富水砂卵石地层盾构施工诱发地层塌陷机理及对策研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,为了缓解交通拥挤问题,许多大城市开始筹划和修建地铁工程。在此期间,盾构施工诱发很多地面塌陷事故。地铁线路多位于城市道路和居民区地下,因此地面塌陷事故危害性大,引起了社会广泛关注。
     修建成都地铁1、2号线盾构区间时,在砂卵石地层中曾引发多次地面塌陷。目前,对岩溶塌陷和采矿引发塌陷的研究文献较多,研究内容也比较深入;而针对盾构施工诱发塌陷机理研究较少,对地层塌陷机理的认识和研究尚属起步阶段,研究深度仍停留在语言表述和简图示意水平。本文以成都地铁1、2号线为背景,针对砂卵石地层特性,对盾构施工诱发的地层塌陷演变机理进行研究,并寻找能够解决地层塌陷的对策,论文主要完成了以下几方面的工作:
     1.通过研究成都地铁1、2号线盾构施工诱发的多起滞后地面塌陷实例,总结了砂卵石地层盾构施工诱发滞后地层塌陷机理,该机理主要包括盾构开挖面失稳、开挖面失稳引起超出土从而形成空洞、空洞向地表移动三个方面。
     2.为更好掌握砂卵石层力学特性,利用大型三轴剪切试验获得砂卵石层的应力-应变曲线。针对砂卵石层粘聚力低、离散性强的特点,选用颗粒离散元法作为数值计算工具,通过对大型三轴试验的数值模拟,对砂卵石层的细观参数进行了标定,通过颗粒离散元法对滞后地层塌陷机理进行相应的数值分析。
     3.地层塌陷根本原因是开挖面失稳造成超出土而引起的,因此本文重点对砂卵石地层盾构开挖面稳定性问题进行了研究。总结影响盾构开挖面稳定性的主要因素,建立数值计算模型,分析内摩擦角、侧压力系数、盾构直径、盾构埋深和地下水位对开挖面稳定性的影响;研究支护压力对开挖面变形、地表沉降、开挖面的最大位移和土层应力的影响;编制位移显示程序,研究随着支护压力减小盾构开挖面变形和破坏形状的规律,提出开挖面失稳由局部破坏向整体破坏转变的模式。结合成都地铁2号线砂卵石地层盾构开挖面失稳实例,分析开挖面失稳主要原因,并提出避免砂卵石地层开挖面失稳措施。
     4.以梯形楔形体模型为基础,对开挖面极限支护压力公式进行重新推导,在推导过程中考虑了滑动块侧面三角形和其顶部与滑动块外部土体的相互作用力。通过数值计算分析了盾构开挖面以上破坏棱柱体的形状接近于圆形,采用直径为6m的圆形挡板模拟挡板下落实验,在三维空间修正太沙基松动土压力计算公式。文中探讨了修正梯形楔形体计算模型参数选取,并对计算模型进行了验证分析。
     5.砂卵石地层离散性很强,盾构施工引起地层塌陷过程属于非连续介质问题,地层坍塌变形曲线存在明显的不连续特性,因此本文选用颗粒离散单元法对地层塌陷变形进行预测。提出以现场实测法确定地层损失的计算方法,探讨了土层内部空洞分布形态,研究了砂卵石地层隧道平面断面收敛模式,分析了盾构埋深、地层损失数量和地层特性等因素对地层坍塌变形的影响,并提出基于地表沉降值影响的基础上对地层损失进行分类。多因素影响下的地层坍塌变形很难用数学表达式进行求解,本文引入BP神经网络和最小二乘支持向量机(LSSVM)对地面坍塌变形进行预测分析。
     6.针对砂卵石地层盾构施工特点,提出预防盾构施工诱发滞后地层塌陷的施工对策,论述了盾构刀盘开口率、开口布置、开口尺寸等设计参数。分析了同步注浆的注浆量和注浆压力关系,并进一步对理论注浆量公式进行修正;对砂卵石地层气压辅助工法适宜性进行分析,提出非满舱掘进状况下土舱内土压和气压分布模式,并进一步研究该种模式下气体压力设定值和判别开挖面产生流沙的方法;对辅助施工工法中降低地下水位工法和洞口段大管棚加固方案进行论述分析,总结砂卵石地层目前针对不同超出土量所采取的施工对策。
In recent years, inorder to relieve traffic congestion problem, lots of big cities began to plan and build the subway. In the meantime, shield construction caused a great deal of surface collapse accidents. The subway lines are generally builted under the road and residential areas below. Therefore the harmfulness of surface collapse accident is very serious and it has aroused widespread social concern.
