基于广义局部频率的非线性非平稳信号故障特征提取方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
振动信号的特征提取一直是设备状态监测及故障诊断领域的研究前沿,特别是大型复杂装备系统早期故障、微弱故障及多源复合故障的非线性非平稳信号特征提取问题存在着更大的困难,已成为该领域最具挑战性的研究热点。基于对频率内涵本质的重新考察和认识,本文提出了广义局部频率新概念,深入开展了适于非线性非平稳信号故障特征提取方法研究,并成功应用于往复压缩机组多源冲击振动故障特征的提取。该研究对信号频谱及时频分析理论发展具有重要科学意义,对具有非线性非平稳信号特点的其它工程领域的特征提取也具有广泛的应用前景。
     在频谱及时频分析方法中广泛应用的全局频率(即周期的倒数)与瞬时频率(即相位的导数)概念,分别在描述信号的整体概貌及局部细节特征方面发挥了重要作用。然而,它们在表征非线性非平稳信号特征方面仍然存在局限性,为此,本文提出了广义局部频率新概念及其定义,通过构造广义局部频率的频域和时频域表达方法,使其兼容全局频率和瞬时频率优势的同时,克服了全局频率概念只对周期信号才具有物理意义而无法描述频率及幅值随时间变化非周期信号特征的缺陷,弥补了瞬时频率只对窄带信号才能给出合理物理解释而损失众多大尺度频率信息的不足。此外,通过仿真实例,对广义局部频率概念的适用性进行验证,表明了广义局部频率定义的准确性。
     以短时Fourier变换、小波变换、Wigner-Ville分布、Chirplet变换、EMD及LMD等为基础的时频分析方法,在旋转机械的典型故障诊断过程中发挥着非常有效的作用。但是,随着故障诊断领域向着大型复杂装备系统的延伸,振动信号表现出较强的非线性、非平稳及非高斯等复杂特性,时频分布变得非常复杂,频带与故障激励之间缺乏映射关系,许多频率成分物理意义不明确,难以提取出足以识别故障的有用特征信息。为此,本文提出了基于自适应波形分解的广义局部频率时频分析方法,实现了多分量非平稳信号的广义局部频率时频特征提取,摆脱了现有时频分析方法依赖先验知识将信号按基函数展开思想的束缚,具有良好的自适应性。此外,为了减少噪声对非平稳信号时频分析的影响,提出了将自适应波形分解与互信息法相融合的降噪技术,通过仿真实例对比,验证了其有效性。
     功率谱图出现连续谱峰及噪声背景等现象往往作为辨识系统处于混沌状态的重要依据。但是,功率谱是以平稳假设为前提,在分析具有非平稳性的非线性时间序列时存在明显缺陷。为此,本文提出了基于广义局部频率的频域分析方法,以Duffing系统为对象,揭示了系统演化过程中的频域分岔现象,克服了功率谱分析时产生的虚假频率信息,有效表征了不同系统状态下非线性时间序列频域结构特点及分布规律。另外,通过基于自适应波形分解的广义局部频率解调分析,发现了混沌时间序列具有频率调制特性及频率调制的相似性特征。
     广义局部频率频域和时频域特征量虽然能够准确形象地描述非线性非平稳信号本质信息,但其特征值受噪声及样本选取的影响,不同信号特征量级差别较大,分析结果的可比性、可重复性及稳定性较差。为了弥补这方面的不足,本文应用Lempel-Ziv复杂度方法,定量分析了广义局部频率时频特征的复杂性,揭示出的信号时频结构相对于时域结构更加简洁、物理意义更加明确,更能够准确辨识各信号特征类型。通过对滚动轴承振动信号的实例分析,进一步验证了广义局部频率时频特征提取及其复杂测度分析的有效性。
     往复压缩机组多源冲击振动信号表现出较强的非线性非平稳特征,现有时频分析方法难以提取出足以识别故障的特征信息,在本文理论研究基础上,应用广义局部频率谱分析与时频分析方法,有效揭示了气阀不同状态下振动信号的整体概貌统计特征及局部细节时变特征,为往复压缩机组气阀故障诊断提供了更加丰富及意义明确的特征依据。另外,应用Lempel-Ziv复杂度方法对气阀信号的时域与时频域特征进行复杂测度分析,结果表明气阀信号的广义局部频率时频特征结构相比于时域结构更加简洁,在一定程度上降低了噪声带来的随机性干扰,更能够有效表征不同气阀状态的非线性关系,并分别给出了其LZC特征的定量参考标准,为往复压缩机气阀故障诊断提供了参考依据。
Feature extraction of vibration signal has always been the frontier in conditionmonitoring and fault diagnosis of equipment. Particularly, there exist greatdifficulties in feature extraction of nonlinear nonstationary signal of early fault, weakfault and multiple faults for large and complex equipment. It has become the mostchallenging problem in the field. Based on the re-examining and re-understanding offrequency, a novel concept of general local frequency is proposed. The research onfault feature extraction of nonlinear nonstationary signal is investigated andsuccessfully applied to the multi-source impact vibration signal of reciprocatingcompressor. This study has important scientific significance in development ofspectrum analysis and time-frequency analysis. It also has broad application prospectin other nonlinear nonstationary engineering fields.
     The concept of global frequency (i.e., the reciprocal of periodic) andinstantaneous frequency (i.e. the derivative of phase) has been widely used inspectrum analysis and time-frequency analysis respectively. They play an importantrole in describing the overview and detail of signals. However, there are also somelimitations in feature extraction of nonlinear nonstationary signal. To solve thisproblem, a novel concept of general local frequency is proposed, which presentsboth the advantage of global frequency and instantaneous frequency according to theexpression in frequency domain and time-frequency domain. It not only overcomethe limitation of global frequency which is meaningful for period signal and can notdescribe the non-period signal with varying frequency and amplitude, but also solvethe problem of instantaneous frequency which is defined for narrow-band signal andlack of many large-scale frequency information. In addition, some simulations aretaken as example to verify the applicability of general local frequency, whichdemonstrate the accuracy of general local frequency.
     Time-frequency analysis techniques, such as short time Fourier transform, wavelet transform Wigner-Ville distribution, chirplet transform, empirical modeldecomposition and local mean decomposition, have been played an effective role infault diagnosis of rotating machinery. However, with the extension of fault diagnosistoward large and complex equipment, whose vibration signal presents complexcharacteristics of nonlinearity, nonstationarity and non-Gaussian. Its time-frequencydistribution will become very complicated. Between the frequency band and faultfeature is lack of mapping. The physical meaning of some frequency components isnot clear, and it is difficult to extract useful feature information. To solve thisproblem, a novel time-frequency analysis method of general local frequency basedon adaptive waveform decomposition is presented for extracting the time-frequencyfeatures of multi-component nonstationary signal. The proposed method has gottenrid of the thought that signal is composed by seriers of basis function which rely onsome priori knowledge, and it still has a well self-adaptive. In addition, a fusionnoise reduction technology based on adaptive waveform decomposition and mutualinformation is investigated and the simulation results verify its effectiveness.
     The phenomenon that power spectrum contains the continuous peaks and noisebackground is often an important basis for recognizing system in chaotic state.However, the power spectrum is based on the stationary assumption, which is noteffective in analyzing the nonlinear nonstationary time series. Therefore, a novelfrequency domain analysis method based on general local frequency is proposed.The Duffing system is taken as example, the bifurcation phenomenon in frequencydomain of Duffing system is investigated. The method not only can over come thefalse frequency information generated by the power spectrum, but also caneffectively describe the structure and distribution of nonlinear signal in frequencydomain. In addition, the modulation characteristic and modulation similarity ofchaos time series are found by general local frequency analysis based on adaptivewaveform decomposition.
     Although the essential information of nonlinear nonstationary signals can be described by the features in frequency-domain and time-frequency domain ofgeneral local frequency, their values are seriously influenced by noise and sampleselection. There are great differences in magnitude order for various signals. Thecomparability, repeatability and stability of results are poor. In order to compensatethese deficiencies, the Lempel-Ziv complexity is applied to analyze thetime-frequency complexity of general local frequency. Comparing the time domainanalysis, the structure of time-frequency is simpler, the physical meaning is moreclearly and the type of signal is identified more accurately. Vibration signals ofrolling bearing are taken as examples, and the effectiveness of complexity analysisof time-frequency feature extracted by general local frequency is verified.
     Multiple source impact signals of reciprocating compressor present typicalnonlinear nonstationary characteristics. It is difficult to extract feature informationby existing time-frequency analysis methods. According to the theoretical research inthis paper, the method of spectrum analysis and time-frequency analysis based ongeneral local frequency is applied to describe the overview and detail of vibrationsignals for gas valve in different states, which can supply more rich and meaningfulfeatures for fault diagnosis of reciprocating compressor. In addition, the Lempel-Zivcomplexity is also applied to feature analysis in time domain and time-frequencydomain of gas valve signal. The results indicate that the structure of time-frequencyis simpler than time domain structure, and the proposed method can reduce theinterference of randomness brought by noise in some extent. So it is more effectivelyin describing the nonlinear relationship of gas valve in different states. In addition,the standard of LZC feature for gas valve in different states is given, which can beused as the auxiliary reference of fault diagnosis for reciprocating compressor.
