慧等.分子标记技术在苹果育种中的应用.生物技术通报,2002,6:11~14
    徐昌杰等.甜橙辣椒红/辣椒玉红素合成酶同源基因的克隆.实验生物学报,2001,34(2):147~150
    金志强等.香蕉果实特异性ACC合成酶基因的克隆及反义载体的构建.农业生物技术学报,2002,10 (3):305~306
    饶景萍等.柿果实ACC合成酶cDNA的克隆及其序列分析.西北植物学报,2001,21(5):819~825
    徐昌杰等.猕猴桃ACC合成酶基因家族四个成员的克隆.农业生物技术学报,2001,9(1):55~57
    任小林等.猕猴桃ACC 氧化酶cDNA克隆及全序列测定.园艺学报,1997,24(4):333~337
    
    金勇丰等.桃ACC 氧化酶基因克隆和植物表达载体的构建.园艺学报,1998,25(1):37~43
    王俊英等.樱桃ACC氧化酶基因的克隆和序列分析.华北农学报,2002,16(1):11~15
    张德有等.香蕉果胶裂解酶基因的克隆.植物生理与分子生物学学报,2003,29(5):401~404
    张开春等.马哈利樱桃PGIP基因克隆及全序列分析.农业生物技术学报,2000,8(3):281~283
    胡桂兵等.毛叶枣APETALA1基因的分子克隆初报.华南农业大学学报,2000,21(4):112~113
    林伯年等.柑桔MADS盒APETALA1同源DNA片段克隆.园艺学报,2001,28(2):167~169
    安新民等.柑桔转化酶基因家族新成员的克隆和序列分析.上海交通大学学报,2003,21(1):1~4
    邓九生等.荔枝铜锌超氧物歧化酶基因的克隆与序列分析.广西农业生物科学,2000,19(2):73~76
    任小林等.猕猴桃钙调蛋白cDNA的克隆及序列分析.西北农业大学学报,1997,25(3):1~5
    陆旺金等.香蕉果实expansin cDNA克隆及序列分析.华南农业大学学报,2003,24(3):40~42
    曹秋芬等.苹果LEAFY同源基因的cDNA克隆及表达分析.园艺学报,2003,30(3):267~271
    马庆虎等.肥城桃中多聚半乳糖醛酸酶基因的分离及其表达研究.植物学报,1999,41(3):263~267
    林同香等.龙眼rbcl基因结构分析.园艺学报,1999,26(5):291~296
    韩继成等. 编码荔枝乙烯受体(LcERS1)的cDNA基因的克隆与分析.分子植物育种,2003,1(3):351~356
    马锋旺等. 蔷薇科果树山梨醇代谢的酶.西北农业大学学报,1993,21(3):88~93
    候义龙等. 果树组织中总RNA提取的新方法.沈阳农业大学学报,2002,33(2):122~125
    张振臣.烟草花药病毒外壳蛋白转化烟草的研究.中国农业大学博士学位论文,北京:中国农业大学,1998
    陈昆松等.富含多糖猕猴桃果实组织中总RNA提取方法的改进.植物生理学通讯,1998c,34(5):371~373
    王关林等.植物基因工程.科学出版社,2002
    Wallaart RAM. Distribution of sorbitol in Rosaceae. Phytochem,1980,19:2603~2610
    Bieleski RL., et al. Accumulation of sorbitol and glucose by leaf slices of Rosacaeas. Aust J Plant Physiol,1977,4:11~15
    Bieleski RL., et al. Synthesis of sorbitol in apricot leaves. Aust J Plant Physiol, 1977,4:1~6
    Chong C., et al. Sorbitol metabolism carbon nutrition. Can J Bot,1977,52:2361~2364
    Yamaki S., et al. Roles of four sorbitol related enzymes and invertase in the seasonal alleration of sugar metabolism in apple tissue. J Amer Soc Horti Sci, 1986,111(1):134~
    