     When shield crossed trough the sandy cobble stratum in Chengdu metro No.1and2line, ground subsidence accidents reached as high as dozens of times. At present, there were many research literatures on karst collapse and the ground collapse caused by underground mining and these contents have been very well researched. However, ground collapse mechanism induced by shield construction was rarely researched and it is still in initial stage. The research extent remained on level of language description and sketch map. Shield crossing trough the sandy cobble stratum in Chengdu metro No.l and2lines is taken as research background. For the characteristics of sandy pebble stratum, ground collapse mechanism induced by shield is researched and the corresponding countermeasures to avoid ground collapse are proposed. The main research contents are as follows:
     1. Through analysis on many lagged ground collapse cases induced by shield crossing trough the sandy cobble stratum in Chengdu metro No.1and2lines, Lagged ground collapse mechanism in sandy pebble stratum is summarized. It mainly comprises of face instability, formation of cavity due to over excavation under low support pressure and upward movement of cavity.
     2. In order to master mechanical properties of sandy pebble stratum, the large scale triaxial test was implemented to obtain differential stress-strain curve. According to the low cohesion and heavily discrete characteristics of sandy cobble soil, numerical computation is conducted by particle discrete element method. By numerical simulation of the large scale triaxial test, the micro parameters of the sandy pebble stratum in Chengdu were calibrated. Numerical analysis on lagged ground collapse mechanism is simulated by particle discrete element method.
     3. The fundamental reason of ground subsidence is that the losing stability of shield face causes excessive ground loss. Therefore face stability of shield tunneling in sandy cobble stratum is emphasis of the research. The major influencing factors of face stability in sandy pebble stratum are summarized. Though numerical calculation, influence of face stability is analysed by the factors such as friction angle, lateral pressure coefficient, shield diameters, buried depth and groundwater level. The paper analyzed the influence of support pressure on shield tunnel face deformation, surface settlement, max horizontal displacement and stress of soil. Though writing displacement display program, the regularities of deformation and collapse pattern of shield face are studied along with decrease of support pressure. The process of shield face from local instability to integral instability is proposed. Combining with practical shield face instability instance in Chengdu metro No.2lines, the reason of face losing stability is analyzed. Corresponding construction measures are proposed to avoid face losing stability in sandy cobble stratum.
     4. On the basis of trapezoid wedge model, limited supporting pressure formula of shield excavation face was re-derived. In the process of rededuction, the forces of triangular sides and top surface on sliding block with outside soil are considered. Numerical simulation show that shape of upside sliding block in shield excavation face is circular. Hence by adopting6meters in diameter baffle, Trapdoor model test was simulated. Terzaghi loosening earth pressure formula is modified in3-dimensin space. The paper discussed the selection parameter problem on modified trapezoid wedge model and according validating analysis was carried out.
     5. Owing to heavily discrete characteristic of sandy cobble, ground collapse deduced by shield belongs to the field of in-continuous medium promlem. Ground collapse deformation curve has obviously discontinuous feature. Thereby the paper adopts particle discrete element mothod for displacement prediction. In-situ measurement method is proposed to obtain ground loss value. The distribution form of ground cave is explored. Ground movement pattern of shield in sandy pebble stratum was discussed. Ground collapse deformation influenced by buried depth, ground loss value and stratum characteristic is analysed. On the basis of surface settlement, ground loss are made a classification. Ground collapse deformation influenced by many factors is difficult to solve with mathematics formulas. BP neural network and least squares support vector machine method are introduced to predict surface collapse deformation.