引文
[1] Cheng Junsheng, Yu Dejie, Yang Yu. A fault diagnosis approach for roller bearings basedon EMD method and AR model[J]. Mechanical Systems and Signal Processing,2006,20(2):350-362.
    [2]陈进,姜鸣.高阶循环统计量理论在机械故障诊断中的应用[J].振动工程学报,2001,14(2):125-134.
    [3]黄昭毅.对我国无量纲诊断的历史回顾与今后的期望(一)[J].中国设备管理,2000,(10):34-35.
    [4]黄昭毅.对我国无量纲诊断的历史回顾与今后的期望(二)[J].中国设备管理,2000,(11):39-41.
    [5]黄昭毅.对我国无量纲诊断的历史回顾与今后的期望(三)[J].中国设备管理,2000,(12):37-38.
    [6]屈梁生.机械故障的全息诊断原理[M].北京:科学出版社,2007.
    [7]屈梁生.机械监测中理论与方法[M].西安:西安交通大学出版社,2009.
    [8]何正嘉,訾艳阳,孟庆丰,等.机械设备非平稳信号的故障诊断原理[M].北京:高等教育出版社,2001.
    [9] Roberts M. J. Signals and Systems: Analysis Using Transform Methods and MATLAB2nd Edition[M]. New York: McGraw-Hill,2011.
    [10] Hyvarinen Aapo, Ramkumar Pavan, Parkkonen Lauri, et al. Independent componentanalysis of short-time Fourier transforms for spontaneous EEG/MEG analysis[J].NeuroImage,2010,49(1):257-271.
    [11] Forte L. A., Garufi F., Milano L., et al. Blind source separation and Wigner-Villetransform as tools for the extraction of the gravitational wave signal[J]. Physical ReviewD,2011,83(12):122006.
    [12] Zou L. H., Liu A. P., Ma X., et al. Synthesis of vibration waves based on wavelettechnology[J]. Shock and Vibration,2012,19(3):391-403.
    [13] Wang Yingxue, He Zhengjia, Zi Yanyang. Enhancement of signal denoising and multiplefault signatures detecting in rotating machinery using dual-tree complex wavelettransform[J]. Mechanical Systems and Signal Processing,2010,24(1):119–137.
    [14] N. E. Huang, Z. Shen, S. R. Long. The empirical mode decomposition and the Hilbertspectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of theRoyal Society of London Series A,1998,454(1971):903-995.
    [15] N. E. Huang, M. L. C. Wu, S. R. Long. A confidence limit for the empirical modedecomposition and Hilbert spectral analysis[J]. Proceedings of the Royal Society ofLondon Series A,2004,459(2037):2317-2345.
    [16] J. S. Smith. The local mean decomposition and its application to EEG perception data[J].Journal of the Royal Society Interface,2005,2(5):443–454.
    [17] Wang Yingxue, He Zhengjia, Xiang Jiawei, et al. Application of local meandecomposition to the surveillance and diagnostics of low-speed helical gearbox[J].Mechanical Systems and Signal Processing,2012,(47):62–73.
    [18]谭继勇,陈雪峰,何正嘉.冲击信号的随机共振自适应检测方法[J].机械工程学报,2010,46(23):61-66.
    [19] David Vakman. On the analytic signal, the Teager-Kaiser energy algorithm, and othermethods for defining amplitude and frequency[J]. IEEE Transactions on SignalProcessing,1996,44(4):791–797.
    [20]吕金虎,陆君安,陈士华.混沌时间序列分析及其应用[M].武汉:武汉大学出版社,2005.
    [21]潘磊,沙斐.非线性时间序列门限自回归模型在环境空气质量预报中的应用[J].上海环境科学,2008,26(5):212-214.
    [22] Li T. H. S., Tsai S. H. T–S fuzzy bilinear model and fuzzy controller design for a class ofnonlinear systems[J]. Fuzzy Systems, IEEE Transactions on,2007,15(3):494-506.
    [23] Ishizuka K., Kato H. A feature for voice activity detection derived from speech analysiswith the exponential autoregressive model[C] IEEE International Conference onAcoustics, Speech and Signal Processing,2006,1: I-I.
    [24] Robert F. Engle. Autoregressive conditional heteroskedasticity with estimates of thevariance of United Kingdom inflation[J]. Econometrica,1982,50(4):987–1008.
    [25] Sa di Y., Zako an J. M. Stationarity and geometric ergodicity of a class of nonlinearARCH models[J]. The Annals of Applied Probability,2006,16(4):2256-2271.
    [26] Higgins M. L., Bera A. K. A class of nonlinear ARCH models[J]. International EconomicReview,1992:137-158.
    [27] Tim Bollerslev. Generalized autoregressive conditional heteroscedasticity[J]. Journal ofEconometrics,1986,31(3):307–327.
    [28] Israel Cohen. Modeling speech signals in the time-frequency domain using GARCH[J].Signal Processing,2004,84(12):2453–2459.
    [29] Tao X., Xu J., Yang L., Liu Y. Bearing fault diagnosis with a MSVM based on a GARCHmodel[J]. Journal of Vibration and Shock,2010,5:3.
    [30] Pham H. T., Yang B. S. Estimation and forecasting of machine health condition usingARMA/GARCH model[J]. Mechanical Systems and Signal Processing,2010,24(2):546-558.
    [31] Y. Grenier. Time-dependent ARMA modeling of non-stationary signals[J]. IEEETransactions on ASSP,1983,31(4):899–911.
    [32]陶新民,徐晶,杨立标,等.基于GARCH模型MSVM的轴承故障诊断方法[J].振动与冲击,2010,29(5):11-15.
    [33]马鹏程,吴莎莎,韩振芳.基于AR(1)-GARCH(1,1)模型的SHIBOR利率波动性研究[J].河北北方学院学报,2012,28(2):1-5.
    [34]吴新开,朱承志,钟义长.基于功率谱分析的非线性系统的故障诊断技术[J].湖南科技大学学报,2005,20(3):75-77.
    [35] Challinor Anthony, Lewis Antony. Linear power spectrum of observed source numbercounts[J]. Physical Review D: Particles and Fields,2011,84(4):043516-043529.
    [36] A. Rela o, L. Mu oz, J. Retamosa, et al. Power-spectrum characterization of thecontinous Gaussian ensemble[J]. Physical Review E: Statistical, Nonlinear, and SoftMatter Physics,2008,77(3):031103-031113.
    [37] Nikitin A., Stocks N. G., Bulsara A. R. Asymmetric bistable systems subject to periodicand stochastic forcing in the strongly nonlinear regime: the power spectrum[J]. PhysicalReview E: Statistical, Nonlinear, and Soft Matter Physics,2007,76(4):041138-041155.
    [38] Ogawa Jun, Tanaka Hiroaki. Importance sampling for stochastic systems under stationarynoise having a specified power spectrum[J]. Probabilistic Engineering Mechanics,2009,24(4):537-544.
    [39] Babu H., Wanare Harshawardhan. Negative and positive hysteresis in double-cavityoptical bistability in a three-level atom[J]. Physical Review A: Atomic, Molecular, andOptical Physics,2011,83(3):033818-033822.
    [40] Gong Y. Non-Gaussian noise-and system-size-induced coherence resonance of calciumoscillations in an array of coupled cells[J]. Physica A: Statistical Mechanics and itsApplications,2011,390(21):3662-3669.
    [41] Hu Y. H., Ma Z. Y. Quasi-periodic and non-periodic waves in the (2+1)-dimensionalgeneralized Broer–Kaup system[J]. Chaos, Solitons&Fractals,2007,34(2):482-489..
    [42] Braun S., Feldman M. Decomposition of non-stationary signals into varying time scales:Some aspects of the EMD and HVD methods[J]. Mechanical Systems and SignalProcessing,2011,25(7):2608-2630.
    [43]李士勇,田新华.非线性科学与复杂性科学[M].哈尔滨:哈尔滨工业大学出版社,2006.
    [44] N. H. Packard, J. P. Crutchfield, J. D. Farmers, et al. Geometry from a time series[J].Physical Review Letters,1980,45(9):712-716.
    [45]洪时中.非线性时间序列分析的最新进展及其在地球科学中的应用前景[J].地球科学进展,1999,14(6):559-565.
    [46] Floris Takens. Detecting strange attractors in turbulence[J]. Lecture Notes inMathematics,1981,898:366-381.
    [47] Kennel M. B., Brown R. Abarbanel H. D. Determing embedding dimension for phasespace reconstruction using a geometrical construction[J]. Physical Review A: Atomic,Molecular, and Optical Physics,1992,45(6):3403-4311.
