高速重载电气化铁路钢轨电位产生机理与抑制方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国民经济的发展,铁路货运、客运量持续增长,高速和重载成为我国电气化铁路的主要发展方向。电气化铁路高速区段由于牵引功率大、牵引负荷重、牵引回流大,容易出现过高的钢轨电位,造成与轨道相连的信号设备异常,直接威胁着沿线通信设备和人员的安全。论文以高速、重载电气化铁路的牵引回流系统为对象,分析了钢轨电位的产生机理、牵引回流的分布特性,并探究了其变化规律,提出相应的抑制方法,主要开展的工作包括:
     (1)以牵引供电系统为研究对象,在对电气化铁路牵引供电系统供电设备分析的基础上,建立适合多种供电方式的钢轨电位分析模型;结合大秦铁路沿线钢轨电位的测试数据对模型进行了验证。
     (2)根据牵引供电系统和接地回流系统的结构,分析了钢轨回流系统的电路分布参数,建立了钢轨电位、电流分布模型,揭示了钢轨电位、电流的传播与衰减规律,阐释了衰减系数、供电方式及综合地线对钢轨电位的影响机理,探寻了连接综合接地系统后,牵引供电系统正常运行与短路故障情况时,钢轨与保护线电位分布特性,阐释了综合接地系统对不同供电方式下牵引供电系统钢轨电位的影响规律。
     (3)通过对衰减系数、钢轨电位、电流、钢轨横向、纵向电压等测量方法的研究,建立了钢轨电位的监测系统;针对高速、重载电气化铁路钢轨电位过高的现象,选取京津、遂渝、大秦等典型高速、重载线路,对其钢轨电位、钢轨电流、分流系数等进行了测量分析,根据钢轨电位的产生机理及影响因素,分析了综合地线对降低钢轨电位、接地极电位、回流线电位的作用机制,分别从钢轨铺设方式、回流系统结构、接触网支柱结构和铺设综合地线等方面,提出了抑制钢轨电位的相关措施。
With the development of the national economy, freightage and passenger traffic increase rapidly. High-speed and heavy-load become the developing direction of electrified railway in our country. Since the traction power is large, traction load is heavy and traction current is large in electrified railway high-speed sections, the rail voltage is easy to become overtop, leading to the abnormal of signal equipments, which directly threatening the safety of communication equipments and people. So in this paper the generating mechanism of rail voltage was analyzed based on the survey of traction power supply system of high-speed and heavy-load railway. Then the characteristics of traction power current and its change law were explored. And an effective suppression method was proposed for that. This is of great significance to improve the operation reliability and safety of the railway electrification equipments.
     A rail voltage analysis model that suitable to a variety of power supply modes was proposed. The data that calculated by the model is similar to that measured from the heavy-road line between Datong to Qinhuangdao.
     According to the traction power supply system's structure and the basic principle of grounding, based on the analysis of the distribution parameters of rail's circuit, model of rail potential and current distribution was established, revealing the attenuation law of rail potential and flow of the rail current law; which illustrate the mechanism of attenuation coefficient, power supply mode and comprehensive grounding line on rail potential. According to the multimode coexistence, the power supply mode of traction power supply systems, model of traction power supply system under different power supply mode and the mode of rail with grounding line were set up. The potential distribution characteristics of rail, protection line under traction power supply system's normal running and short circuit fault running were analyzed, making out the effect rule of comprehensive grounding system on traction power supply's safety operation under different power supply modes.
     Through the researches, such as the attenuation coefficient, the rail potential, electric current, the rail lateral, longitudinal voltage measurement methods, the rail potential monitoring system was established. For the phenomenon of high-potential of high-speed and heavy-load electrified railway, overloading on the high-speed lines between Datong to Qin huangdao, Beijing to Tianjin, Suining-Chongqing, etc, the measurement and analysis were done, such as the rail potential, the rail current, the shunt coefficient. According to the mechanism of rail potential and its influencing factors, the effect that the comprehensive ground reducing rail potential, grounding potential and flowing lines was explained. Respectively from the rail laying way, traction network structure, catenary pillar structure and comprehensive laid ground wire, etc, the relevant measures of the inhibition of rail potential were put forward.
引文
[1]沈志云.论我国高速铁路技术创新发展的优势[J].科学通报,2012,57(8):594-599.
    [2]H. Glickenstein. High speed trains [J]. IEEE Vehicular Technology Magazine, 2009, 4(4):9-14.
    [3]S. H. Chen, S. C. Hsu, C. T. Tseng, et al. Analysis of rail potential and stray current for Taipei metro [J], IEEE Transactions on Vehicular Technology, 2006,55(1):67-75.
    [4]韩放.电气化铁路牵引网对地面与地下传输系统耦合的分析方法[J].铁道学报,1994,16(2):39-45.
    [5]Guangning Wu, Guoqiang Gao, Anping Dong, et al. Study on the performance of intergrated grounding line in High-Speed Railway [J]. IEEE Transactions on Power Delivery, 2011,26(3):1803-1810.