     6. According to the characteristics of shield construction in sandy pebble stratum, corresponding construction measures are proposed to avoid lagged ground collapses. Shield design parameters such as aperture ratio, aperture distribution and aperture size of shield cutter head are studied. Relation between grouting pressure and grouting amount of synchronous grouting is analyzed. The suitability of air pressure auxiliary method in sandy pebble stratum is discussed. The distribution pattern of earth pressure and air pressure is proposed for unfull of soil dregs in cabin. Air pressure value, discriminant method for producing drift sand phenomena is put forward. Auxiliary methods such as decreasing groundwater level and pipe shed of portal section was analyzed. For different ground loss, corresponding construction measures are proposed to guide the construction.
引文
[1]罗松,张浩然.成都富水砂卵石地层盾构施工滞后塌陷防控措施探讨[J].隧道建设,2010,30(3):317-320.
    [2]侯艳娟,张顶立,李鹏飞.北京地铁施工安全事故分析及防治对策[J].北京交通大学学报,2009,33(3):52-59.
    [3]范子福,李锋.川气东送武汉穿江盾构隧道地面塌陷勘察[J].人民长江.2009,40(5):77-79.
    [4]李希元,闫静雅.盾构隧道施工工程事故的原因与对策[J].地下空间与工程学报,2005,1(6):965-971.
    [5]张成平,张顶立,王梦恕.城市隧道施工诱发的地面塌陷灾变机制及其控制[J].岩土力学,2010,31(s1):303-309.
    [6]纪万斌,林景星,齐文同.塌陷与建筑[M].地震出版社,1998.
    [7]贺可强,王滨,万继涛.枣庄岩溶塌陷形成机制与致塌模型的研究[J].岩土力学,2002,23(5):564-569.
    [8]王滨,贺可强.岩溶塌陷临界土洞的极限平衡高度公式[J].岩土力学,2006,27(3):458-462.
    [9]刘玉成,曹树刚,刘延保.可描述地表沉陷动态过程的时间函数模型探讨[J].岩土力学,2010,31(3):925-931.
    [10]李靖坤,李术希.地铁盾构隧道地表塌陷分析与对策.长沙铁道学院学报[J].2007,8(2):211-212.
    [11]刘仁智.EPB盾构在地层掘进出现地表塌陷分析及处理[J].西部探矿工程,2005,114:99-114.
    [12]马汉春,王旭.某地铁隧道盾构机始发阶段地面塌陷原因分析[J].现代隧道技术,2010,47(3):75-80
    [13]Broms B, Bennermark H. Stability of clay at vertieal openings[J]. Journal of the soil Mechanics and Foundation Division,1967,93(1):71-94
    [14]Davis E H, Gunn M J, Mair R J, et al. The stability of shallow tunnels and underground openings in cohesive material[J].Geotechnique,1980,30(4),397-416.
    [15]Leca E, Dormieux L. Upper an lower bound solutions for the face stability of shallow Circular tunnels in frictional material [J].Geotechnique,1990,40(4):581-606.
    [16]Soubra A H. Three-dimensional face stability analysis of shallow circular tunnels[C]. Proeeedings of the International Conference on Geotechnical and Geological Engineering, 2000,19-24, Melbourne, Australia.
    [17]Subrin D, Wong H. Tunnel face stability in frictional material:a new 3D failure mechanism[J]. C.R.Mecanique,2002,330:513-519, in French.
    [18]Mollon G, Dias D, Soubra A H. Two new limit analysis mechanisms for thee computation of the collapse pressures of circular tunnel driven by a pressurized shield[C].2th International conference on computational methods in tunneling, Ruhr University Bochum,9-11 September 2009, Aedificatio Publishers,849-856.
