土壤环境弓形虫与细菌污染的检测与修复
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤生物污染是指一个或几个有害的生物种群从外界环境侵入土壤,引起土壤质量下降,不仅破坏了原有的生态平衡,还会对植物、动物、人类健康以及生态系统造成不良的影响。近年来,随着人感染禽流感、SARS、猪链球菌病、猪流感等突如其来的疫病灾害的发生,以及人民生活水平的不断提高和环境保护意识的逐渐增强,土壤环境的生物污染问题越来越受到大家的关注。
     为此本研究选取弓形虫和粪便污染指示菌为代表,首先建立其检测方法,然后对土壤的污染情况进行调查,紧接着针对猪场土壤环境中大肠杆菌的污染情况,通过土壤载体试验、盆栽试验、现场模拟试验从化学消毒剂、生物消毒剂、复合型消毒剂中筛选几种可行的消毒剂,并从戊二醛对土壤微生态环境的影响和残留两个方面进行了戊二醛对土壤的安全性评价。
     (1)土壤环境中弓形虫卵囊检测方法的建立和应用
     建立了土壤环境中弓形虫卵囊的PCR/B1、PCR/529和LAMP/MIC3检测方法,检测极限分别为50、5和5个速殖子/0.5g土壤,特异性试验说明仅弓形虫RH株和Prugniaud株能扩增得到特异性目的条带。PCR/B1和PCR/529扩增均为阳性的样品判定为PCR阳性。用PCR和LAMP方法分别检测来自公园、猪场和校园的483份土壤样品,结果表明,两种方法分别得到81(16.77%)份和133(27.54%)份阳性样品,其中猪场土壤的污染最为严重。
     武汉市6个公园的检测结果表明,所有的公园都受到了不同程度的污染(P>0.05)。在12个被调查的猪场中,仅1个猫低密度猪场的土壤未受到污染,PCR和LAMP检测结果显示猫高密度猪场土壤阳性率分别为低密度猪场的2.24和2.21倍,表明猫的数量与土壤的污染情况呈正相关。公园和校园土壤污染的季节性分析显示,土壤全年受到弓形虫卵囊的污染,各季节之间差异极显著(P<0.01),且从春天到冬天呈现逐渐下降的趋势。因此,土壤可能是人和动物感染弓形虫的传染源之一。另外,建立的PCR和LAMP方法能有效检测土壤中弓形虫卵囊。
     (2)猪场土壤环境细菌性污染的调查
     以细菌总数和粪便污染指示菌(大肠杆菌、大肠菌群)为指标,采集湖北省17个规模化猪场共86份土壤样品进行检测与计数,并评价了土壤的污染程度。采用的方法分别为:细菌总数—涂布牛肉膏蛋白胨平板培养;大肠杆菌—PCR方法和涂布麦康凯平板培养;大肠菌群—MPN法。结果显示,PCR方法检测所有土样均为大肠杆菌阳性,土壤中细菌总数、大肠杆菌和大肠菌群分别为4.5×104~6.9×107cfu/g、O~1.2×106cfu/g.1.2×104~5.3×107cfu/g.根据细菌总数判定有72.09%的土壤污染严重。根据大肠杆菌判定有41.86%的土壤被粪便污染严重,大肠菌群已超出我国畜禽养殖业污染物排放标准规定的10-10,000倍,表明土壤中有肠道致病菌存在且已严重超标。秋季土壤大肠杆菌污染最为严重,其次是春天、冬天和夏天。
     (3)土壤中大肠杆菌消毒剂的筛选
     本研究选取依绿笑(二氧化氯)、安必杀(有效碘)、戊二醛、申嗪霉素(M18)、天然净等五种消毒剂对土壤中大肠杆菌进行消毒效果评价,从而筛选最佳消毒剂。大肠杆菌稀释液的筛选试验结果表明,0.1%Tween80/PBS的分散性最好。化学消毒剂的中和剂鉴定试验表明,0.5%Na2S203+1%Tween80可有效中和200mg/L的二氧化氯,0.5%Na2S203+1%卵磷脂+1%Tween80可有效中和2000mg/L的有效碘,1%甘氨酸+1%卵磷脂+1%Tween80可有效中和2%的戊二醛。
     土壤载体试验结果表明:2000mg/L有效碘作用30min,200mg/L二氧化氯作用2min或100mg/L作用1h,0.05%戊二醛作用15min或0.01%作用30min,100mg天然净添加于5g土壤中作用48h可完全杀灭土壤中大肠杆菌。但申嗪霉素对土壤中大肠杆菌和细菌总数均无影响。现场模拟试验结果表明:400mg/L二氧化氯作用24h或600mg/L二氧化氯作用12h,0.1%戊二醛作用12h可杀灭土壤中95%以上的大肠杆菌。
     (4)戊二醛处理对土壤的安全性评价
     戊二醛处理后,通过对土壤中可培养微生物进行平板计数,发现戊二醛对土壤中大肠杆菌作用明显,高浓度对细菌、真菌影响较小,但对放线菌影响较大,中、低浓度对细菌、真菌、放线菌的冲击小,且都能在一段时间内恢复正常水平。Biolog的结果显示,低浓度的戊二醛处理有轻微提高微生物活性的作用,中、高浓度处理则有抑制作用,但经过一段时间后微生物活性均能恢复正常。总而言之,虽然戊二醛处理对土壤中微生物对单一碳源的利用能力产生了影响,但各处理间无明显差异。另外,建立了土壤中戊二醛的高效液相色谱检测方法,戊二醛采用2,4-二硝基苯肼柱前衍生后检测,戊二醛在土壤中的最低检测限和最低定量限分别为0.01mg/kg和0.02mg/kg。土壤中戊二醛的消解测定结果表明,在第1d可消除70%及以上,第2d可消除97%以上。总之,戊二醛对土壤微生态环境的影响比较柔和,且不会因残留导致二次污染,是一种安全、高效的土壤生物污染消毒剂。
Soil biological contamination refers to the decline of soil quality by one or more harmful organisms from the external environment intrude into soil. It does not only destroy the original ecological balance, but also has adverse effects on plants, animals, human health and ecosystem. In recent years, with the outbreaks of sudden epidemic disasters, such as human infection with avian influenza, SARS, swine streptococosis and swine flu, and also the improvement of people's living standards and the gradual increase of environmental protection awareness, the biological contamination of soil has been more and more subjected to everyone's attention.