    [6]R. Natarajan, A.F. Imece, J.K. Popoff, et al. Analysis of grounding systems for electric traction [J]. IEEE Transactions on Power Delivery, 2001,16(3):389-393.
    [7]C.H. Lee, C.J. Lu. Assessment of grounding schemes on rail potential and stray currents in a DC transit system [J]. IEEE Transactions on Power Delivery, 2006,21(4): 1941-1947.
    [8]H. Glickenstein. High-speed rail approaches 200 mi/h in the western hemisphere [J]. IEEE Vehicular Technology Magazine, 2008,3(2):13-18.
    [9]吴广宁.高电压技术[M].北京:机械工业出版社,2007.
    [10]雷栋,董安平,张雪原,等.重载电气化铁道钢轨电位的测试与分析[J].铁道学报,2010,32(5):3 1-36.
    [11]张靖晶,张家新.客运专线综合接地系统的仿真与研究[J].电气化铁道,2007,6:24-27.
    [12]何金良,曾嵘.电力系统接地技术[M].北京:科学出版社,2007.
    [13]唐伟,李西歧.交流电气化铁道牵引系统接地问题浅谈[J].铁道机车车辆,2006,26(5):69-70.
    [14]R.T. Beck. Design considerations for arctic grounding systems [J]. IEEE Transactions on Industry Applieation, 1988,24(6):36-38.
    [15]Jiro TIO:日).高速列车供电系统选择[J].国外铁道车辆,1995,6:46-50.
    [16]水间毅,薛亮.电气化铁路各构成要素的技术[J].交流技术与电力牵引,2003,2:1-5.
    [17]马庆安,朱小军,郭楷,等.三种AT供电模式的比较[J].铁道学报,2012,34(03):34-39.
    [18]刘友梅.交流传动电力牵引发展的基础性技术[J].机车电传动,2001,01:2-5.
    [19]P. Martin, Train performance and simulation [C]. Proceedings of IEEE Winter Simulation Conference,1999,2:1287-1294.
    [20]Y. Cai, M.R. Irvine, S.H. Case. Modelling and numerical solution of multibranched DC rail tractionpower systems [J]. IEE Proceedings on Electric Power Applications, 1995, 142(5):323-328.
    [21]贺威俊,简克良.电气化铁道供变电工程[M].北京:中国铁道出版社,1981.
    [22]谭秀炳,刘向阳.交流电气化铁道牵引供电系统[M].成都:西南交通大学,2002.
    [23]渡边宽笋.钢轨电位的抑制对策[R].日本:日本国有铁道技术研究所技术研究报告,2001.
    [24]A.D. Papalexopoulos, A.P, Meliopoulos. Frequency dependent characteristics of grounding systems [J]. IEEE Transactions on Power Delivery, 1987,2(4):1073-1081.
    [25]A. Mariscotti, P. Pozzobon. Distribution of the traction return current in AT electric railway systems [J], IEEE Transactions on power Delivery, 2005,20(3):2119-2128.
    [26]N.Nedelchev. Influence of earth connection on the operation of railway track circuits [J], IEE Proceedings of Electric Power Applications, 1997,144(3):215-219.
    [27]吴命利,范瑜,辛成山.Scott接线牵引变压器运行特性与等值模型研究[J].电工技术学报,2003,18(4):55-59.
    [28]J.G. Yu. The effects of earthing strategies on rail potential and stray currents in DC transit railways [C].1998 International Conference on Developments in Mass Transit Systems,1998:303-309.
    [29]D.J. Woodhouse, R.H. Middleton. Consistency in ground potential rise estimation utilizing fall of potential method data [J]. IEEE Transaction on Power Delivery, 2005, 20(2):1226-1234.
    [30]R.J. Hill, D.C. Carpenter. Rail track distributed transmission line impedance and admittance:theoretical modeling and experimental results [J]. IEEE Transactions on Vehicular Technology, 1993,42(2):225-341.
    [31]R. J. Hill, D. C. Carpenter. Determination of rail internal impedance for electric railway traction system simulation [J]. IEEE Transactions on Vehicular Technology, 1991,138 (6):311-321.
    [32]N. Medora. Development of test instrumentation to measure the leakage resistance of a single fastener in track work [C].1997 IEEE Conference Record of Industrial and Commercial Power Systems Technical Conference, 1997:247-257.
    [33]解绍锋,汪吉健,魏宏伟,等.高速铁路钢轨电位计算及限制方案研究[C].电气化铁道(客运专线技术研讨会议论文集),2006:318-322.
    [34]袁中平.高速客运专线地电位影响计算与防护探讨[J].中国水运,2006,4(4):96-97.
    [35]蔡文锋,王平,殷明旻.遂渝线无砟轨道综合试验段轨道平顺状态研究[J].铁道勘察,2009,2:47-51.