    [19]Horn N. Horizontaler erddruck auf senkrechte abschlussflachen von tunnelrohren[C]. Landeskonferenz der Ungarschen Tiefbauindustrie,1961:7-16.
    [20]Anagnostou G., Kov'ari K. The faee stability of slurry-shield-driven tunnels[J]. Tunnelling and Underground Space Teehnology,1994,9(2):165-174.
    [21]Broere W. Tunnel face stability and new CPT applications[D]. Netherlands:Delft University Press,2001.
    [22]魏纲.顶管工程土与结构的形状及理论研究[博士学位论文][D].杭州:浙江大学,2005.
    [23]Chambon P, Corte J F. Shallow tunnels in cohesionless soil Stability of tunnel face[J]. Journal of Geotechnical Engineering,1994,120(7):1148-1165.
    [24]Mair R J, Taylor R N. Theme lecture:bored tunneling in the urban environment[C]. In: Proceedings of the Fourteenth International Conference on Soil Mechanics and Foundation Engineering. Rotterdam,1997:2353-2385.
    [25]程展林,吴忠明,徐言勇.砂基中泥浆盾构法盾构施工开挖面稳定性试验研究[J].长江科学院院报,2001,18(5):53-55.
    [26]陈仁朋,李君,陈云敏.干砂盾构开挖面稳定性模型试验研究[J].岩土工程学报,2011,33(1):117-122.
    [27]李君,陈仁朋,孔令刚.干砂地层中盾构开挖面失稳模式及土拱效应试验研究[J]. 土木工程学报,2011,44(7):143-148.
    [28]秦建设,尤爱花.盾构开挖面稳定数值计算研究[J].矿山压力与顶板管理,2005,27(1):27-30.
    [29]黄正荣,朱伟.浅埋砂土中盾构法隧道开挖面极限支护压力及稳定研究[J].岩土工程学报,2006,28(11):2005-2009.
    [30]乔金丽,张义同.强度折减法在盾构隧道开挖面稳定分析中的应用[J].天津大学学报,2010,43(1):14-20.
    [31]高健,张义同.实施超前注浆管棚支护的隧道开挖面稳定分析[J].天津大学学报,2009,42(8):667-672.
    [32]Karim A M. Three-dimensional discrete element modeling of tunneling in sand[D].Edmonton:University of Alberta,2007.
    [33]王明年,魏龙海,刘大刚.卵石地层中地下铁道施工力学的颗粒离散元法模拟技术及应用[M].成都:西南交通大学出版社,2010.
    [34]王明年,魏龙海.成都地铁卵石层中盾构施工开挖面稳定性研究[J].岩土力学,2011,32(1):99-105.
    [35]Litwiniszyn J, Fundamental principles of the mechanics of stochastic medium[C]. Proc. Of 3th Conf. Theo. Appl. Mech., Bongalore, India,1957.
    [36]施成华,彭立敏.随机介质理论在盾构法隧道纵向地表沉降预测中的应用[J].岩土力学,2004,25(2):320-323.
    [37]伍振志.基于非均匀收敛模式的隧道地表变形的随机介质预测模型[J].中南大学学报,41(5):2005-2010.
    [38]魏纲,朱奎,陈伟军.不同施工工况下双圆盾构引起的土体沉降研究[J].岩土工程学报,2011,33(3):477-482.
    [39]刘建航,侯学渊.盾构法隧道[M].北京:中国铁道出版社,1991.
    [40]Loganathan N, Poulos H G Analytical prediction for tunneling-induced ground movement in clays[J]. Journal of Geotechnical and Geoenviromental Engineering,1998, 124(9):846-856.
    [41]Verruijt A, Booker J R. Surface settlements due to deformation of a tunnel in an elastic half plane[J]. Geotechnique,1996,46(4):753-756.
    [42]Park K H. Elastic solution for tunneling-induced ground movements in clays[J]. International Journal of Geomechanics,2004,4(4):310-318.