     In our research, Toxoplasma gondii and fecal contamination indicator bacteria (Escherichia coli and coliform) were selected as the representative pathogens. Firstly, the detection methods were established, and investigated the soil contamination status. Secondly, according to the soil contamination status by E. coli, the best disinfectants were screened from chemical disinfectants, biological disinfectants and compound disinfectants using the soil carrier test, pot experiment and site simulation test. Lastly, the soil safety of glutaraldehyde treatment was evaluated by investigating the influence of soil ecosystems and the residues of glutaraldehyde.
     (1) Development and application of the detection methods for T. gondii oocysts in soil
     PCR/B1, PCR/529and LAMP/MIC3methods were developed for the detection of T. gondii oocysts in soil environment. The detection limit of the methods was determined to be50,5, and5tachyzoites per0.5g soil, respectively. The specificity assay showed that these methods were specific for T. gondii. The samples were considered as PCR positive when the results of both PCR/B1and PCR/529were positive. Four hundred and eighty-three soil samples were collected from public parks, pig farms and campus, and then detected for T. gondii oocysts contamination. Eighty-one (16.77%) and133(27.54%) soil samples were positive for T. gondii by PCR and LAMP, respectively. In addition, the soil of pig farms was the highly contaminated.
     Overall, all of six public parks were contaminated by different levels on both analyses (P>0.05). On the farm level,11of the12pig farms were T. gondii positive, while only one pig farm with low cat density was negative. The PCR and LAMP results suggested that the ratios for positive soil samples detected by PCR and LAMP between pig farms with dual cat density were2.24and2.21, respectively. It suggested that there was a positive relationship between the number of cats present on the farm and the contamination status of T. gondii oocysts in soil. Contamination of public parks and campus soil was found significantly different among the four seasons (P<0.01). The soil was found to be contaminated throughout the year, with a gradual decrease in the prevalence from spring to winter. Therefore, soil may be an important source in the transmission of Toxoplasma for animals and humans. In addition, the conventional PCR and LAMP developed in the present study are applicable to detect T. gondii oocysts in soil samples.
     (2) Survey on the contamination of bacteria in the soil of pig farms
     A total of86soil samples from17large scale pig farms were collected to detect and count E. coli, coliform and bacteria in order to evaluate the contamination status. MacConkey plates and beef extract peptone plates were used to count E. coli and bacteria, respectively. MPN method was used to count coliform. E. coli was also detected by PCR. All the soil samples were E. coli-positive by PCR. The counting results showed that the number of E. coli, coliform and bacteria in one gram soil were0~1.2x106cfu,1.2x104~5.3×107cfu and4.5×104~6.9×107cfu, respectively. Out of total samples analyzed,72.09%soil samples were highly contaminated with the total number of bacteria, and41.86%with E. coli. Additionally, coliform had exceeded10to10,000times to China's livestock industry pollutant discharge standards. It suggested that the existence of intestinal pathogens in soil may be high. Soil contaminated with E. coli was high in autumn, followed by spring, winter and summer.
     (3) Screening of the disinfectants for E. coli in soil
     Five disinfectants were selected to evaluate their efficacy against E. coli in soil. The disinfectants were Yilvxiao (chlorine dioxide), Anbisha (available iodine), glutaraldehyde, Shenqinmycin (M18) and Tianranjing. The screening tests for the best dilution against E. coli showed that the spreading of0.1%Tween80/PBS was the most appropriate. The chemical disinfectants of200mg/L chlorine dioxide,2000mg/L available iodine and2%glutaraldehyde were neutralized effectively by using0.5%Na2S2O3+1%Tween80,0.5%Na2S2O3+1%lecithin+1%Tween80,1%glycine+1%lecithin+1%Tween80as neutralizers, respectively.
     In the soil carrier test, the doses of different disinfectants required for complete eradication of E. coli in soil were as follows:2000mg/L available iodine with30min contact,200mg/L chlorine dioxide with2min contact or100mg/L chlorine dioxide with1h contact,0.05%glutaraldehyde with15min contact or0.01%glutaraldehyde with30min contact,100mg Tianranjing in5g soil with48h contact. But M18had no effect on E. coli and the total bacteria in soil. The results of site simulation test showed that400mg/L chlorine dioxide with24h contact or600mg/L chlorine dioxide with12h contact,0.1%glutaraldehyde with12h contact can eradicate more than95%E. coli in soil.