    [48]马军海,陈予恕.混沌时序相空间重构的分析和应用研究[J].应用数学和力学,2000,21(11):1117-1124.
    [49]胡晓棠,胡茑庆.一种改进的选择相空间重构参数的方法[J].振动工程学报,2001,14(2):242-244.
    [50] Kugiumtzis D. State space reconstruction parameters in the analysis of chaotic timeseries—the role of the time window length[J]. Physica D: Nonlinear Phenmena,1996,95(1):13-28.
    [51]马红光,李夕海,王国华.相空间重构中嵌入维和时间延迟的选择[J].西安交通大学学报,2004,38(4):335-338.
    [52]肖方红,阎桂荣,韩宇航.混沌时序相空间重构参数确定的信息论方法[J].物理学报,2005,54(2):550-556.
    [53]张雨,任成龙.确定重构相空间维数的方法[J].国防科技大学学报,2005,27(6):101-105.
    [54]徐自励,王一扬,周激流.估计非线性时间序列嵌入延迟时间和延迟时间窗的C-C平均方法[J].四川大学学报(工程科学版),2007,39(1):151-155.
    [55] Zhang J., Luo X. Small M. Detecting chaos in pseudoperiodic time series withoutembedding[J]. Physica Review E: Statistical, Nonlinear, and Soft Matter Physics,2006,73(1-2):016216-1-5.
    [56]陆振波,蔡志明,姜可宇.基于改进的C-C方法的相空间重构参数选择[J].系统仿真学报,2007,19(11):2527-2529.
    [57] Michael T. Rosenstein, James J. Collins, Carlo J. De luca. Reconstruction expansion as ageometry-based framework for choosing proper delay Times[J]. Physica D: NonlinearPhenmena,1994,73(1-2):82-98.
    [58] A M Faster, H L Swinney. Independent coordinates for strange attractors from mutualinformation[J]. Phys.Rev.A,1986,33:1134-1140.
    [59]杨志安,王光瑞,陈式刚.用等间距分格子法计算互信息函数确定延迟时间[J].计算物理,1995,12(4):442-447.
    [60] Cao Liangyue, Mees Alistair, Judd Kevin. Dynamics from multivariate time series[J].Physica D: Nonlinear Phenmena,1998,121(1-2):75-88.
    [61] Kim H. S., Eykholt R., Salas J. D. Nonlinear dynamics, delay times and embeddingwindows[J]. Physica D: Nonlinear Phenmena,1999,127(1-2):48-60.
    [62] Grassberger P. Procaccia I. Measuring the strangeness of strange attractors[J]. Physica D:Nonlinear Phenmena,1983,9(1-2):189-208.
    [63]陈铿,韩伯棠.混沌时间序列分析中的相空间重构技术综述[J].计算机科学,2005,32(4):67-70.
    [64]罗利军,李银山,李彤,等.李雅普诺夫指数谱的研究与仿真[J].计算机仿真,2005,22(12):285-288.
    [65]许小可.基于非线性分析的海杂波处理与目标检测[D].大连:大连海事大学博士论文,2008.
    [66] Wolf Alan, Swift Jack B., Swinney Harry L., et al. Determing Lyapunov exponents froma time series[J]. Physica D: Nonlinear Phenmena,1985,16(3):285-317.
    [67] Jaap C. Schouten, Floris Takens, Cor M. van den Bleek. Maximum-likelihood estimationof the entropy of an attractor[J]. Physical Review E: Statistical, Nonlinear, and SoftMatter Physics,1994,49(1):126-129.
    [68] Grassberger, Peter. Estimation of the Kolmogorov entropy from a chaotic signal[J].Physical Review A: Atomic, Molecular, and Optical Physics,1983,28(4):2591-2593.
    [69] Tsallis C. Possible generalization of Boltzmann-Gibbs statistics[J]. Journal of StatisticalPhysics,1988,52(1-2):479-487.
    [70] A. J. Creaco, N. Kalogeropoulos. Nipotence in physics[J]. Journal of Physics:Conference Series,2013,410(1):012148479.
    [71] Steven M. Pincus. Approximate entropy as a measure of system complexity[J].Proceedings of the National Academy of Sciences of the United States of America,1991,88(6):2297-2301.
    [72] Richman J. S. Moorman J. R. Physiological time series analysis using approximateentropy and sample entropy[J]. American Journal of Physiol: Heart and CirculationPhysiolgy,2000,278(6):2039-2049.
    [73] Sofiane Ramdani, Frederic Bouchara. Influenc of noise on the algorithm[J]. Chaos,2009,19(1):3081406-3081412.
    [74] Madalena Costa, Ary L. Goldberger, C. K. Peng. Multiscale entropy analysis of complexphysiologic time series[J]. Physical Review Letter,2002,89(6):068102-068105.
    [75] Madalena Costa, Ary L. Goldberger, C. K. Peng. Multiscale entropy analysis ofbiological signals[J]. Physical review. E, Statistical, nonlinear, and soft matter physics,2005,71(1-2):021906-021923.
    [76] Lempel A., Ziv J. On the complexity of finite sequences[J]. IEEE Transactions onInformation Theory,1976,22(1):75-81.
    [77] Ziv J., Lempel A. A universal algorithm for sequential data compression[J]. IEEETransactions on Information Theory,1977,23(3):337-343.
    [78] Ziv J., Lempel A. Compression of individual sequences via variable-rate coding[J]. IEEETransactions on Information Theory,1978,24(5):530-536.
    [79] Liu Liwei, Li Dongbo, Bai Fenglan. A relative Lempel-Ziv complexity: Application tocomparing biological sequences[J]. Chemical Physics Letters,2012,530(19):107-112.
    [80]唐友福,刘树林,刘颖慧,等.基于非线性复杂测度的往复压缩机故障诊断[J].机械工程学报,2012,48(3):102-107.
    [81] A. Hubler, E. Luscher. Resonant stimulation and control of nonlinear oscillators[J].Naturwissenschaften,1989,76(2):67-69.
    [82] Edward Ott, Celso Grebogi, James A. Yorke. Controlling chaos[J]. Physical Reviewletters,1990,64(11):1196-1199.
    [83] Edward Ott, Celso Grebogi, James A. Yorke. Theory of first order phase transitions forchaotic attractors of nonlinear dynamical systems[J]. Physics letters A,1989,135(6-7):343-348.
    [84] Louis M. Pecora, Thomas L. Carroll. Synchronization in chaotic systems[J]. PhysicalReview letters,1990,64(8):821-824.
    [85]方天华.实现混沌同步的非线性变量反馈控制法[J].原子能科学技术,1998,32(1):59-64.
    [86]黄报星.自适应法控制混沌系统到达定常态或周期态[J].江汉大学学报(自然科学版),2003,31(1):5-7.
    [87]苟向锋,罗冠炜,崔永姿.利用延迟反馈方法控制调速器系统的混沌[J].兰州交通大学学报,2005,24(4):49-52.
    [88]王文杰,王光瑞,陈式刚.储存环自由电子激光器光场混沌的控制[J].物理学报,1995,44(6):862-870.
    [89]吕邻,郭治安,李岩,等.不确定混沌系统的参数识别与同伴控制器backstepping设计[J].物理学报,1995,56(1):95-100.
    [90] Wang Binghong, Bu Shouliang. Controlling the ultimate state of projectivesynchronization in chaos: application to chaotic encryption[J]. International Journal ofModern Physics B,2004,18(17-19):2415-2421.
    [91] Theiler James, Eubank Stephen, Longtin Andre, et al. Testing for nonlinearity in timeseries: The method of surrogate data[J]. Physica D: Nonlinear Phenmena,1992,58(1-4):77-94.
    [92]姜可宇,蔡志明,陆振波.一种时间序列的弱非线性检测方法[J].物理学报,2008,57(3):1471-1476.
    [93] Schreiber T. Interdisciplinary application of nonlinear time series methods[J]. PhysicsReport,1999,308(1):1-64.
    [94] Small M. Applied nonlinear time series analysis: applications in physics, physiology andfinance[M]. Singapore: World Scientific,2005.
    [95] Lucio J. H., Valdes R., Rodriguez L. R. Improvements to surrogate data methods fornonstionary time series[J]. Physical Review E: Statistical, Nonlinear, and Soft MatterPhysics,2012,85(5):056202-056220.
    [96]卢山,王海燕.证券市场的非线性和确定性检验[J].系统工程理论方法应用,2005,14(3):235-238.
    [97] Lau H. C. W., Ho G. T. S., Zhao Yi. A demand forecast model using a combination ofsurrogate data analysis and optimal neural network approach[J]. Decision SupportSystems,2013,54(3):1404-1416.
    [98] Gan Min, Huang Yunzhi, Ding Ming, et al. Testing for nonlinearity in solar radiation timeseries by a fast surrogate data test method[J]. Solar Energy,2012,86(9):2893-2896.