    [43]Rowe R K, Kack G J. A method of estimating surface settlement above tunnels in soft ground[J]. Canadian Geotechnical Journal.1983,20(8):11-22.
    [44]Lee K M, Rowe R K. Subsidence due to tunnelling:partⅡ-Evaluation of a Predietion technique[J]. Canadian Geotechnical Journal,1992,29(5):941-954.
    [45]Clough G W, Schmidt B. Design and performance of excavations and tunnels in soft clay[M]. In Soft Clay Engineering. Elsevier,1981.
    [46]Mair R J, taylor R N, Bracegirdle A. subsurface settlement Profiles above turmels in clay[J]. Geotechnique,1993,43(2):315-320.
    [47]朱才辉,李宁,柳厚祥,张志强.盾构施工工艺诱发地表沉降规律浅析[J].岩土力学,2011,32(1):158-164.
    [48]Peck R B. Deep excavations and tunneling in soft ground[C]. Proceedings of 7th International Conference on Soil Mechanics and Foundation Engineering. Mexico,1969: 275-290.
    [49]Rankin W J. Ground movement resulting from urban tunneling:predictions and effects. Engineering geology of underground movements[C]. Proc of the 23rd annual conf of the eng. group of theGeological Society. Nottingham:Geological SocietyLondon.1988,79-92.
    [50]O'Reilly M P, New B M. Settlements above tunnels in the United Kingdom-their magnitude and prediction[C]. Proceedings of Tunnelling 82, Institution of Mining and Metallurgy. London,1982:173-182.
    [51]韩煊,罗文林.地铁盾构施工引起沉降槽宽度的影响因素[J].地下空间与工程学报,2006,5(6):1188-1193.
    [52]璩继立,许英姿.盾构施工引起的地表横向沉降槽分析[J].岩土力学,2006,27(2):313-322.
    [53]Celestino T B, Gomes R A M P, Bortolucci A A. Errors in ground distortions due to settlement trough adjustment[J]. Tunnelling and Underground Space Technology,2000, 15(1):97-100.
    [54]丁春林,朱世友,周顺华.地应力释放对盾构隧道围岩稳定性和地表沉降变形的影 响[J].岩石力学与工程学报,2002,21(11):1633-1638.
    [55]孙钧,刘洪洲.交叠隧道盾构法施工土体变形的三维数值计算[J].同济大学学报,2002,30(4):379-385.
    [56]贾瑞华,阳军生,马涛,刘树亚.既有管线下盾构施工地层沉降监测和位移加载数值分析[J].岩土工程学报,2009,31(3):425-430.
    [57]孙钧,易宏伟.地铁隧道盾构掘进施工市区环境土工安全的地基变形与沉降控制[J].地下工程与隧道,2001,2:10-13.
    [58]张恒,陈寿根,邓稀肥.盾构掘进参数对地表沉降的影响分析[J].现代隧道技术,2010,47(5):48-53.
    [59]陈学军,邹宝平,易觉,邝光霖等.盾构隧道下穿深圳滨海大道地表沉降监测与控制[J].桂林理工大学学报,2010,30(4):545-550.
    [60]宋立德.富水砂卵石地层土压平衡盾构施工滞后沉降分析及预防控制措施[J].长春工程学院学报,2011,12(1):28-30.
    [61]Tharp T M.Mechanics of upward propagation of cover-collapse sinkholes[J].Engineeringgeology,1999,52(2):23-33.
    [62]Tharp T M. Time-dependent compressive failure around an opening[J]. Internal Journal of Rock Mechanics and Mining Science,1997,34:310-313.
    [63]张祥康.鉴定地下洞穴坍塌机理的离心模型试验研究-介绍戴维斯加州大学离心模型试验技术[J].四川水力发电,1959,3:64-69.
    [64]杨书江.富水砂卵石地层盾构法施工地表坍塌原因及对策[J].都市快轨交通,2011,24(1):77-79.
    [65]卜成,蔡业华.地铁盾构隧道中塌方事故发生的机理与因素[J].山西建筑,2010,36(36):336-337.