     (4) Safety evaluation of soil by glutaraldehyde treatment
     The responses of soil microbes to glutaraldehyde were investigated by monitoring the culturable populations of E. coli, bacteria, fungi, and actinomycete. E. coli was not detected in the un-inoculated control soil throughout the duration of the experiment. In non-glutaraldehyde-treated and E. coli-inoculated soil, the population remained relatively stable. Glutaraldehyde application resulted in a significant decrease of E. coli population. All the treatments had little impact on bacteria and fungi population, and they quickly recovered to their normal levels within a short period of time. But high concentration had great impact on actinomycetes population. The results of Biolog showed that the microbial activity was slightly increased after low concentration of glutaraldehyde treatment, and it was inhibited after the medium and high concentrations of treatment, but activity was returned to normal in a short time. In short, the ability of using sole carbon source by soil microorganisms was changed after glutaraldehyde treatment, however, no significant difference was observed among the treatments. A method for the determination of glutaraldehyde residue in soil by high performance liquid chromatography (HPLC) with pre-colum derivatization by2,4-dinitrophenylhydrazine was developed. The limit of detection (LOD) and limit of quantitation (LOQ) for glutaraldehyde in soil were0.01mg/kg and0.02mg/kg. Glutaraldehyde in soil was dissipated nearly70%at the first day, and more than97%at the second day. The ultimate residues of glutaraldehyde in soil were not detectable. In conclusion, the impact of glutaraldehyde on soil ecosystems was relatively low and did not cause secondary pollution suggesting that it is a safe and efficient disinfectant for soil biological contamination.
引文
1.蔡宝祥.家畜传染病学.北京:中国农业出版社,2001:46-52,209-211
    2.曹志平.土壤生态学.北京:化学工业出版社,2007,12-16
    3.冯国明.常用土壤消毒.山东农机化,2009,28
    4.盖志武,周艳玲,王柏林,李德斌,郭晓刚,魏兴东.微波消毒设施土壤试验研究.广西农业科学,2007,38(2):174-176
    5.辜松,王忠伟.日本设施栽培土壤热水消毒技术的发展现状.农业机械学报,2006,37(11):167-169
    6.郭斌,吴晓磊,钱易.提高微生物可培养性的方法和措施.微生物学报,2006,46(3):504-507
    7.郭新彪,刘君卓.常用消毒剂和消毒方法.北京:化学工业出版社,2003
    8.郭云霞,黄仁录,郝庆红.畜禽粪便的无害化资源化处理技术.养殖与饲料,2006,12:49-52
    9.何少璋,杨国标,沈怀亮.用中和剂清除消毒剂残效的方法学探讨.中国感染控制杂志,2004,3(4):338-339
    10.胡元森,李翠香,孙富林,吴坤,贾新成.不同培养基组合提高土壤细菌可培养性的研究.微生物学报,2007,47(5):882-887
    11.江传杰,王岩,张玉霞.畜禽养殖业环境污染问题研究.河南畜牧兽医.2005,26(1):28-31
    12.焦蕊,赵同生,贺丽敏,许长新,郝宝峰,于丽辰.自然生草和有机物覆盖对苹果园土壤微生物和有机质含量的影响.河北农业科学,12:29-30
    13.姜培珍,施爱珍,朱珍妮.食源性寄生虫病的流行现状及控制措施.上海食品药品监管情报研究,2009,98:13-17
    14.居丽雯,黄勇,朱献忠,宫志敏.二氧化氯对流感病毒的灭活作用.中国卫生检验杂志,2000,10(4):400-401
    15.李国清.兽医寄生虫学(双语版).北京:中国农业出版社,2006,9-17
    16.李慧,王平,肖明.硅藻土和滑石粉作为荧光假单胞菌P13菌剂的载体研究.中国生物防治,2009,25(3):239-244
    17.李娟.长期不同施肥土壤微生物学特性及其季节变化.[博士学位论文].北京: 中国农业科学院农业资源与农业区划研究所,2008
    18.李明锐,祖艳群,陈建军,湛方栋,何永美,李元.阿特拉津降解菌FM326(Arthrobacter sp.)的分离筛选、鉴定和生物学特性.农业环境科学学报,2011,11:2242-2248
    19.李明社,李世东,缪作清,郭荣君,赵震宇.生物熏蒸用于植物土传病害治理的研究.中国生物防治,2006,22(4):296-302
    20.李世贵.两种木霉菌对黄瓜枯萎病菌生防作用及根际土壤微生物影响研究.[博士学位论文].北京:农业资源与农业区划研究所,2010
    21.林凤.不同中和剂对几种消毒剂的试验效果观察.预防医学情报杂志,2006,22(2):241-243
    22.林启模,胡淑宜,黄碧忠.活性炭对土壤生物固氮的作用.生物质化学工程,1988,1:10-12
    23.林天杰.利用自然太阳能消毒土壤.上海农业科技,2002,4:12
    24.陆承平.兽医微生物.北京:中国农业出版社,2001,213-238
    25.路光仲.食品生物污染.湖北预防医学杂志,1990,1(1):15-16
    26.马玉龙,许梓荣.离子型无机抗菌材料研究进展.材料导报,2004,18:16-18
    27.聂浩.弓形虫-伪狂犬病毒重组二价基因工程疫苗研究.[博士学位论文].武汉:华中农业大学图书馆,2010
    28.钱颖骏,诸廷俊,王聚君,周长海,陈颖丹.4种漂浮法分离土壤中人蛔虫卵的效果比较.中国病原生物学杂志,2008,3(4):305-306
    29.史宝胜,郭润芳,尹家凤.3种防治剂对重茬大棚草莓生长的影响.农业环境科学学报,2005,24:38-42
    30.石映祥,董锟,张慧敏,胡琦,董梅英,孙兴华.降低消毒剂作用浓度后中和剂鉴定试验效果观察.中国消毒学杂志,2009,26(3):281-283
    31.孙漫红,刘杏忠.巴氏杆菌—一类新的有潜力的植物寄生线虫生防菌.生物防治通报,1994,10(4):178-182
    32.孙明,喻子牛,姚宝安,王乾兰,赵俊龙,刘子铎,刘斌.杀寄生虫的苏云金芽胞杆菌YBT-1532及其杀虫晶体蛋白.中国专利,00116062,2003-11-19
    33.孙锡娟,周根娣,卢善玲,何七勇.蔬菜卫生学生物污染.环境科学研究,1996:28-29
    34.滕峥,张曦,朱兆奎.消毒剂对脊髓灰质炎病毒灭活效果的初步探讨.上海预 防医学杂志,2003,15(2):65
    35.田有国,辛景树,任意,徐爱国,朱莉,张一凡.NY/T 1121.3土壤检测第3部分:土壤机械组成的测定.北京:中国农业出版社,2006
    36.涂攀.猪场土壤中猪细小病毒和链球菌的检测与消毒剂的筛选.[硕士学位论文].武汉:华中农业大学图书馆,2011
    37.王礼.石灰氮对土壤微生物种群及黄瓜枯萎病病原菌影响的研究.[硕士学位论文].杭州:浙江大学图书馆,2006
    38.王莉,叶庆临,肖霖,廖骏,王兴华.几种消毒剂对土壤中污染的霍乱弧菌的消毒效果.中国卫生检验杂志,2001,11:681-682
    39.王妙飞,郭新东,杜志峰,吴玉銮,王永华,张水华.高效液相色谱法快速分析口香糖中戊二醛的残留量.现代食品科技,2007,23(12):80-82
    40.王秋英,赵炳梓,张佳宝,王一明,张辉,陈效民,龚建东.土壤对病毒的吸附行为及其在环境净化中的作用.土壤学报,2007,44(5):808-816
    41.王晓蕾,吴晓松,李放,谈智,陈越英.一种稳定性二氧化氯消毒液的消毒效果观察.中国消毒学杂志,2012,29(1):8-12
