CSP连铸热过程数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CSP(contract strip production)薄板坯连铸连轧技术是20世纪80年代开发成功的生产热轧板卷的全新的短流程工艺,是继氧气转炉炼钢、连续铸钢之后钢铁工业最重大的革命性技术之一。它集科学、技术和工程为一体,将热轧板卷的生产在一条短流程的生产线上完成,充分显示出科学性和先进性,已经成为目前钢铁界的技术热点。
     我国的CSP技术均引自国外,其中,生产过程软件(在线控制和离线指导)是引进技术的重要组成部分。为了加快我国CSP引进技术的国产化进程,消化吸收并开发出具有自主知识产权的薄板坯连铸连轧生产工艺过程控制和管理软件,是我国钢铁企业实现跳跃式进步的关键,是实现薄板坯连铸连轧技术自立开发和现有生产线优化管理的重要环节。薄板坯连铸连轧工艺热过程数字化正是这个软件的重要组成部分。
     本文主要针对连铸热过程进行研究和数值模拟。连铸热过程主要为铸坯凝固冷却过程,本文依据在线模型的特点,结合包钢CSP生产线的具体特点,考虑多种因素诸如保护渣、二冷区铸坯表面换热系数及凝固率模型对铸坯凝固冷却的影响,首先尝试建立了被细化的连铸过程数学模型,通过数值计算,分析了部分操作、模型参数对板坯温度的影响。
     本文在采用热源函数法处理凝固潜热、选用能反映两相区内溶质再分配的凝固率方程、考虑溶质运动的对流热的基础上,通过对连铸热过程模型的简化,建立了描述沿拉坯方向铸坯横断面在各个时刻温度变化的二维数学模型。通过计算,模型对多种操作和模型参数进行了数值模拟研究和分析,数字化铸坯断面上三个典型温度点的变化规律,同时给出结晶器出口处、二冷区和空冷区的出口处断面温度分布。
     数值计算结果表明:
     (1)模型比较全面地反映了连铸热过程坯壳的生长过程、液芯长度和铸坯温度变化,计算结果较真实,具有一定的实用价值;
    
    门)拉坯速度、二冷区的冷却水量对铸坯温度分布、坯壳厚度和液芯长度影响
     较大;钢液浇注温度仅对液芯长度有较大影响。
    (3)气隙厚度和保护渣吸收系数对结晶器内坯壳厚度的生长影响较大,并进一
     步讨论它们对板坯表面质量的影响,减小气隙宽度、增加保护渣吸收系数
     有利于包晶钢的浇铸;凝固率模型仅对液芯长度有一定的影响,而对铸坯
     温度的影响可以不计。
The technology of compact strip production is a new techniques with compact process on hot strip rolling which received successful development in 1980's as well as is one of the most important revolutionary technology of steel industry, following making steel with BOF and continuing casting, This technology that finishing rolling hot strip with a short line integrated science, technology and engineering has became the hot topic on iron-steel industry. Sufficient fact has been showed scientific and advanced.
    All techniques of CSP used in our country originate from abroad. Process software (controlled on line and offline) is key component of the techniques. Learning, digestion and developing the CSP control system and management software, which have the intellectual asset, are the key step to promoting steel-maMng enterprise. And it is also a very important for developing CSP technology by self-reliant and optimizing management of production line. Therefore the digital model on heat transformation process of CSP is vitally component of this software.
    This paper aims at researching process of heat-transfonnation and running numerrical simulation. Heat-transformation process of continuing casting is mainly cooling process on slab's solidification. According to the style of online model, combined with situation of BTCSP line, taking account of many effective factors such as mould powder, heat-transformation coefficient in slab surface of secondary cooling zone and solidification rate model. Through data calculated, we build the differential math model of casting process and analyze partial operation and model data, which effect on slab surface temperature.
    We adopt heat source function to deal with potential heat during solidification and select solidification rate equation, which can reflect solute re-distribute in two different phases. We build a planar math model, which describe temperature change of slab section along rolling direction in any time through simplifying heat-transformation process model based on convective heat of planar movement. It analyzed and simulated data as well as the different operation through calculating, as result of getting
    