    [66]朱伟,秦建设,卢廷浩.砂土中盾构开挖面变形与破坏数值计算研究[J].岩土工程学报[J],2005,27(8):897-902.
    [67]张凤样,朱合华,博德明.盾构隧道[M].北京:人民交通出版社,2004.
    [68]李海峰.卵石含量高、粒径大的富水砂卵石地层中盾构机选型研究[J].现代隧道技术.2009,46(1):57-63.
    [69]魏纲.盾构隧道施工引起的土体损失率取值及分布研究[J].岩土工程学报,2010, 32(9):1354-1361.
    [70]郭庆国.粗粒土的工程特性及应用[M].郑州:黄河水利出版社,1998.
    [71]周健,池永.砂土力学性质的细观模拟[J].岩土力学,2003,24(6):901-906.
    [72]Cundall P A, Straek ODL. A Diserete numerieal model for granular assemblies[J]. Geotechnique,1979,29(1):47-65.
    [73]Cundall P A. A computer model for simulating progressive:Large scale movement in blocky rock systems[C]//Symp. ISRM.France:[s.n.],1971:129-136.
    [74]Itasca Consulting Group Inc. PFC3D (particle flow code in 3 dimensions) theory and background[R]. Minnesota, USA:Itasca Consulting Group Inc,2002.
    [75]邵磊,迟世春,贾宇峰.堆石料大三轴试验的细观模拟[J].岩土力学,2009,30(1):239--243.
    [76]杨贵,肖杨,高德清.粗粒料三维颗粒流数值模拟及其破坏准则研究[J].岩土力学,2010,32(s2):402-406.
    [77]Belheine N, Plassiard J P, Donze F V, Darve F, Seridi A. Numerical simulation of drained triaxial test using 3D diserete element modeling[J]. ComPuters and Geotechnics.2009, (36):320-331.
    [78]Martin P J, Scho..Pfer, Steffen Abe, Conrad Childs. The impact of Porosity and crack density on the elasticity, strength and friction of cohesive granular materials:Insights from DEM modelling[J]. International Journal of Rock Mechanies & Mining Sciences. 2009, (46):250-261.
    [79]Thornton C. Numerical simulation of deviatoric shear deformation of granular media[J]. Geotechnique,2000,50(1):43-53.
    [80]Thornton C. The conditions for failure of a face-centered cubic array of uniform rigid spheres[J]. Geotechnique,1979,29(4),441-459.
    [81]黄正荣,朱伟.浅埋砂土中盾构法隧道开挖面极限支护压力及稳定研究[J].岩土工程学报,2006,28(11):2005-2009.
    [82]乔金丽,张义同.强度折减法在盾构隧道开挖面稳定分析中的应用[J].天津大学学报,2010,43(1):14-20.
    [83]高健,张义同.实施超前注浆管棚支护的隧道开挖面稳定分析[J].天津大学学报,2009,42(8):667-672.
    [84]Kirsch A. Experimental and numerical investigation of the face stability of shallow tunnels in sand[C]//.In Kocsonya, Pal (Hrsg.):Proceedings of the1TA-AITES World Tunnel Congress 2009.CD-ROM Proceedings. Eigenverlag.
    [85]Kamata H, Masimo H. Centrifuge model test of tunnel face reinforcement by bolting [J]. Tunneling and Underground Space Technology,2003,18(2):205-212.
    [86]蒋波,应宏伟,谢康和.基于土拱效应的筒舱土压力研究[J].科技通报,2005,21(5):624--632.
    [87]Itasca Consulting Group, Inc. Fast Analysis of Continua in 3 Dimensions-Theory and Background. Minnesota,2002.
    [88]陈育民,徐鼎平.FLAC3D基础与工程实例[M].中国水利水电出版社,2008.
    [89]郑颖人,孔亮.岩土塑性力学[M].北京:中国建筑工业出版社,2010.