    42.吴建波,阮维斌,谢凤行,李晶,高玉葆.毛乌素沙地三种植物根际土壤线虫群落和多样性分析.生物多样性,2008,16(6):547-554
    43.谢汝创,刘杰.昆虫病原线虫Steinernema carpocapsae Agriotos品系在苹果园中喷雾均匀度、存活期及感染力的调查.昆虫天敌,1992,1:37-41
    44.邢燕,刘建,温艳,翁小满.麻风病流行区水、土壤中麻风杆菌的检测初步报告.中国麻风皮肤病杂志,2009,1:4-6
    45.杨波,马玉龙.铜离子-氧化锌/十六烷基铵基毗啶-蒙脱石吸附大肠杆菌的能力.硅酸盐学报,2007,35:1661-1674
    46.杨自文,刘晓艳,曹春霞.土传性病害的防治策略.湖北农业科学,2011,50(19):3889-3895
    47.叶奕英,许政拱,龙祖培等.影响土壤蛔虫卵分离因素的实验观察.广西医学,1982,4(5):230-232
    48.余森海,许隆祺,蒋则孝,徐淑慧,韩家俊,朱育光,常江,林金祥,徐伏牛.首次全国人体寄生虫分布调查的报告.中国寄生虫学与寄生虫病杂志,1994,12(4):241-247
    49.咎林森,莫泽山.集约化养殖场粪污蚯蚓处理效果研究.中国农学通报,2007
    50.张国庆.分枝杆菌hsp65基因多态性与其对消毒剂抗性的关系研究.[博士学位论文].成都:四川大学图书馆,2006
    51.张立成.紫外线消毒与四种化学消毒方法的比较.辽宁化工.2001,30(12):533-536
    52.张青.微生物检查中的MPN法和CFU法.食品与药品,2005,7(4):70
    53.张媛,张本,黄磊,田伟,刘衡川,李福平.消毒剂对大肠杆菌0157:H7的杀灭效果及应用研究.现代预防医学,2006,33(9):1546-1548
    54.章家恩.土壤生态健康与食物安全.云南地理环境研究,2006,12(4):1-4
    55.赵斌,何绍江.微生物学实验.北京:科学出版社,2005,64-77
    56.赵炳梓,张佳宝.病毒在土壤中的迁移行为.土壤学报,2006,43(2):306-313
    57.郑晶,黄晓蓉,汤敏英,陈彬,张温玲,黄嫦娇.荧光法快速检测蔬菜中大肠菌群.食品科学,2006,27(10):480-484
    58.郑良,Howard E.58种中(草)药对植物寄生线虫Meloidogyne javanica和Pratylenchus vulnus的药效研究.植物病理学报,2001,31(2):175-183
    59.周晓农.土源性寄生虫病.北京:人民卫生出版社,2011,1-3
    60.朱丽华.熏蒸剂和土壤消毒剂澳甲烷的替代.世界农药,2003,25(1):39-42
    61. Abbaszadegan M, Lechevallier M, Gerba C. Occurrence of viruses in US groundwaters. J Am Water Works Ass,2003,95:107-120
    62. Afonso E, Lemoine M, Poulle M L, Ravat M C, Romand S, Thulliez P, Villena I, Aubert D, Rabilloud M, Riche B, Gilot-Fromont E. Spatial distribution of soil contamination by Toxoplasma gondii in relation to cat defecation behaviour in an urban area. Int J Parasitol,2008,38:1017-1023
    63. Akhtar M, Malik A. Roles of organic soil amendments and soil organisms in the biological control of plant-parasitic nematodes:a review. Bioresource Technol,2000, 74(1):35-47
    64. Albert M, Schwartzbrod L. Recovery of enterovirus from primary sludge using three elution concentration procedures. Water Sci Technol,1991,24:225-228
    65. Amann R I, Ludwig W, Sehleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microb Rev,1995,9(1): 143-169
    66. Badawy A S, Rose J B, Gerba C P. Comparative survival of enteric viruses and coliphage on sewage irrigated grass. J Environ Sci Health,1990,25:937-952
    67. Bej A K, DiCesare J L, Haff L, Atlas R M. Detection of Escherichia coli and Shigella spp. in water by using the polymerase chain reaction and gene probes for uid. Appl Environ Microbiol,1991,57:1013-1017
    68. Bej A K, Steffan R J, DiCesare J, Haff L, Atlas R M. Detection of coliform bacteria in water by polymerase chain reaction and gene probes. Appl Environ Microbiol, 1990,56:307-314
    69. Brown K W, Wolf H W, Donnelly K C, Slowey J F. The movement of fecal coliforms and coliphages below septic lines. J Environ Qual,1979,8(1):121-125
    70. Brussaard C P D. Optimization of procedures for counting viruses by flow cytometry. Appl Environ Microbiol,2004,70:1506-1513
    71. Burg J L, Grover C M, Pouletty P, Boothroyd J C. Direct and sensitive detection of a pathogenic protozoan, Toxoplasma gondii, by polymerase chain reaction. J Clin Microbiol,1989,27:1787-1792
    72. Coutinho S G, Lobo R, Dutra G. Isolation of Toxoplasma from the soil during an outbreak of toxoplasmosis in a rural area in Brazil. J Parasitol,1982,68:866-868
    73. Dabritz H A, Conrad P A. Cats and Toxoplasma:implications for public health. Zoonoses Public Health,2010,57:34-52
    74. Danovaro R, Middelboe M. Separation of free virus particles from sediments in aquatic systems. In:Wilhelm S W, Weinbauer M G, and Suttle CA (eds.) Manual of aquatic viral ecology. Waco. American Society of Limnology and Oceanography, 2010:74-81
    75. Donaldson K A, Griffin D W, Paul J H. Detection, quantitation and identification of enteroviruses from surface waters and sponge tissue from the Florida Keys using real-time RT-PCR. Water Res,2002,36:2505-2514
    76. Doran J W, Parkin T B. Defining and assessing soil quality. In Doran J W, Coleman D C, Bezdicek D F and Stewart B A, eds. Defining soil quality for a sustainable environment. SSSA, Inc., Madison, Wisconsin, USA.1994
    77. Dubey J P. Reshedding of Toxoplasma oocysts by chronically infected cats. Nature, 1976,262:213-214
    78. Dubey J P, Beattie C P. Toxoplasmosis of animals and man. CRC Press, Inc., Boca Raton, Fla.1988