    
    137
    Chong C., et al. Effect of solar radiation on seasonal concentrations of sorbitol and related carbohydrates in apple leaves. Can J Plant Sci, 1971,51:551~555
    Web KL., et al. Sorbitol Translocation in apple.Science,1962,137:766~769
    Loescher WH. Physiology and metabolism of sugar alcohols in higher plant. Physiol Plant,1987,72:674~678
    Hansen P. The influence of season on storage and mobilization of labeled compounds. Physiol Plant,1967,20:1103~1107
    Hansen P., et al. Levels of sorbitol in bleeding sap and in xylem sap in relation to leaf mass and assimilate demand in apple trees. Physiol Plant,1978,43:129~135
    Chong C. Study of the seasonal and daily distribution of sorbitol and related carbohydrates within apple seedlings by analysis of selected tissues and organs. Can J Bot,1971,51:519~525
    Tromp J. Nutrient reserves in roots of fruit trees, in particular carbohydrates and nitrogen. Plant and Soil. 1983,71:401~404
    Grant CR., et al. Sorbitol metabolism by apple seedlings. Phytochemistry, 1981, 20(7):1505~1511
    Raese JT., et al. Cold hardiness, sorbitol and sugar levels of apple shoots as influenced by controlled temperature and season. J Ame Soc Hort Sci, 1978, 103: 766~770
    Wang SY., et al. Effect of paclobutrazol on accumulation of carbohydrates on apple wood. Hort Sci ,1986,21:1419~1423
    Brown. et al. Transgenically enhanced sorbitol synthesis facilitates phloem boron transport and increases tolerance of tobacco to boron deficiency. Plant Physiol, 1999,119:17~25
    Smirnoff N. et al. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry,1989,28:1057~1062
    Suleman P., et al. Relationship between sorbitol and solute potential in apple shoots relative to fire blight symptom develoment. HYTOPATHOLOGY, 1994, 84: 1244~1250
    Lin S. A study on the culture of embryo and its protoplasts in loquat and their carbon sources. Acta Hortiture,1995, 403:320~325
    Bieleski RL., et al. Sorbitol versus sucrose as photosynthesis and translocation products in developing apricot leaves. Plant physiology,1985,12(6):657~668 20
    Bieleski RL. Accumulation and translocation of sorbitol in apple phloem. Aust J Biol Sci,1969,22:61~66
    Hirai M. Purification and characateristics of sorbitol-6-phosphate dehydrogenase from
    
    
    loquat leaves[J]. Plant Physiol ,1981,67(2):221~224.
    Hirai M. Seasonal changes in sorbitol-6-phosphate dehydrogenase in loquat leaf. Plant Cell Physiol,1983,24(5):925~930
    Yamaki s. Property of sorbitol-6-phosphate dehydrogenase and its connection with sorbitol accumulation in apple. Hort Sci,1980,15:268~274
    Yamaki S. Properties and function of sorbitol-6-phosphate dehydrogenase, sorbitol dehydrogenase, sorbitol dehydrogenase and sorbitol oxidase in fruit and cotyledon of apple. J Japan Soc Hort Sci,1980,49(3):429~434
    Yamaki S. Subcellular localization of sorbitol-6-phosphate dehydrogenase in protoplasts from apple cotyledons. Plant and cell physiol,1981,22(3):359~367
    Moriguchi T. Seasonal fluctuations of some enzyme relating to sucrose and sorbiol metabolism in peach fruit. J Amer Soc Hort Sci,1990;115(2):278~281
    Kanayama Y., et al. Expression of the gene for sorbitol-6-phosphate dehydrogenase in apple seedlings. Plant cell physiol,1995,36(6):1139~1141
    Sakanishi K, et al. Expression of the gene for NADP-dependent sorbitol-6-phosphate dehydrogenase in Peach leaves of various developmental stages. Plant cell physiol,1998,39(12):1372~1374
    Bantog NA, et al. Gene expression of NAD+-dependent sorbitol dehydrogenase and NADP-dependent sorbitol-6-phosphate dehydrogenase during development of loquet fruit. J Jap Soc Hort Sci,2000,69(3):231~236
    Kanaynma Y, et al. Nucleotide sequence of a cDNA encoding sorbitol-6-phosphate dehydrogenase from apple. Plant physiol,1992,100:1607~1608
    Tao R, et al. Sorbitol synthesis in transgenic tobacco with apple cDNA encoding NADP-dependent sorbitol-6-phosphate dehydrogenase . Plant cell physiol, 1995, 36(3):525~532
    Brown P H, et al. Transgenically enhanced sorbitol synthesis facilitates phloem boron transport and increases tolerance of tobacco to boron deficiency. Plant physiol,1999,119(1):17~20
    Bellaloui N, et al. Manipulation of in vivo sorbitol production alters boron uptake and transport in tobacco. Plant physiol, 1999,119(2):735~741
    Sheveleva E V, et al. Sorbitol-6-phosphate dehydrogenase expression in transgenic tobacco. Plant physiol, 1998,117:831~833
    Gao M,et al. Transformation of Japanese persimmon (Diospyros kaki Thunb.) with apple cDNA encoding NADP-dependent sorbitol-6-phosphate dehydrogenase. Plant Sci. 2001,160(5): 837~845
    