    [90] #12
    [91]乔世范,刘宝琛.随机介质变形破坏判据研究[J].岩土工程学报,2010,32(2):165-171.
    [92]乔金丽,张义同,高健.考虑渗流的多层土盾构隧道开挖面稳定性分析[J].岩土力学,2010,31(5):1497-1502.
    [93]顾蔚慈.挡土墙土压力计算[M].北京:中国建材工业出版社,2001.
    [95]周小文,濮家骝,包承纲.隧洞拱冠砂土位移与破坏的离心模型试验研究[J].岩土力学,1999,20(2):32-36.
    [94]Terzaghik. Theoretical soil mechanics[M]. New York:John Wiley and Sons Inc,1943: 69-76.
    [96]Adachi T, Kimura M, Kishida K. Experimental study on the distribution of earth pressure and surface settlement through three-dimensional trapdoor test[J]. Tunnelling and Underground Space Technology,2003,18(2/3):171-183.
    [97]加瑞,朱伟,钟小春.砂土拱效应的挡板下落试验及机理研究闭[J].岩土力学,2006,12(27):687-692
    [98]朱伟,钟小春,加瑞.盾构隧道垂直土压力松动效应的颗粒流模拟[J].岩土工程学报,2008,30(5):750-754.
    [99]魏龙海.基于颗粒离散元法的卵石层中成都地铁施工力学研究[D].成都:西南交通 大学博士学位论文,2009.
    [100]柳厚样.地铁隧道盾构施工诱发地层移动机理分析与控制研究[D].西安:西安理工大学博士学位论文,2008.
    [101]张志强,何川,佘才高.南京地铁盾构掘进施工的三维有限元仿真分析[J].铁道学报,2005,27(1):84-89.
    [102]王建秀,付慧仙,朱雁飞.基于地层损失的盾构沉降计算方法研究进展[J].地下空间与工程学报,2010,6:112-119.
    [103]王振信.盾构施工对环境的影响[C]//海峡两岸轨道交通建设与环境工程高级技术论坛.北京:人民交通出版社,2008.
    [104]邹翀.盾构隧道同步注浆技术[J].现代隧道技术,2003,40(1):26-30.
    [105]魏纲.盾构施工中土体损失引起的地表沉降预测[J].岩土力学,2007,28(11):2375-2379.
    [106]张立锋,刘飞,程钢.地铁盾构隧道下穿建筑物沉降规律分析[J].焦作大学学报,2011(2):84-85.
    [107]李博,苏华友.成都地铁盾构地表沉降分析[J].城市轨道交通研究,2010,1(4):64-66.
    [108]孙钧,袁金荣.盾构施工扰动与地层移动及其智能神经网络预测[J].岩土工程学报,2001,23(3):267-267.
    [109]孙谋,刘维宁.软土地层盾构近距穿越老式建筑区掘进参数分析[J].土木工程学报,2009,42(12):170-176.
    [110]李红霞,赵新华,迟海燕,张建军.基于改进BP神经网络模型的地表沉降预测及分析[J].天津大学学报,2009,42(1):60-64.
    [111]李志华,华渊,周太全,孙秀丽.盾构隧道开挖面稳定的可靠度研究[J].岩土力学,2008,29(s1):315-319
    [112]李笑,苏小江.基于神经网络信息融合的盾构施工故障诊断[J].辽宁工程技术大学学报(自然科学版),2010,29(3):472-474.
    [113]张代远.神经网络新理论与方法[M].北京:清华大学出版社,2006.
    [114]邹阿金,张雨浓.基函数神经网络及应用[M].广州:中山大学出版社,2009.
    [115]罗四维.人工神经网络建造[M].北京:中国铁道出版社,2000.
    [116]朱凯,王正林.精通MATLAB神经网络[M].北京:电子工业出版社,2009.
    [117]田景文,高美娟.人工神经网络算法研究及应用[M].北京:北京理工大学出版社,2006.