    79. Dubey J P, Frenkel J K. Immunity to feline toxoplasmosis:modification by administration of corticosteroids. Vet Pathol,1974,11:350-379
    80. Dubey J P, Lunney J K, Shen S K, Kwok O C H, Ashford D A, Thulliez P. Infectivity of low numbers of Toxoplasma gondii oocysts to pigs. J Parasitol,1996,82:438-443
    81. Dubey J P, Speer C A, Shen S K, Kwok O C H, Blixt J A. Oocyst-induced murine toxoplasmosis:life cycle, pathogenicity, and stage conversion in mice fed Toxoplasma gondii oocysts. J Parasitol,1997,83:870-882
    82. Dubey J P, Swan GV, Frenkel JK. Simplified method for isolation of Toxoplasma gondii from feces of cats. J Parasitol,1972,58:1005-1006
    83. Dubey J P, Weigel R M, Siegel A M, Thulliez P, Kitron U D, Mitchell M A, Mannelli A, Mateus-Pinilla N E, Shen S K, Kwok O C H, Todd K S. Sources and reservoirs of Toxoplasma gondii infection on 47 swine farms in Illinois. J Parasitol,1995,81: 723-729
    84. Dumetre A, Darde M L. How to detect Toxoplasma gondii oocysts in environmental samples? FEMS Microbiol,2003,27:651-661
    85. Ehlers M M, Grabow W O, Pavlov D N. Detection of enteroviruses in untreated and treated drinking water supplies in South Africa. Water Res,2005,30:2253-2258
    86. EI-Tarabily K A, Sivasithamparam K. Potential of yeasts as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Mycoscience,2006, 47(1):25-35
    87. Environmental Protection Agency. Standards for the disposal of sewage sludge. Fed Regist. Washington DC.1992. Part 503:9387-9404
    88. Feng P, Lum R, Chang G W. Identification of uidA gene sequences in β-D-glucuronidase-negative Escherichia coli. Appl Environ Microbiol,1991,57: 320-323
    89. Field K G, Samadpour M. Fecal source tracking, the indicator paradigm, and managing water quality. Water Res,2007,41:3517-3538
    90. Fierer N, Bradford M A, Jackson R B. Toward an ecological classification of soil bacteria. Ecology,2007,88(6):1354-1364
    91. Fogt-Wyrwas R, Jarosz W, Mizgajska-Wiktor H. Utilizing a polymerase chain reaction method for the detection of Toxocara canis and T. cati eggs in soil. J Helminthol, 2007,81:75-78
    92. Fong T T, Lipp E K. Enteric viruses of humans and animals in aquatic environments: health risks, detection, and potential water quality assessment tools. Microbiol Mol Biol Rev.2005,69:357-371
    93. Foulds I V, Granacki A, Xiao C, Krull U J, Castle A, Horgen P A. Quantification of microcystin-producing cyanobacteria and E. coli in water by 5'-nuclease PCR. J Appl Microbiol,2002,93:825-834
    94. Fout G S, Martinson B C, Moyer M W N, Dahling D R. A multiplex reverse transcription-PCR method for detection of human entericviruses in groundwater. Appl Environ Microbiol,2003,69:3158-3164
    95. Frenkel J K, Ruiz A, Chinchilla M. Soil survival of Toxoplasma oocysts in Kansas and Costa Rica. Am J Trop Med Hyg,1975,24:439-443
    96. Ge Y H, Pei D L, Zhao Y H, Li W W, Wang S F, Xu Y Q. Correlation between antifungal agent phenazine-1-carboxylic acid and pyoluteorin biosynthesis in pseudomonas sp. M18. Curr Microbiol,2007,54:277-281
    97. Grabow W O K, De Villiers J C, Prinsloo N 1991. An assessment of methods for the microbiological analysis of shellfish. Water Sci Technol,24:413-446
    98. Grant M A, Weagent S D, Feng P. Glutamate decarboxylase genes as a prescreening marker for detection of pathogenic Escherichia coli groups. Appl Environ Microbiol, 2001,67:3110-3114
    99. Griffin D W, Donaldson K A, Paul J H, Rose J B. Pathogenic human viruses in coastal waters. Clin Microbiol Rev,2003,16:129-143
    100.Herrera P, Burghardy R C, Phillips T D. Adsorption of Salmonella enteritidis by cetylpyridinium-exchanged montmorillonite clays. Microbiology,2000,74:259-272
    101.Homan W L, Vercammen M, De Braekeleer J, Verschueren H. Identification of a 200-to 300-fold repetitive 529 bp DNA fragment in Toxoplasma gondii, and its use for diagnostic and quantitative PCR. Int J Parasitol,2000,30:69-75
    102.Horachova K, Mlejnkova H, Mlejnek P. Direct detection of bacterial fecal indicators in water samples using PCR. Water Sci Technol,2006,54:135-140
    103. Hurst C J, Gerba C P, Cech I. Effects of environmental variables and soil characteristics on virus survival in soil. Appl Environ Microbiol.1980,40(6): 1067-1079
    104.Hurst C J, Schaub S A, Sobsey M D, Farrah S R, Gerba C P, Rose J B, Goyal S M, Larkin E P, Sullivan R, Tierney J T, O'brien R T, Safferman R S, Morris M E, Wellings F M, Lewis A L, Berg G, Britton PW, Winter J A. Multilaboratory evaluation of methods for detecting enteric viruses in soils. Appl Environ Microbiol, 1991,57:395-401