    [99]卢宇,贺国光.基于改进型替代数据法的实测交通流的混沌判别[J].系统工程,2005,23(6):21-24.
    [100] H. Kantz, T. Schreiber. Nonlinear time series analysis (First Edtion)[M]. Cambridge:Cambridge University Press,1997.
    [101] H. Kantz, T. Schreiber. Nonlinear time series analysis (Second Edtion)[M]. Cambridge:Cambridge University Press,2003.
    [102] Sauer T., Yorke J. A. Rigorous verification of trajectories for the computer simulation ofdynamical systems[J]. Nonlinearity,1991,4(3):961-979.
    [103] Weigend A. S. Paradigm change in prediction[J]. Philosophical Transactions of the RoyalSociety A: Mathematical, Physical and Engineering Sciences,1994,348(1688):405-420.
    [104]吕威,王和勇,姚正安,等.改进嵌入维数和时间延迟计算的GP预测算法[J].计算机科学,2009,36(5):187-190.
    [105] Tong Howell. Nonlinear time seriers: A dynamical system approach[M]. Oxford: OxfordUniversity Press,1990.
    [106] Tong Howell. Some comments on a bridge between nonlinear dynamicists andstatisticians[J]. Physica D: Nonlinear Phenomena,1992,58(1-4):299-303.
    [107] Grassbeger P, Schreiber T, Schaffrath C. Nonlinear time sequence analysis[J].International Journal of Bifurcation and Chaos,1991,1(3):521-547.
    [108]褚福磊,彭志科,冯志鹏,等.机械故障诊断中现代信号处理方法[M].北京:科学出版社,2009.
    [109] Gabor D. Theory of communication[J]. Journal on Institution of Electrical Engineers,1946,93(26):429-457.
    [110] Grossmann A, Morlet J. Decompositiion of hardy function into square integrable waveletof constant shape.[J]. SIAM Journal on Mathematical Analysis,1984,15(4):723~736.
    [111] Daubechies I. Orthonormal bases of compactly supported wavelet[J]. Communicationson Pure and Applied Mathematics,1988,41(7):909~996.
    [112] Daubechies I. The wavelet transform, time-frequency localization and signal analysis[J].IEEE Transactions on Information Theory,1990,36(5):961~1006.
    [113] Daubechies I. Ten lectures on wavlet[M]. Philadelphia: CBMS-NSF Series in AppliedMath,1992.
    [114] J.S. Byrnes. Wavelets and their Applications[M]. Netherlands: Springer,1994.
    [115] Li C. J., Ma J. Wavelet decomposition of vibrations for detection of bearing-localizeddefects[J]. NDT&E International,1997,30(3):143-149.
    [116] Selesnick I. W. Wavelets, a modern tool for signal processing[J]. Physics Today,2007,60(10):78-79.
    [117]刘树林,丛蕊,冷建成,等.小波包特征免疫检测器在设备异常状态检测中的应用[J].大庆石油学院学报,2005,29(6):101-103.
    [118] Mallat S, Hwang WL. Singularity detection and processing with wavelets[J]. IEEETransactions on Infromation Theory,1992,38(2):617-643.
    [119] Rioul O, Vetterli M. Wavelets and signal processing[J]. IEEE Signal ProcessingMagazine,1991,8(4):14-38.
    [120] Xu Y., Weaver J. B., Healy D. M., et al. Wavelet transform domain filters: A spatiallyselective noise filtration technique[J]. IEEE Transactions on Image Processing,1994,3(6)747-758.
    [121]刘树林,张嘉钟,徐敏强,等.基于小波包与神经网络的往复压缩机故障诊断方法[J].石油矿场机械,2002,31(5):1-3.
    [122] Chang S.G., Yu B., Vetterli M. Adaptive wavelet thresholding for image denoising andcompression[J]. IEEE Transactions on Image Processing,2000,9(9):1532-1546.
    [123] Staszewski W. J., Tomlinson G. R. Application of the wavelet transform to fault detectionof a spur gear[J]. Mechanical Systems and Signal Processing,1994,8(3):289~307.
    [124] Goswami J. C., Chan A. K., Chen C. K. On Solving First-kind integral equations usingwavelets on a bounded interval[J]. IEEE Trans on Antennas and Propagation,1995,43(6):614-622.
    [125] Lin J., Qu L. Feature extraction based on morlet wavelet and its application formechanical fault diagnosis[J]. Journal of Sound and Vibration,2000,234(1):135-148.
    [126] Peter W. T., Peng Y. H., Richard Y. Wavelet analysis and envelope detection for rollingelement bearing fault diagnosis---their effectiveness and flexibilities[J]. ASME Journal ofVibration and Acoustics,2001,123(3):303-310.
    [127]王建忠.小波理论及其在物理和工程中的应用[J].数学进展,1992,21(3):289-316.
    [128] Peng Z., He Y., Lu Q., Chu F. Feature extraction of the rub-impact rotor system by meansof wavelet analysis[J]. Journal of Sound and Vibration,2003,259(4):1000-1010.
    [129] Yiakopoulos C. T., Antoniadis I. A. Wavelet based demodulation of vibration signalsgenerated by defects in rolling element bearings[J]. Shock and Vibration,2002,9(6):293-306.
    [130] Pakrashi V., Basu B., O'Connor A. A statistical measure for wavelet based singularitydetection[J].ASME Journal of Vibration and Acoustics,2009,131(4):041015.1-041015.6.
    [131]王学军,马辉,孙伟,等.基于小波分析的转子碰摩故障特征提取[J].农业机械学报,2008,39(4):147-151.
    [132] Liu J., Wang W., Golnaraghi F., et al. Wavelet spectrum analysis for bearing faultdiagnostics[J]. Measurement Science&Technology,2008,19(1):015105-
    [133] Hong H. B., Liang M. Separation of fault features from a single-channel mechanicalsignal mixture using wavelet decomposition[J]. Mechanical Systems and SignalProcessing,2007,21(5):2025-2040.
    [134] Bayissa W. L., Haritos N., Thelandersson S. Vibration-based structural damageidentification using wavelet transform[J]. Mechanical Systems and Signal Processing,2008,22(5):1194-1215.
    [135]任震,何建军,黄雯莹,等.基于小波包算法的电机故障信号的压缩和重构[J].中国电机工程学报,2001,21(1):25-29.
    [136] Sweldens W. The lifting scheme: A construction of second generation waveletconstructions.[J]. Siam Journal on Mathematical Analysis,1997,29(2):511~546.
    [137] Sweldens W. The lifting scheme: a construction of second generation wavelets[J]. SIAMJournal on Mathematical Analysis,1998,29(2):511-546.
    [138] Daubechies I, Sweldens W. Factoring wavelet transforms into lifting steps[J]. Journal ofFourier Analysis and Applications,1998,4(3):247-269.
    [139] Rui Z., Wen B., Ning L, et al. Mechanical equipment fault diagnosis based on redundantsecond generation wavelet packet transform[J]. Digital Signal Processing,2010,20(1):276-288.
    [140] Piella G, Pesquet-Popescu B, Heijmans H. Adaptive update lifting with a decision rulebased on derivative filters[J]. IEEE Signal Processing Letters,2002,9(10):329-332.
    [141] Keinert F. Raising multiwavelet approximation order through lifting[J]. SIAM Journal onMathematical Analysis,2001,32(5):1032-1049.
    [142] Li H. G., Wang Q., Wu L. N. A novel design of lifting scheme from general wavelet[J].IEEE Transactions on Signal Processing,2001,49(8):1714-1717.
    [143]吴永宏,潘泉,张洪才.一类小波的构造方法研究[J].信号处理,2005,21(4):423-426.
    [144] Ding W. P., Wu F., Wu X. L., et al. Adaptive directional lifting-based wavelet transformfor image coding[J]. IEEE Transactions on Image Processing,2007,16(2):416-427.
    [145] Liu Y., Ngan K. N. Weighted adaptive lifting-based wavelet transform for imagecoding[J]. IEEE Transactions on Image Processing,2008,17(4):500~511.
    [146] Vasilyev O. V., Bowman C. Second-generation wavelet collocation method for thesolution of partial differential equations[J]. Journal of Computational Physics,2000,165(2):660~693.
    [147] Delouille V., Jansen M., von Sachs R. Second-generation wavelet denoising methods forirregularly spaced data in two dimensions[J]. Signal Processing,2006,86(7):1435-1450.
    [148] Trappe W., Liu KJR. Denoising via adaptive lifting schemes[J]. Wavelet Applications inSignal and Image Processing Viii Pts1and2,2000,4119(4):302-312.
    [149] Zhang Y. F., Li J. Wavelet-based vibration sensor data compression technique for civilinfrastructure condition monitoring[J]. Journal of Computing in Civil Engineering,2006,20(6):390-399.
    [150] Amiri M., Rabiee H. R. A new adaptive lifting scheme transform for robust objectdetection[J]. IEEE International Conference on Acoustics, Speech and Signal Processing,2006,2:749~752.