    
    the principle of three typical temperature points on the slab section and the temperature distribution of mould exit, secondary cooling zone and the free cooling zone. The results on data calculation indicates:
    (1) The model reflects the growing process, the length of liquid core and slab temperature for the heat transformation process completely during casting. This result that is really true has valuable for application.
    (2) Casting speed and flow of secondary cooling have influence on distribution of temperature in slab surface, shell thickness and liquid core length. But the steel temperature only effects on liquid core length.
    (3) Gap thickness and absorb coefficient of mould powder have much influence on shell thickness and slab surface. Therefore, it will benefit for casting peritectic steel through decreasing the gap thickness or increasing; absorb coefficient of mould powder. The model of solidification rate only influence on liquid core length, but not slab temperature.
引文
[1] Y. Tanizawa, S. Kumakura, M. Oka, Development of Thin Slab Casting Technology with Liquid Core Hard Reduction, ISS, Sep., 1999, Vol. 26, No. 10, pp. 73-75
    [2] D. Blevins and M. Ingold, Mold Powder Performance: Steel Dynamics' Hight Speed Thin Slab Casters, ISS, 2000, Vol. 27, No.3, pp. 85-88
    [3] C.A. Pinheiro and I. V. Samaeasekera and J. K. Brimacombe, Mold Flux for Continuous Casting of Steel, ISS, 1995,Vol. 22, No. 2, pp. 37-42
    [4] C.A. Pinheiro and I. V. Samaeasekera and J. K. Brimacombe, Mold Flux for Continuous Casting of Steel, ISS, Dec., 1995, pp. 101-104
    [5] Jung Wook Cho and Toshihiko Emi, Heat Transfer Across Mold Flux Film in Mold during Initial Solidification in Continuous Casting of steel, ISIJ International, 1998, Vol. 38, No. 8, pp. 834-842
    [6] Thomas G. O'connor and Jonathan. Dantzig, Modeling the thin-Slab Continuous-Casting Mold, Metall. Mater. Trans. B, 1994, Vol. 25B, pp. 443-457
    [7] Ferdinando Roux Camisani-Calzolari and Ian Keith Craig, Specification Framework for Control of the Secondary Cooling Zone in Continuous Casting, SIJ International, 1998, Vol. 38, No. 5, pp. 447-453
    [8] Dmitry Sediako, Olga Sediako and Kuan Ju Lin, Some Aspect's of Thermal Analysis and Tecnology Upgrading in Steel Continuous Casting, Canadian Metallurgical Quarterly, 1999, Vol. 38, No.5, pp. 377-385
    [9] David T. Stone and Brian G. Thomas, Measurement and Modeling of Heat Transfer across Interfacial Mold Flux Layers, Canadian Metallurgical Quarterly, 1999, Vol. 38, No.5, pp. 363-375
    [10] Hongliang Yang and Liangang Zhao, Mathematical Simulation on Coupled Flow, Heat, and Solute Transport in Slab Continuous Casting Process, Metall. Mater. Trans. B, 1998, Vol. 29B, pp. 1345-1356
    [11] Toshiya Miyake and Kiminori Nakayama, Effects of Heat and Fluid Flow in Continuous Casting Mold on Solidification Shell Growth, Kobelco Techology Review, 1998, No. 21, pp. 7-13
    [12] Seppo Louhenkilpi and Erkki Laitinen, Real-Time Simulation of Heat Transfer in Continuous Casting, Metall. Mater. Trans. B, 1993, Vol. 24B, pp. 685-693
    [13] M. Susa and K. Nagata, Absorption Coefficients and Refractive Indices of Synthetic Glassy Slags Containing Transition Metal Oxides, Ironmaking and steelmaking, 1993, Vol. 20, No. 5, pp. 372-378
    
    
    [14] Huang, B. G. Thomas and E M. Najjar, Modeling Superheat Removal during Continuous Casting of Steel Slabs, Metall. Mate. Trans. B, 1992, Vol. 23B, pp. 339-355
    [15] K. Kim and H. N. Han, Analysis of Surface and Internal Cracks in Continuously Cast Beam Blank, Ironmaking and steelmaking, 1997, Vol. 24, No. 3, pp. 249-256
    [16] Jung-Eui Lee and Heung Nam Han, A fully Coupled Analysis of Fluid Flow, Heat Transfer and Stress in Continuous Round Casting, ISIJ International, 1999, Vol. 39, No. 5, pp. 435-444
    [17] EI-Bealy, N. Leskinen and H. Fredriksson, Simulation of Cooling Conditions in Secondary Cooling Zones in Continuous Casting Process, Ironmaking and Steelmaking, 1995, Vol. 22, No. 3, pp. 246-255
    [18] 蔡开科,吴元增.连续铸锭板坯凝固传热数学模型.金属学报,1983,Vol.19,No.1,pp.33-39
    [19] 周筠清.板坯连铸冷却过程的二维数学模型,钢铁.1986,Vol.21,No.2,pp.66-70
    [20] 雷新泉.连铸传热的计算机仿真及对若干问题的新探讨.钢铁研究,1992,No.1,pp.30-36
    [21] 陈登福等.方坯连铸凝固传热的数值仿真及实践.炼钢,No.8,pp.3-8,1992
    [22] 陈雷.连续铸钢。北京:冶金工业出版社,1994
    [23] 陶文铨.数值传热学.西安:西安交通大学出版社,1988
    [24] J.K. Brimacombe and I. V. Samarasekera, The Challenge of Thin Slab Casting, ISS, 1994, pp.29-38
    [25] 文光华,何俊范.薄板坯连铸结晶器内钢液凝固传热数值模拟.第五届连续铸钢学术会议论文选集,中国金属学会连续铸钢学会,pp94-102
    [26] 陈栋梁等.关于糊状区传热模拟方法的研究.钢铁,1996,Vol.31,No.6,pp.22-26那贤昭,张兴中等.薄板坯连铸二冷方式分析及凝固传热研究.第五届连续铸钢学术会议论文选集,中国金属学会连续铸钢学会,pp.125—130
    [27] M.N.奥齐西克著,俞昌铭主译,热传导.北京:高等教育出版社,1983
    [28] J.Mibmahl,按热轧厂薄板坯连铸用辊底式炉而设计的加热炉的新原理,Loi埃森工业炉设备股份有限公司1997年中国冶金展览会材料,1997.5
    [29] 冯妍卉.方向凝固器内带有固液相变的湍流与传热传质的数值分析.北京科技大学博士论文,2000.5