    [118]赵洪波.岩土力学与工程中的支持向量机分析[M].北京:煤炭工业出版社,2007.
    [119]Vapnik V. The nature of statistical learning theory [M]. New York:Springer-Verlag,1999.
    [120]Vapnik V. An overview of statistical learning theory[J]. IEEE Transaction on Neural Networks,1999,10(5):988-999.
    [121]马文涛.基于灰色最小二乘支持向量机的边坡位移预测[J].岩土力学,2010,31(5):1670-1674.
    [122]井彦林,仵彦卿,林杜军,等.基于最小二乘支持向量机的黄土湿陷性预测挖掘[J].岩土力学,2010,31(6):1865-1870.
    [123]赵洪波,冯夏庭.支持向量机函数拟合在边坡稳定性估计中的应用[J].岩石力学与工程学报,2003,22(2):241-245.
    [124]邬凯,盛谦,张勇慧,李红旭.基于最小二乘支持向量机的边坡稳定性预测[J].水力发电学报,2009,28(2):66-71.
    [125]罗战友,杨晓军,龚晓南.基于支持向量机的边坡稳定性预测模型[J].岩石力学与工程学报,2005,24(1):144-148.
    [126]Cortes C, Vapnic V. Support vector networks[J].Machine Learning,1995,20(1):1-25.
    [127]Suykens J A K, Vandewalle J. Least squares support vector machine classifiers[J]. Neural Network Letters,1999,9(3):293-300.
    [128]Suykens J A K, Vandewalle J. Recurrent least squares support vector machines[J]. IEEE Transactions on Circuits and Systems-I,2000,47(7):1109-1114.
    [129]Suykens J A K. Support vector machines:a nonlinear modeling and control perspective[J]. European Journal of Control,2001,7(2-3):311-327.
    [130]Vladimir Cherkassky, Yunqian Ma. Practical selection of SVM parameters and noise estimation for SVM regression[J]. Neural Networks,2004,17(1):113-126.
    [131]Zhong Weimin, Pi Daoying, Sun Youxian. SVM with Quadratic polynomial kerbel function based nonlinear model one-step-ahead predictive control[J]. Chinese journal of chemical engineering,2005,13(3):373-379.
    [132]代仁平,宫全美,周顺华,等.土压平衡盾构砂卵石处理模式及应用分析[J].土木工程学报,2010,43:292-296.
    [133]胡欣雨,张子新.砂卵石地层土压盾构开挖面动态平衡机理研究[J].地下空间与工程学报,2009,5(6):1115-1121.
    [134]廖一蕾,张子新,张冠军.大直径盾构进出洞加固体稳定性判别方法研究[J].岩土力学,2011,32(s2):256-260.
    [135]李大勇,王晖,王腾.盾构机始发与到达端头土体加固分析[J].铁道工程学报,2006,91(1):87-90.
    [136]Hisatake M, Ohno S. Effects of pipe roof supports and the excavation method on the displacements above a tunnel face[J]. Tunnelling and Underground SPaee Teehnology, 2008,(23):120-127.
    [137]吴锋波.建(构)筑物的变形控制指标[J].岩土力学,2010,31(2):308-316.
    [138]陈龙.城市软土后构隧道施工期风险分析与评估研究[D].上海:同济大学,2004.
    [139]Rankin W J. Ground movements resulting from urban tunneling predictions and effects[J]. Engineering geology of underground movements, London,1988,79-92.
    [140]Skempton A W, Macdonald D H. Allowable settlement of buildings[C]//Proceedings Institute of CivilEngineers,1956, (1):727-768.
    [141]周文波.盾构法隧道施工技术及应用[M].北京:中国建筑工业出版社,2004.
    [142]姚宣德,王梦恕.地铁浅埋暗挖法施工引起的地表沉降控制标准的统计分析[J].岩石力学与工程学报,2006,25(10):2031-2035.
    [143]杨丽明.邻近在建地铁的旧房屋容许变形计算方法探讨[J].都市快轨交通,2010,23(4):77-80.