    [151] Samuel P. D., Pines D. J. Helicopter transmission diagnostics using constrained adaptivelifting[M]. American Helicopter Society59th Annual Forum: Phoenix, AZ,2003.
    [152] Samuel P. D., Pines D. J. Constrained adaptive lifting and the CAL4metric for helicoptertransmission diagnostics[J]. Journal of Sound and Vibration,2009,319(1-2):698-718.
    [153]段晨东,姜洪开,何正嘉.一种改进的第2代小波变换算法及应用[J].西安交通大学学报,2004,38(1):47-50.
    [154] Duan C., He Z. J., Jiang H. A. sliding window feature extraction method for rotatingmachinery based on the lifting scheme[J]. Journal of Sound and Vibration,2007,299(4-5):774-785.
    [155] Li Z., He Z. J., Zi Y. Y., et al. Rotating machinery fault diagnosis using signal-adaptedlifting scheme[J]. Mechanical Systems and Signal Processing,2008,22(3):542-556.
    [156] Li Z., He Z. J., Zi Y. Y., et al. Customized wavelet denoising using intra-and inter-scaledependency for bearing fault detection[J]. Journal of Sound and Vibration,2008,313(1-2):342-359.
    [157] Geronimo J. S., Hardin D. P., Massopust P. R. Fractal functions and wavelet expansionsbased on several scaling functions[J]. Journal of Approximation Theory,1994,78(3):373-401.
    [158] Kaewarsa S., Attakitmongcol K., Kulworawanichpong T. Recognition of power qualityevents by using multiwavelet-based neural networks[J]. International Journal ofElectrical Power&Energy Systems,2008,30(4):254-260.
    [159]袁静,何正嘉,訾艳阳.基于提升多小波的机电设备复合故障分离和提取[J].机械工程学报,2010,46(1):79-85.
    [160] Yuan J., He Z. J., Zi Y. Y. Gear fault detection using customized multiwavelet liftingschemes[J]. Mechanical Systems and Signal Processing,2010,24(5):1509-1528.
    [161]袁静,何正嘉,王晓东,等.平移不变多小波相邻系数降噪方法及其在监测诊断中的应用[J].机械工程学报,2009,45(4):155-160.
    [162] Yuan J., He Z. J., Zi Y. Y., et al. Adaptive multiwavelets via two-scale similaritytransforms for rotating machinery fault diagnosis[J], Mechanical System and SignalProcessing,2009,23(5):1490-1508.
    [163] Wang X., Zi Y. Y., He Z. J. Multiwavelet denoising with improved neighboringcoefficients for application on rolling bearing fault diagnosis[J]. Mechanical Systems andSignal Processing,2011,25(1):285-304.
    [164] Wang Y., Chen X., He Z. J. An adaptive inverse iteration algorithm using interpolatingmultiwavelets for structural eigenvalue problems[J]. Mechanical Systems and SignalProcessing,2011,25(2):591-600.
    [165] Wigner E. On the quantum correction for thermodynamic equilibrium[J]. PhysicalReview,1932,40(5):749~759.
    [166] Ville J. Theorie et applications de la notion de signal analytique[J]. Cables etTransmissions,1948,20(1):61-74.
    [167] Hammond J. K., White P. R. The analysis of non-stationary signals using time-frequencymethods[J]. Journal of Sound and Vibration,1996,190(3):419-447.
    [168]甘泉.改进的时频分布及其在雷达信号中的应用[D].成都:西南交通大学博士论文,2009.
    [169] Fan Y. S., Zheng G. T. Research of high-resolution vibration signal detection techniqueand application to mechanical fault diagnosis[J]. Mechanical System and SignalProcessing,2007,21(2):678~687.
    [170]刘日龙,冯志华. Margenau-Hill分布在滚动轴承故障识别中的应用[J].振动与冲击,2006,25(2):175-177.
    [171] Jeong J. C., Williams W. J. Kernel design for reduced interference distributions[J]. IEEETransactions on Signal Processing,1992,40(2):402-412.
    [172] F. Auger, P. Flandrin. Improving the readability of time-frequency and time-scalerepresentations by the reassignment method[J]. IEEE Transactions on Signal Processing,1995,43(5):1068-1089.
    [173] Meltzer G., Ivanov Y. Y. Fault detection in gear drives with non-stationary rotationalspeed-part I: The time-frequency approach[J]. Mechanical Systems and SignalProcessing,2003,17(5):1033-1047.
    [174] Qazi S., Georgakis A., Stergioulas L.K., et al. Interference suppression in the Wignerdistribution using fractional Fourier transformation and signal synthesis[J]. IEEETransactions on Signal Processing,2007,55(6):3150-3154.
    [175]程发斌,汤宝平,刘文艺.一种抑制维格纳分布交叉项的方法及在故障诊断中应用[J].中国机械工程,2008,19(14):1727-1731.
    [176]黄伟国,赵凯,鞠华,等.时频特征融合的交叉项消除及故障诊断应用[J].振动.测试与诊断,2012,32(6):920-925.
    [177]何正嘉,袁静,訾艳阳,等.机械故障诊断内积变换原理与验证[J].振动.测试与诊断,2012,32(2):175-185.
    [178]何正嘉,訾艳阳,陈雪峰,等.内积变换原理与机械故障诊断[C].杭州:第九届全国理论及应用学术会议论文集,2007.
    [179]李艳,肖怀铁,付强. Radon-Wigner变换改进算法在多目标分辨及参数估计中的应用[J].电光与控制,2006,13(3):11-14.
    [180] Namias V. The fractional Fourier transform and its application in quantum mechanics[J].IMA Journal of Applied Mathematics,1980,25(3):241-265.
    [181] Mann S., Haykin S. The chirplet transform-a generalization of Gabor’s logontransform[J]. Vision Interface,1991,91:3-7.
    [182] Mann S., Haykin S. Chirplet and warblet-novel time-frequency methods[J]. ElectronicsLetters,1992,28(2):114-116.
    [183] Mann S., Haykin S. Adaptive chirplet transform-an adaptive generalization of thewavelet transform[J]. Optical Engineering,1992,31:1243-1256.
    [184] Mann S., Haykin S. The chirplet transofrm: physical considerations[J]. IEEETransactions on Signal Processing,1995,41:2745-2761.
    [185] O’Neill J., Flandrin P. Chirp hunting[J]. Proceedings of IEEE Signal ProcessingInternational Symposium on Time-frquency Time-scale Analysis,1998:425-428.
    [186] Bultan A., A four-parameter atomic decomposition of chirplets[J]. IEEE Transactions onSignal Processing,1999,47(3):731-744.
    [187] Yin Q., Qian S., Feng A. A fast refinement for adaptive Gaussian chirpletdecomposition[J]. IEEE Transactions on Signal Processing,2002,50(6):1298-1306.
    [188] Mallat S., Zhang Z. Matching pursuit with time-frquency dictionaries[J]. IEEETransaction on Signal Processing,1993,41:3397-3415.
    [189] Chen S. S., Donoho D. L., Saunder M. A. Atomic decomposition by basis pursuit. SIAMJournal on Scientific Computing,1998,20(1):33-61.
    [190] N.E. Huang, Z. Shen, S.R. Long, The empirical mode decomposition and the Hilbertspectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of theRoyal Society of London Series A,1998,454(1971)903-995.
    [191]王衍学.机械故障监测诊断的若干新方法及其应用研究[D].西安:西安交通大学博士论文,2009.
    [192]邓拥军,王伟,钱成春,等. EMD方法及Hilbert变换中边界问题的处理[J].科学通报,2001,46(3):114-118.
    [193]黄大吉,赵进平,苏纪兰.希尔伯特-黄变换的端点延拓[J].海洋学报,2003,25(1):1-11.
    [194]刘慧婷,张星,程家兴.基于多项式拟合算法的EMD端点问题的处理[J].计算机工程与应用,2004,40(16):84-86.
    [195]程军圣,于德介,杨宇. Hilbert一Huang变换端点效应问题的探讨[J].振动与冲击,2005,24(6):40-42.
    [196]程军圣,于德介,杨宇.基于支持矢量回归机的Hilbert一Huang变换端点效应问题的处理方法[J].机械工程学报,2006,42(4):23-31.
    [197]杨建文,贾民平.希尔伯特一黄谱的端点效应分析及处理方法研究[J].振动工程学报,2006,19(2):283-288.
    [198] Qi K. Y., He Z. J., Zi Y. Y. Cosine window-based boundary processing method for EMDand its application in rubbing fault diagnosis[J]. Mechanical Systems and SignalProcessing,2007,21(7):2750-2760.
    [199]胡爱军,安连锁,唐贵基. Hilbert-Huang变换端点效应处理新方法[J].机械工程学报,2008,44(4):154-158.
    [200]杨永锋,吴亚锋,任兴民,等.基于最大Lyapunov指数预测的EMD端点延拓[J].物理学报,2009,58(6):3762-3746.