    105.Ibekwe A M, Watt P M, Grieve C M, Sharma V K, Lyons S R. Multiplex fluorogenic Real-Time PCR for detection and quantification of Escherichia coli O157:H7 in dairy wastewater wetlands. Appl Envirol Microb,2002:4853-4862
    106.Iqbal S, Robinson J, Deere D, Saunders J R, Edwards C, Porter J. Efficiency of the polymerase chain reaction amplification of the uid gene for detection of Escherichia coli in contaminated water. Lett Appl Microbiol,1997,24:498-502
    107.Islam M, Doyle M P, Phatak S C, Millner P, Jiang X P. Survival of Escherichia coli O157:H7 in soil and on carrots and onions grown in fields treated with contaminated manure composts or irrigation water. Food Microbiology,2004,22(1):63-70
    108.Janssen P H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol,2006,72(3):1719-1728
    109.Jenkins M B, Bowman D D, Fogarty E A, Ghiorse W C. Cryptosporidium parvum oocyst inactivation in three soil types at various temperatures and water potentials. Soil Biol Biochem,2002,34:1101-1109
    110.Jiang J, Alderisio K A, Singh A, Xiao L. Development of procedures for direct extraction of Cryptosporidium DNA from water concentrates and for relief of PCR inhibitors. Appl Environ Microbiol,2005,71:1135-1141
    111.Jin S, Fallgren P H, Morris J M, Chen Q. Removal of bacteria and viruses from waters using layered double hydroxide. Sci Technol Adv Mat,2007,8:67-70
    112.Jones J L, Dubey J P. Waterborne toxoplasmosis — recent developments. Exp Parasitol,2010,124:10-25
    113.Juck D, Ingram J, Prevost M, Coallier J, Greer C. Nested PCR protocol for the rapid detection of Escherichia coli in potable water. Can J Microbiol,1996,42:862-866
    114.Katayama H, Shimasaki A, Ohgaki S. Development of a virus concentration method and its application to detection of enterovirus and Norwalk virus from coastal seawater. Appl Environ Microbiol,2002,68:1033-1039
    115.Kato S, Bowman D D. Using flow cytometry to determine the viability of Cryptosporidium parvum oocysts extracted from spiked environmental samples in chambers. Parasitol Res,2002,88:326-331
    116.Katzenelson E, Fattal B, Hostovesky T. Organic flocculation, an efficient second-step concentration method for the detection of viruses in tap water. Appl Environ Microbiol,1976,32:638-639
    117.Khan I U H, Gannon V, Kent R, Koning W, Lapen D R, Miller J, Neumann N, Phillips R, Robertson W, Topp E, Bochove E, Edge T A. Development of a rapid quantitative PCR assay for direct detection and quantification of culturable and non-culturable Escherichia coli from agriculture watersheds. J Microbiol Methods, 2007,69:480-488
    118.Klich M A. Soil fungi of some low-altitude desert cotton fields and ability of their extracts to inhibit Aspergillus flavus. Mycopathologia,1998,142(2):97-100
    119.Landry E F, Vaughn J M, Penello W F. Poliovirus retention in 75-cm soil cores after sewage and rainwater application. Appl Environ Microbiol,1980,40(6):1032-1038
    120.Lass A, Pietkiewicz H, Modzelewska E, Dumetre A, Szostakowska B, Myjak P. Detection of Toxoplasma gondii oocysts in environmental soil samples using molecular methods. Eur J Clin Microbiol Infect Dis,2009,28:599-605
    121.Lee H K, Jeong Y S. Comparison of total culturable virus assay and multiplex integrated cell culture-PCR for reliability of waterborne virus detection. Appl Environ Microbiol,2004,70:3632-3636
    122.Lelu M, Gilot-Fromont E, Aubert D, Richaume A, Afonso E, Dupuis E, C Gotteland, Marnef F, Poulle M, Dumetre A, Thulliez P, Darde M, Villena I. Development of a sensitive method for Toxoplasma gondii oocyst extraction in soil. Vet Parasitol,2011, 183:59-67
    123.Lewis G D, Metcalf T G. Polyethylene Glycol precipitation for recovery of pathogenic viruses, including hepatitis A viruses and human rotaviruses, from oyster, water, and sediment samples. Appl Environ Microbiol 1988,54:1983-1988
    124.Lindergard G, Nydam D V, Wade S E, Schaaf S L, Mohammed H O. A novel multiplex polymerase chain reaction approach for detection of four human infective Cryptosporidium isolates:Cryptosporidium parvum, types H and C, Cryptosporidium canis, and Cryptosporidium felis in fecal and soil samples. J Vet Diagn Invest,2003, 15:262-267