    WANG H ZH,et al. Study on the transformation of rice (Oryza sativa L.) with GutD gene[J]. Bulletin of Science and Technology, 2002. VOL.18 NO.6:441~445
    Negm FB., et al. Detection and characterization of sorbitol dehydrogenaes from apple callus tissue. Plant Physiol, 1979,64(1):69~73
    Negm FB., et al. Characterization and partial purification of aldose6-phosphate reductase from apple leaves. Plant Physiol,1981,67(1):139~142
    Grant CR., et al. Sorbitol metabolism by apple seedling. Phytochem, 1981, 20: 1505~1508
    Marlow GC., et al. Sorbitol dehydrogenaes, Sorbitol and watercore in apple fruit tissue. Horti Sci,1980,15:426~430
    Yamaki S.NADP+-dependent sorbitol dehydrogenaes found in apple leaves. Plant cell physiol,1984,25(7):1323~1327
    Yamaguchi H, et al. Change in the amounts of NAD+-dependent sorbitol dehydrogenase and its involvement in the development of apple fruit.J Amer Soc Hort Sci,1996,121(5):848~852
    Yamaguchi H, et al. Purification and properties of NAD+-dependent sorbitol dehydrogenase from apple fruit. Plant cell Physiol, 1994,35(6):887~892
    Yamada K. , et al . Cloning of NAD-Dependent sorbitol dehydrogenase from apple fruit and gene expression. Plant cell physiol,1998,39(12):1375~1379
    Yamada K. Gene expression of NAD+-dependent sorbitol dehydrogenase during fruit development of apple. J Japan Soc Hort Sci , 1999,68:1099~1103
    Bantog N A, et al. Gene expression of NAD+-dependent sorbitol dehydrogenase and NADP-dependent sorbitol-6-phosphate dehydrogenase during development of loquet fruit. J Jap Soc Hort Sci, 2000,69(3):231~236
    Yamada K. cDNA cloning of NAD-dependent sorbitol dehydrogenase from peach fruit and its expression during fruit development. J of Hort Sci & Biotech, 2001, 76(5): 581~587
    Park WP, et al. Molecular cloning and characterization of four cDNAs encoding the isoforms of NAD-dependent sorbitol dehydrogenase from the Fuji apple . Plant Sci,2002,162:513~519
    Yamaki S. A sorbitol oxidase that converts sorbitol to glucose in apple leaf. Plant Cell Physiol, 1980,21:591~596
    Yamaki S. Localization of sorbitol oxidase in vacuoles and other subcellular organelle in apple cotyledons. Plant cell physiol, 1982,23:891~895
    Ikoma Y., et al. Cloning and expression of genes encoding ACC synthase in kiwifruit.
    
    
    Acta Hortic, 1995, 398 :179~186
    Dong JG., et al. Sequence of a cDNA coding for a 1-aminocyclopropane-1- carboxylate oxidese homolog from apple fruit. Plant Physiol, 1992,98: 1530~1532
    Colin WB., et al. A cDNA sequence from kivifruit homologous to 1-aminocyclopropane-1-carboxylate oxidese. Plant Physiol, 1993,101:691~692