    [201]张进林,张榆锋,张燕,等.经验模态分解端点效应抑制的常用方法比较研究[J].云南大学学报物理学报(自然科学版),2010,32(4):406-412.
    [202] Deering R., Kaiser J. E. The use of a masking signal to improve empirical modedecomposition[J].2005IEEE International Conference on Acoustics, Speech, and SignalProcessing,2005,4:485-488.
    [203] Senroy N., Suryanarayanan S., Ribeiro P. F. An improved Hilbert-Huang method foranalysis of time-varying waveforms in power quality[J]. IEEE Transactions on PowerSystems,2007,22(4):1843-1850.
    [204]全海燕,刘增力,吴庆畅. EMD模态混叠消除及其在语音基音提取中的应用研究[J].昆明理工大学学报(理工版),2006,31(4):43-44.
    [205] Wu Z., Huang N. E. Ensemble Empirical Mode Decomposition: a noise-assisted dataanalysis method[J]. Advances in Adaptive Data Analysis,2009,1(1):1-41.
    [206]赵玲,秦树人,李宁,等.运用改进掩膜信号法的经验模态分解[J].振动.测试与诊断,2010,30(4):434-439.
    [207]胡爱军,孙敬敬,向玲.经验模态分解中的模态混叠问题[J].振动.测试与诊断,2011,31(4):429-434.
    [208]汤宝平,董绍江,马靖华.基于独立分析的EMD模态混叠消除方法研究[J].仪器仪表学报,2012,33(7):1477-1482.
    [209] Peel M. C., McMahon T. A., Pegram G. G. S. Assessing the performance of rationalspline-based empirical mode decomposition using a global annual precipitation dataset[J].Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences,2009,465(2106):1919-1937.
    [210] Q. Chen, N. E. Huang, S. Riemenschneider, et al. A B-spline approach for empiricalmode decomposition[J]. Advances in Computational Mathematics,2006,24(1-4):171-195.
    [211] Kopsinis Y., McLaughin S. Improved EMD using doubly-iterative sifting and high orderspline interpolation[J]. Eurasip Journal on Advances in Signal Processing,2008,2008:120.
    [212] Qin S. R, Zhong Y. M. A new envelope algorithm of Hilbert-Huang Transform[J].Mechanical System and Signal Processing,2006,20(8):1941-1952.
    [213] Hawley Stephen D., Atlas Les E., Chizeck Howard J. Some properties of an empiricalmode type signal decomposition algorithm[J]. IEEE Signal Process Letters,2010,17(1):24-27.
    [214]朱赛,尚伟.经验模态分解中包络线算法[J].火力与指挥控制,2012,37(9):125-128.
    [215] Rilling G., Flandrin P. One or two frequencies? The empirical mode decompositionanswers[J]. IEEE Transactions on Signal Processing,2008,56(1):85-95.
    [216]胡劲松,杨世锡.基于能量的振动信号经验模态分解终止条件[J].振动.测试与诊断,2009,29(1):19-22.
    [217] Andrade A. O., Kyberd P. J., Taffler S. D. A novel spectral representation ofelectromyographic signals[C]. Proceedings of the25th Annual International Conferenceof the IEEE EMBS Cancun,2003,3:2598-2601.
    [218] Fan X., Zuo M. J. Machine fault feature extraction based on intrinsic mode functions[J].Measurement Science and Technology,2008,19(4):1-12.
    [219] J. C. Echeverria, J. A. Crowe, M. S. Woolfson, et al. Application of empirical modedecomposition to heart rate variability analysis[J]. Medical&Biological Engineering&Computing,200139(4):471-479.
    [220] John I. S., Ying S. Assessment of chaotic parameters in nonstationary electrocardiogramsby use of empirical mode decompostion[J]. Annals of Biomedical Engineering,2004,32(10):1348-1354.
    [221] H. Liang. Empirical mode decomposition: a method for analyzing neural data[J].Neurocomputing,2005,65-66:801-807.
    [222] M. Bennett. Empirical mode decomposition and tissue harmonic imaging[J]. Ultrasoundin Med.&Biol.,2005,301(8):1051-1061.
    [223] Hualou Liang, Qiu-Hua Lin, J. D. Chen. Application of the empirical modedecomposition to the analysis of esophageal manometric data in gastroesophageal refluxdisease[C]. Proceeding of the26th Annual International Conference of the IEEE EMBS,San Francisco, CA, USA, September1-5,2004.
    [224] J. C. Nunes, Y. Bouaoune, E. Delechelle, et al. Image analysis by bidimensionalempirical mode decomposition[J]. Image and Vision Computing,2003,21:1019-1026.
    [225] H. Liang.Empirical mode decomposition of field potentials from macaque V4in visualspatial attention[J]. Biological Cybernetics,2005,92(6):380-392.
    [226] Loutridis S. J. Damage detection in gear systems using empirical mode decomposition[J].Engineering structrue,2004,26(12):1833-1841.
    [227] Zhang Y., Gao Y., Wang L., et al. The removal of wall components in doppler ultrasoundsignals by using the empirical mode decomposition algorithm[J]. IEEE Trans Biomed.Eng.,2007,54(9):1631-1642.
    [228] L. Hadjileontiadis. Emprical mode decomposition and fractal dimension filter[J]. IEEEEngineering in Medicine and Biology Magazine,2007,26(1):30-39.
    [229] Martin Arundell. Hilbert transform of voltammetric data[J]. ElectrochemistryCommunication,2004,6(4):366-372.
    [230] A. D. Veltcheva, C. Guedes Soares. Identification of the components of wave spectra bythe Hilbert Huang transform method[J]. Applied Ocean Research,2004,26(1):1-12.
    [231] Liu B., Riemenschneider S., Xu Y. Gearbox fault diagnosis using empirical modedecomposition and Hilbert spectrum[J]. Mechanical Systems and Signal Processing,2006,20(3):718-734.
    [232] Fan X. F., Zuo M. J. Gearbox fault detection using Hilbert and wavelet packettransform[J]. Mechanical Systems and Signal Processing,2006,20(4):966-982.
    [233]向玲,朱永利,唐贵基. HHT方法在转子振动故障诊断中的应用[J].中国电机工程学报,2007,27(35):84-89.
    [234] Cheng J. S, Yu D. J, Tang J. S, et al. Application of frequency family separation methodbased upon EMD and local Hilbert energy spectrum method to gear fault diagnosis[J].Mechanism and Machine Theory,2008,43(6):712-723.
    [235] Cheng J. S, Yu D. J, Tang J. S, et al. Local rub-impact fault diagnosis of the rotor systemsbased on EMD[J]. Mechanism and Machine Theory,2008,44(4):784~791.
    [236] Babu T., Srikanth S., Sekhar A. Hilbert-Huang transform for detection and monitoring ofcrack in a transient rotor[J]. Mechanical Systems and Signal Processing,2008,22(4):905-914.
    [237]孟庆丰,李树成,焦李成.旋转机械油膜涡动稳定性特征提取与监测方法[J].振动工程学报,2007,19(4):446-451
    [238]唐贵基,向玲,朱永利.基于HHT的旋转机械油膜涡动和油膜振荡故障特征分析[J].中国电机工程学报,2008,28(2):77-81.
    [239]杨光亮,朱元清,于海英.基于HHT的地震信号自动去噪算法[J].大地测量与地球动力学,2010,30(3):39-42.
    [240] Patrick Flandrin, Gabriel Rilling. Empirical mode decomposition as a filter bank[J].IEEE Signal Processing Letters,2004,11(2):112-114.
    [241]曹寅文,宋慎义,肖井华.运动后人体心肺节律同步关系及信号的耦合方向[J].物理学报,2010,59(7):5136-5168.
    [242]侯王宾,刘天琪,李兴源.基于经验模态分解滤波的低频振荡Prony分析[J].物理学报,2010,59(5):3531-3537.
    [243]孔国杰,张培林,徐龙堂,等.基于经验模态分解的自适应滤波算法及其应用[J].信号处理,2009,25(6):958-962.
    [244] Junsheng C., Dejie Y., Yu Y. A fault diagnosis approach for roller bearings based on EMDmethod and AR model[J]. Mechanical Systems and Signal Processing,2006,20(2):350-362.
    [245] Cheng J. S., Yu D. J., Tang J., et al. Application of SVM and SVD technique based onEMD to the fault diagnosis of the rotating machinery[J]. Shock and Vibration,2009,16(1):89-98.
    [246] Yan Z., Wang Z., Ren X. Joint application of feature extraction based on EMD-ARstrategy and multi-class classifier based on LS-SVM in EMG motion classification[J].Journal of Zhejiang University-SCIENCE A,2007,8(8):1246-1255.
    [247] Liu J., Huang F., Wang X. Noise reduction of bridge vibration signal based on EMD andARMA model[J]. Journal of Railway Science and Engineering,2006,5:011.