    125.Lindergard G, Wade S E, Schaaf S, Barwick R S, Mohammed H O. Detection of Cryptosporidium oocysts in soil samples by enzyme-linked immunoassay. Vet Parasitol,2001,94:163-176
    126.Lleo M M, Bonato B, Tafi M C, Signoretto C, Pruzzo C, Canepari P. Molecular vs culture methods for the detection of bacterial faecal indicators in groundwater for human use. Lett Appl Microbiol,2005,40:289-294
    127.Ludwig W, Schleifer K H. How quantitative is quantitative PCR with respect to cell counts? Syst Appl Microbiol,2000,23:556-562
    128.Matsuo J, Kimura D, Rai S K, Uga S. Detection of Toxoplasma oocysts from soil by modified sucrose flotation and PCR methods. Southeast Asian J Trop Med Public Health,2004,35:270-274
    129.Meays C L, Broersma K, Nordin R, Mazumder A. Source tracking fecal bacteria in water:a critical review of current methods. Journal of Environ Manage,2004,73: 71-79
    130.Meerburg B G, Kijlstra A. Changing climate—changing pathogens:Toxoplasma gondii in North-Western Europe. Parasitol Res,2009,105:17-24
    131.Mehnert D U. Reuso de efluente domestico na agricultura e a contaminacao ambiental entericos humanos. Biologico,2003,65:19-21
    132.Miller M A, Gardner I A, Kreuder C, Paradies D M, Worcester K R, Jessup D A, Dodd E, Harris M D, Ames J A, Packham A E, Conrad P A. Coastal fresh water runoff is a risk factor for Toxoplasma gondii infection of southern sea otters (Enhydra lutris nereis). Int J Parasitol,2002,32:997-1006
    133.Miura T, Masago Y, Chan Y M, Imai T, Omura T. Detection of bacteria and enteric viruses from river and estuarine sediment. J Water Environ Tech,2009,7:307-316
    134.Mizgajska-Wiktor H, Jarosz W. A comparison of soil contamination with Toxocara canis and Toxocara cati eggs in rural and urban areas of Wielkopolska district in 2000-2005. Wiad Parazytol,2007,53(3):219-25
    135.Monpoeho S, Maul A, Mignotte-Cadiergues B, Schwartzbrod L, Billaudel S, Ferre V. Best Viral Elution Method Available for Quantification of Enteroviruses in Sludge by Both Cell Culture and Reverse Transcription-PCR. Appl Environ Microbiol.2001,67: 2484-2488
    136.Mukherjee A, Cho S, Scheftel J, Jawahir S, Smith K, Diez-Gonzalez F. Soil survival of Escherichia coli O157:H7 acquired by a child from garden soil recently fertilized with cattle manure. J Appl Microbiol,2006,101:429-436
    137.Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res,2000,28:e63
    138.Ortega-Pacheco A, Acosta-Viana K Y, Guzman-Marin E, Uitzil-Alvarez B, Rodriguez-Buenfil J C, Jimenez-Coello M. nfection dynamic of Toxoplasma gondii in two fattening pig farms exposed to high and low cat density in an endemic region. Vet Parasitol,2011,175:367-371
    139.Ramirez N E, Sreevatsan S. Development of a sensitive detection system for Cryptosporidium in environmental samples. Vet Parasitol,2006,136:201-213
    140.Rapp D, Potier P, Jocteur-Monrozier L, Richaume A. Prion degradation in soil: possible role of microbial enzymes stimulated by the decomposition of buried carcasses. Environ Sci Technol,2006,40 (20):6324-6329
    141.Rompre A, Servais P. Detection and enumeration of coliforms in drinking water: current methods and emerging approaches. J Microbiol Meth,2002,49:31-54
    142.Rudolfs W, Falk L L, Ragotzkie R A. Literature Review on the Occurrence and Survival of Enteric, Pathogenic, and Related Organisms in Soil, Water, Sewage, and Sludges, and on Vegetation:Ⅱ. Animal parasites. Sewage and Industrial Wastes,1950
    143.Sambrook J, Fritsch E F, Maniatis T. Molecular cloning:a laboratory manual.2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.1989.490
    144.Schares G, Herrmann D C, Beckert A, Schares S, Hosseininejad M, Pantchev N, Globokar Vrhovec M, Conraths, F J. Characterization of a repetitive DNA fragment in Hammondia hammondi and its utility for the specific differentiation of H. hammondi from Toxoplasma gondii by PCR. Mol Cell Probes,2008,22:244-251
    145.Schlindwein A D, Simoes C M O, Barardi C R M. Comparative study of two extraction methods for enteric virus recovery from sewage sludge by molecular methods. Mem Inst Oswaldo Cruz,2009,104:576-579
    146.Schmidt E L, Bankole R O. Specificity of Immunofluorescent Staining for Study of Aspergillus flavus in Soil. Appl Environ Microbiol,1965,13(5):673-679