    [248] Lou Y. J., Lu L. N., Zhu L. J. The effect of ENSO on wheat futures based on EMD andGARCH Model[J]. Applied Mechanics and Materials,2011,40:866-872.
    [249]丛蕊,高学良,刘树林,等. EMD和关联维数在往复压缩机故障诊断中的应用[J].大庆石油学院学报,2008,32(2):86-89.
    [250] Yu Y., Junsheng C. A roller bearing fault diagnosis method based on EMD energyentropy and ANN[J]. Journal of sound and vibration,2006,294(1):269-277.
    [251]董新峰,张为民,姜源.基于EMD复杂度与鉴别信息的磨削颤振预测[J].振动.测试与诊断,2012,32(4):602-607.
    [252] Deng H., Liu J., Chen Z. Infrared small target detection based on modified local entropyand EMD[J]. Chinese Optics Letters,2010,8(1):24-28.
    [253]宋晓美,孟繁超,张玉.基于包络解调分析的滚动轴承故障诊断研究[J].仪器仪表与分析监测,2012,32(1):16-19.
    [254]崔玲丽,高立新,蔡力钢,等.基于循环平稳解调的齿轮裂纹早期故障诊断研究[J].振动工程学报,2008,21(3):274-278.
    [255]张帆,丁康.广义检波解调分析的三种算法及其局限性研究[J].振动工程学报,2002,15(2):243-248.
    [256]刘红星,左洪福,姜澄宇,等.关于能量算子解调方法的研究[J].数据采集与处理,1999,14(3):298-301.
    [257] Smith J. S. The local mean decomposition and its application to EEG perception data[J].Journal of the Royal Society Interface,2005,2(5):443-454.
    [258] Liu W. Y., Zhang W. H., Han J. G., et al. A new wind turbine fault diagnosis methodbased on the local mean decomposition[J]. Renewable Energy,2012,48:411-415.
    [259]任达千.基于局域均值分解的旋转机械故障特征提取方法及系统研究[J].杭州:浙江大学,2008.
    [260]任达千,杨世锡,吴昭同,等. LMD时频分析方法的端点效应在旋转机械故障诊断中的影响[J].中国机械工程,2012,23(8):951-956.
    [261]胡劲松,杨世锡,任达千.基于样条的振动信号局域均值分解方法[J].数据采集与处理,2009,24(1):82-86.
    [262]任达千,杨世锡,吴昭同,等.基于LMD的信号瞬时频率求取方法及实验[J].浙江大学学报(工学版),2009,43(3):523-528.
    [263]任达千,杨世锡,吴昭同,等.信号瞬时频率直接计算法与Hilbert变换、Teager能量法比较[J].机械工程学报,2013,49(2).
    [264] Cheng J. S., Zhang K, Yang Y. An order tracking technique for the gear fault diagnosisusing local mean decomposition method[J]. Mechanism and Machine Theory,2012,55:67-76.
    [265] Cheng J. S., Yang Y. A rotating machinery fault diagnosis method based on local meandecomposition[J]. Digital Signal Processing,2011,22(2):356-366.
    [266]程军圣,杨宇,于德介.局部均值分解方法及其在齿轮故障诊断中的应用[J].振动工程学报,2009,22(1):76-84.
    [267]张亢,程军圣,杨宇.基于自适应波形匹配延拓的局部均值分解端点效应处理方法[J].中国机械工程,2010,4:457-462.
    [268]程军圣,张亢,杨宇,等.局部均值分解与经验模式分解的对比研究[J].振动与冲击,2009,28(5):13-16.
    [269]程军圣,史美丽,杨宇.基于LMD与神经网络的滚动轴承故障诊断方法[J].振动与冲击,2010,29(4):141-144.
    [270]程军圣,杨怡,杨宇.基于LMD的谱峭度方法在齿轮故障诊断中的应用[J].振动与冲击,2012,31(18):20-23.
    [271] Wang Y. X., He Z. J., Xiang J. W., et al. Application of local mean decomposition to thesurveillance and diagnostics of low-speed helical gearbox[J]. Mechanism and machinetheory,2012,47:62-73.
    [272] Wang Y. X, He Z. J., Zi Y. Y. A demodulation method based on improved local meandecomposition and its application in rub-impact fault diagnosis[J]. Measurement Scienceand Technology,2009,20(2):025704.
    [273]王衍学,何正嘉,訾艳阳,等.基于LMD的时频分析方法及其机械故障诊断应用研究[J].振动与冲击,2012,31(9):9-12.
    [274] Chen B. J., He Z. J., Chen X. F., et al. A demodulating approach based on local meandecomposition and its applications in mechanical fault diagnosis[J]. MeasurementScience and Technology,2011,22(5):055704.
    [275]陈保家,何正嘉,陈雪峰,等.机车故障诊断的局域均值分解解调方法[J].西安交通大学学报,2010,44(5):40-44.
    [276] Welch P. The use of fast Fourier transform for the estimation of power spectra: a methodbased on time averaging over short, modified periodograms[J]. IEEE Transactions onAudio and Electroacoustics,1967,15(2):70-73.
    [277] Tukey J W. The sampling theory of power spectrum estimates[C]. Symposium onapplications of autocorrelation analysis to physical problems,1949:13-14.
    [278] Burg J. P. A new analysis technique for time series data[J]. NATO Advanced StudyInstitute on Signal Processing, Enschede, Netherlands,1968,32.
    [279]张贤达.现代信号处理[M].北京:清华大学出版社有限公司,2002.
    [280]胡广书.现代信号处理教程[M].北京:清华大学出版社有限公司,2004.
    [281]何正嘉,訾艳阳,张西宁.现代信号处理及工程应用[M].西安:西安交通大学出版社,2007.
    [282]褚福磊.机械故障诊断中的现代信号处理方法[M].北京:科学出版社,2009.
    [283] Tretter S. Estimating the frequency of a noisy sinusoid by linear regression (Corresp.)[J].IEEE Transactions on Information Theory,1985,31(6):832-835.
    [284] Kay S. Statistically/computationally efficient frequency estimation[C]. IEEEInternational Conference on Acoustics, Speech and Signal Processing,1988:2292-2295.
    [285] Boashash B., O'Shea P., Arnold M. J. Algorithms for instantaneous frequency estimation:A comparative study[C]. SPIE,1990.
    [286] De Luigi C., Moreau E. An iterative algorithm for estimation of linear frequencymodulated signal parameters[J]. Signal Processing Letters, IEEE,2002,9(4):127-129.
    [287] Maragos P., Kaiser J. F., Quatieri T. F. Energy separation in signal modulations withapplication to speech analysis[J]. Signal Processing, IEEE Transactions on,1993,41(10):3024-3051.
    [288] Wang C., Amin M. G. Zero-tracking time-frequency distributions[C], IEEE InternationalConference on Acoustics, Speech, and Signal Processing,1997,3:2021-2024.
    [289] Boudraa A. O., Cexus J. C., Salzenstein F, et al. IF estimation using empirical modedecomposition and nonlinear Teager energy operator[C]., IEEE First InternationalSymposium on. Control, Communications and Signal Processing,2004:45-48.
    [290] Vakman D. E., Va nshte n L. A. Amplitude, phase, frequency—fundamental concepts ofoscillation theory[J]. Soviet Physics Uspekhi,2007,20(12):1002.
    [291]胡劲松.面向旋转机械故障诊断的经验模态分解时频分析方法及实验研究[D].杭州:浙江大学,2003.
    [292] Andrea S., Alberto B., Fiorenzo F. Diagnosis of induction machine-motor faults in timevarying conditions[J]. IEEE Transactions on Industrial Electronics,2009,56(11):4548-4556.
    [293]胡海峰,胡茑庆,秦国军.非线性振动声调制信号耦合特征分析[J].机械工程学报,2010,46(23):68-76.
    [294]赵艳菊,王太勇,冷永刚.级联双稳随机共振降噪下的经验模式分解[J].天津大学学报,2009,42(2):123-128.
    [295]李志农,吕亚平,韩捷.基于时频分析的机械设备非平稳信号盲分离[J].机械强度,2008,30(3):354-358.
    [296] Betta G, Liguori C, Paolillo A, et al. A DSP-based FFT-analyzer for the fault diagnosis ofrotating machine based on vibration analysis[J]. Instrumentation and Measurement, IEEETransactions on,2002,51(6):1316-1322.
    [297] Jonathan M. L, Sofia C. O. Bivariate Instantaneous Frequency and Bandwidth[J]. IEEETransactions on Signal Processing,2010,58(2):591-603.
    [298]刘庆云,李志舜,刘朝晖.时频分析技术及研究现状[J].计算机工程,2004,30(1):171-173.
    [299] Boashash B. Estimating and interpreting the instantaneous frequency of a signal. I.Fundamentals[J]. Proceedings of the IEEE,1992,80(4):520-538.
    [300] Katkovnik V., Stankovic L. J. Instantaneous frequency estimation using the Wignerdistribution with varying and data-driven window length[J]. Signal Processing, IEEETransactions on,1998,46(9):2315-2325.
    [301] Barkat B., Boashash B. Instantaneous frequency estimation of polynomial FM signalsusing the peak of the PWVD: Statistical performance in the presence of additiveGaussian noise[J]. Signal Processing, IEEE Transactions on,1999,47(9):2480-2490.
    [302] Wu T. Y., Chen J. C., Wang C. C. Characterization of gear faults in variable rotatingspeed using Hilbert-Huang Transform and instantaneous dimensionless frequencynormalization[J]. Mechanical Systems and Signal Processing,2012,30:103-122.
    [303] Ghazali M. F., Beck S. B. M., Shucksmith J. D., et al. Comparative study ofinstantaneous frequency based methods for leak detection in pipeline networks[J].Mechanical Systems and Signal Processing,2012,29(5):187-200.
    [304] Zhou Y., Chen W., Gao J., et al. Application of Hilbert-Huang transform basedinstantaneous frequency to seismic reflection data[J]. Journal of Applied Geophysics,2012.
    [305] Li W., Zhu N. H., Wang L. X. Reconfigurable instantaneous frequency measurementsystem based on dual-parallel Mach–Zehnder Modulator[J]. Photonics Journal, IEEE,2012,4(2):427-436.
    [306]王辉.输油管道微小泄漏特征提取方法研究[D].大庆,大庆石油学院,2008.
    [307]谢官模.振动力学[M].北京:国防工业出版社,2007.
    [308] Armstrong E. H. A method of reducing disturbances in radio signaling by a system offrequency modulation[J]. Proceedings of the Institute of Radio Engineers,1936,24(5):689-740.
    [309] Carson J. R., Fry T. C. Variable frequency electric circuit theory with application to thetheory of frequency modulation[J]. Bell Syst. Tech. J,1937,16(4):513-540.
    [310] Gabor D. Theory of communication. Part1: The analysis of information[J]. ElectricalEngineers-Part III: Radio and Communication Engineering, Journal of the Institution of,1946,93(26):429-441.
    [311] Cohen L. Time-frequency analysis[M]. New Jersey: Prentice Hall PTR,1995.
    [312] Schwartz M., Bennett W. R., Stein S. Communication systems and techniques[M].Wiley-IEEE Press,1995.
    [313]钟佑明,秦树人,汤宝平. Hilbert_Huang变换中的理论研究[J].振动与冲击,2002,21(4):13-17.
    [314]任达千,杨世锡,吴昭同,等.基于LMD的信号瞬时频率求取方法及实验[J].浙江大学学报(工学版),2009,43(3):523-528.
    [315]皇甫堪,陈建文,等.现代数字信号处理[M].北京:国防工业出版社,1999.
    [316]李建平.小波分析与信号处理:理论、应用及软件实现[M].重庆:重庆出版社,1997.
    [317]张贤达,保铮.非平稳信号分析与处理[M].北京:国防工业出版社,2001.
    [318] Angrisani L., D'Arco M. A measurement method based on a modified version of thechirplet transform for instantaneous frequency estimation[J]. Instrumentation andMeasurement, IEEE Transactions on,2002,51(4):704-711.
    [319]方杨,彭志科,孟光,等.一种新的估计多项式相位信号瞬时频率的参数化时频分析方法[J].噪声与振动控制,2012,32(3):7-11.
    [320] Dionisio A., Menezes R., Mendes D. A. Mutual information: a measure of dependencyfor nonlinear time series[J]. Physica A: Statistical Mechanics and its Applications,2004,344(1):326-329.
    [321] Wells W M, Viola P, Atsumi H, et al. Multi-modal volume registration by maximizationof mutual information[J]. Medical image analysis,1996,1(1):35-51.
    [322] Chen Z. K., Zhang H. S., Li L. X., et al. Application of maximum average mutualinformation quantization in LDPC decoding under QPSK modulation[J]. SystemsEngineering and Electronics,2012,34(3):598-602.
    [323]张佃中.非线性时间序列互信息与Lempel-Ziv复杂度的相关性研究[J].物理学报,2007,56(6):3152-3157.
    [324]周小勇.一种具有恒Lyapunov指数谱的混沌系统及其电路仿真[J].物理学报,2011,60(10):54-65.
    [325]李允公,刘杰,张金萍.基于连续频段的杜芬方程一类混沌解的分析[J].机械工程学报,2008,40(1):81-86.
    [326]王坤,关新平,丁喜峰,等. Duffing振子系统周期解的唯一性与精确周期信号的获取方法[J].物理学报,2010,59(10):6859-6863.
    [327]杨淼,安建平,陈宁,等.基于Duffing混沌系统的频谱感知算法[J].北京理工大学学报,2011,31(3):329-332.
    [328] Richard H., Andrew Z. Multiple view geometry in computer vision (2nd ed)[J]. NewYork: Cambridge University Press,2003.
    [329]马颂德,张正友.计算机视觉:计算理论与算法基础[M].北京:科学出版社,1998.
    [330]丛蕊.碰摩转子动力学行为及融合相空间特征研究[D].大庆,大庆石油学院,2008.
    [331]吴新开,朱承志,钟义长.基于功率谱分析的非线性系统的故障诊断技术[J].湖南科技大学学报(自然科学版),2005,20(3):77-79.
    [332] Tang Y. F, Liu S. L. Rui-Hong J, et al. Correlation between detrended fluctuation analysisand the Lempel-Ziv complexity in nonlinear time series analysis[J]. Chinese Physics B,2013,22(3):030504-030510.
    [333] Yan R. Q., Gao R. X. Complexity as measure for machine health evaluation[J]. IEEETransactions on instrumentation and measurement.2004,53(4):1327-1334.
    [334] Wang G., Liu C. Fault diagnosis of rolling element bearings based on complexitymeasure and support vector machine[J]. Insight-Non-Destructive Testing and ConditionMonitoring,2013,55(3):142-146.
    [335] Daw C.S, Finney C E A, Tracy E R. A Review of Symbolic Analysis of ExperimentalData[J]. Review of Scientific Instruments.2003,74(2):915-930.
    [336]解幸幸,李舒,张春利,等. Lempel-Ziv复杂度在非线性检测中的应用研究[J].复杂系统与复杂科学.2005,2(3):61-66.
    [337] Hong Hoonbin, Liang Ming. Fault severity assessment for rolling element bearings usingthe Lempel-Ziv complexity and continuous wavelet transform[J]. Journal of Sound andVibration,2009,320:452-468.
    [338]侯威,封国林,董文杰.基于复杂度分析logistic映射和Lorenz模型的研究[J].物理学报.2005,54(8):3940-3946.
    [339]窦东阳,赵英凯.基于EMD和Lempel-Ziv指标的滚动轴承损伤程度识别研究[J].振动与冲击.2010,29(3):5-8.
    [340]美国凯斯西储大学轴承数据中心http://www.eecs.case.edu/laboratory/bearing/,2013
    [341]雷娜,唐友福,赵亚男.往复压缩机气阀振动信号的二阶循环谱特征提取[J].化工机械.2012,39(4):438-442.
    [342]刘启鹏.非平稳信号特征提取理论研究及其在往复式压缩机故障诊断中的应用[D].西安,西安交通大学,2004.
    [343]赵俊龙.往复式压缩机振动信号特征分析及故障诊断方法研究[D].大连,大连理工大学,2010.
    [344]杨国安.机械设备故障诊断实用技术[M].北京:中国石化出版社,2007.
    [345]崔玲丽,康晨晖,胥永刚,等.滚动轴承早期冲击性故障特征提取的综合算法研究[J].仪器仪表学报,2010,31(11):2422-2427.
    [346]邵毅敏,周晓君,欧家福,等.增强型滤波及冲击性机械故障特征的提取[J].机械工程学报,2009,45(4):166-171.
    [347]章立军,阳建宏,徐金梧,等.形态非抽样小波及其在冲击信号特征提取中的应用[J].振动与冲击,2007,26(10):56-59.
    [348]胡晓依,何庆复,王华胜.基于滤波器组分解的周期性振动冲击信号解调方法及其应用[J].振动与冲击,2008,27(8):133-37
    [349]徐珍华,张来斌,段礼祥.时频域分析在往复压缩机活塞磨损故障诊断中的应用[J].压缩机技术,2010,3:1-3.
    [350] Elhaj M., Gu F., Ball A. D., et al. Numerical simulation and experimental study of atwo-stage reciprocating compressor for condition monitoring[J]. Mechanical Systemsand Signal Processing,2008,22(2):374-389.
    [351]王江萍,鲍泽富.往复式压缩机振动信号频谱分析与故障诊断[J].石油机械,2008,36(8):63-66.
    [352]别锋锋,郭正刚,张志新.基于局域波时频谱的系统级故障诊断方法研究[J].仪器仪表学报,2008,29(5):1092-1095.