    147.Scott T M, Rose J B, Jenkins T M, Farrah S R, Lukasik J. Microbial Source Tracking: Current Methodology and Future Directions. Appl Environ Microbiol,2002,68(12): 5796-5803
    148.Sen A, Harvey T, Clausen J. A microsystem for extraction, capture and detection of E. coli O157:H7. Biomed Microdevices,2011,13:705-715
    149.Shi K, Wang L, Zhou Y H, Yu Y L, Yu JQ. Effects of calcium cyanamide on soil microbial communities and Fusarium oxysporum f. sp. Cucumberinum. Chemosphere, 2009,75(7):872-877
    150.Smith H V, Caccio S M, Tait A, McLauchlin J, Thompson R C A.2006. Tools for investigating the environmental transmission of Cryptosporidium and Giardia infections in humans. Trends Parasitol,2006,22(4):160-167
    151.Sotiriadou I, Karanis P. Evaluation of loop-mediated isothermal amplification for detection of Toxoplasma gondii in water samples and comparative findings by polymerase chain reaction and immunofluorescence test (IFT). Diagn Microbiol Infect Dis,2008,62:357-365
    152.Stagno S, Dykes A C, Amos C S, Head R A, Juranek D D, Walls K. An outbreak of toxoplasmosis linked to cats. Pediatrics,1980,65:706-712
    153.Stark J M, Firestone M K. Mechanisms for soil moisture effects on activity of nitrifying bacteria. Appl Environ Microbiol,1995,61(1):218-221
    154.Stevenson B S, Eichorst S A, Wertz J T, Schmidt T M, Breznak J A. New strategies for cultivation and detection of previously uncultured microbes. Appl Environ Microbiol,2004,70:4748-4755
    155.Strauch D, Ballarini G. Hygienic aspects of the product ion and agricultural use of animal wastes. J Vet Med,1994,41:176-182
    156.Suttle C A. Marine viruses:major players in the global ecosystem. Nature Rev Microbiol.2007,5:801-812
    157.Suttle C A, Chan A M. Cottrell M T. Infection of phytoplankton by viruses and reduction of primary productivity. Nature,1990,347:467-469
    158.Tartera C, Jofre J. Bacteriophages active against Bacteroides fragilis in sewage-polluted waters. Appl Environ Microbiol,1987,53:1632-1637
    159.Tavalla M, Oormazdi H, Akhlaghi L, Razmjou E, Lakeh MM, Shojaee S, Hadighi R, Meamar AR. Prevalence of parasites in soil samples in Tehran public places. Afr J Biotechnol,2012,11(20):4575-4578
    160. Tsen H Y, Lin C K, Chi W R. Development and use of 16S rRNA genetargeted PCR primers for the identification of Escherichia coli cells in water. J Appl Microbiol, 1998,85:554-560
    161.Villena I, Aubert D, Gomis P, Ferte H, Inglard J C, Denis-Bisiaux H, Dondon J M, Pisano E, Ortis N, Pinon J M. Evaluation of a strategy for Toxoplasma gondii oocyst detection in water. Appl Environ Microbiol,2004,70:4035-4039
    162.Walker M J, Montemagno C, Bryant J C, Ghiorse W C. Method detection limits of PCR and immunofluorescence assay for Crypiosporidium parvum in soil. Appl Environ Microbiol,1998,64(6):2281-2283
    163.Walker M, Redelman D. Detection of Cryptosporidium parvum in soil extracts. Appl Environ Microbiol,2004,70(3):1827-1829
    164.Watson R J, Blackwell B. Purification and characterization of a common soil component which inhibits the polymerase chain reaction. Can J Microbiol,2000,46: 633-642
    165.Williams A P, Roberts P, Avery L M, Killham K, Jones D L. Earthworms as vectors of Escherichia coli O157:H7 in soil and vermicomposts. FEMS Microbiol Ecol,2006, 58:54-64
    166. Williamson K E, Wommack K E, Radosevich M. Sampling natural viral communities from soil for culture-independent analyses. Appl Environ Microbiol,2003,69: 6628-6633
    167. Wilson J B, Russell K E. Isolation of Bacillus anthracis from soil stored 60 years. J Bacteriol,1964,87(1):237
    168.Winget D M, Wommack K E. Randomly-amplified polymorphic DNA (RAPD) PCR as a tool for assessment of marine viral richness. Appl Environ Microbiol,2008,74: 2612-2618
    169.Yang W, Lindquist H D, Cama V, Schaefer III F W, Villegas E, Fayer R, Lewis E J, Feng Y, Xiao L. Detection of Toxoplasma gondii oocysts in water sample concentrates by real-time PCR. Appl Environ Microbiol,2009,75:3477-3483
    170.Zengler K, Toledo G, Rappe M, Elkins J, Mathur E J, Short J M, Keller M. Cultivating the uncultured. PNAS,2002,99(24):15681-15686
    171.Zilberman A, Zimmels Y, Starosvetsky J, Zuckerman U, Armon R. A two-phase separation method for recovery of Cryptosporidium oocysts from soil samples. Water Air Soil Poll,2009,203:325-334
    172.Zhou J Z, Bruns M A, Tiedje J M. DNA recovery from soils of diverse composition. Appl Environ Microbiol,1996,62:316-322