    [36]孙利琴,魏永幸.遂渝线无碴轨道综合试验段路基工程设计[J].铁道勘察,2007,3:98-101.
    [37]王树国,曾树谷,京津线动车组曲线和道岔通过性能分析[J],铁道工程学报,2007,12:195-200.
    [38]雷小奇.优化大同枢纽运输组织为大秦线提供畅通的运输环境[J].太原铁道科技,2007,3:10-11.
    [39]陈青华,李群湛.朔黄线牵引变电所供电补偿方案的研究[J].电气化铁道,2007,3:1-4.
    [40]赵彦星.提高朔黄线运能力分析与研究[J].铁道建筑技术,2007,10:6-11.
    [41]张战平.直供方式交流电气化铁道钢轨漏泄电流分布特性及其地电位[J].铁道学报,1991,13(1):25-33.
    [42]缪耀珊.交流电气化铁道的钢轨对地电位问题[J].电气化铁道,2007(4):1-6.
    [43]蔡文锋,王平,殷明旻.遂渝线无砟轨道综合试验段轨道平顺状态研究[J].铁道工程学报,2009,2:47-51.
    [44]史集芬,陈世欣.高速电气化铁路对有线电信设施电磁危险影响分析[J].中国铁路,1999,5:34-36.
    [45]江中澳,赵学义,杨永川,等.电气化铁道地电位升对通信站影响的研究[J].铁道学报,1986,8(2):32-39.
    [46]吴命利,黄足平,辛成山.降低电气化铁道钢轨电位技术措施的研究[C].中国电气化铁路两万里学术会议文集,2005:504-516.
    [47]李韶军,孔亮勤.直供方式钢轨电流分布数学模型与软件仿真[J].北方交通大学学报,1991,15(3):65-76.
    [48]艾兵,董安平,吴广宁,等.重载电气化铁路钢轨电位监测系统[J].电工电能新技术,2009,28(3):67-72.
    [49]胡同光.交流轨道电路参数测试计算中的两个实际问题[J].铁道学报,1984,6(3):25-29.
    [50]曹笃峰,吴命利,詹庆才,等.遂渝线无砟轨道试验段钢轨漏泄电阻测试[J].电气化铁道,2007,6:10-12.
    [51]李宜生,傅世善.无碴轨道对信号轨道电路的影响[J].中国铁路,2005,3:48-53.
    [52]解绍锋,汪吉健,魏宏伟,等.高速铁路钢轨电位计算及限制方案研究[C].中国铁道学会电气化委员会学术会议论文集,2006:318-322.
    [53]邓云川.综合接地系统钢轨电位及电流分布的分析[J].铁道标准设计,2009,增刊:153-156.
    [54]陈屹,邓云川.遂渝线无柞轨道综合接地系统钢轨电位及电流分布分析[J].铁道工程学报,2007,31(增刊):426-429.
    [55]辛成山.钢轨漏泄电阻对AT供电系统电气特性指标的影响[R].北京:铁道科学研究院报告,1988.
    [56]BS EN50122-1, Protective provisions relating to electrical safety and earthing [S]. British Standard: Railway Applications-Fixed Installations Part 1,1998.
    [57]N. Medora. Optimum parameter selection to aid in developing a method for electrically testing a single fastener in trackwork [J]. IEEE Transactions on Industry Applications, 1998,34(4):656-662.
    [58]曹建猷.电气化铁道供电系统[M].北京:中国铁道出版社,1983.
    [59]李群湛,贺建闽.牵引供电系统分析[M].成都:西南交通大学出版社,2007.
    [60]C.H. Lee, H.M. Wang. Effects of grounding schemes on rail potential and stray currents in Taipei rail transit systems [J]. IEEE Proceedings:Electric Power Applications, 2001, 148(2):148-154.
    [61]C.H. Lee. Evaluation of the maximum potential rise in Taipei rail transit systems [J]. IEEE Transactions on Power Delivery,2005,20(2):1379-1384.
    [62]B. Y. Ku, T. Hsu. Computation and validation of rail to earth potential for diode grounded DC traction system at Taipei rapid transit system [C]. Proceddings of the 2004 ASME/IEEE Joint Rail Conference,2004,27:41-46.
    [63]苏光辉.钢轨电位过高的原因分析及解决措施[J].电气化铁道,2007,1:38-40.
    [64]李群湛,郭锴,周福林.交流电气化铁路AT供电牵引网电气分析[J].西南交通大学学报,2012,47(1):78-83.
    [65]郭秀云.高土壤电阻率地区轻轨综合接地网设置方法[J].探讨与研究,2006,21(2):30-33.
    [66]唐元方.客运专线无碴轨道桥梁综合接地及其必要性[J].铁道工程学报,2006,(5):63-66.
    [67]余德武,缪柏年.无碴轨道综合接地系统方案的探讨[J].铁道通信信号,2005,41(8):1-19.
    [68]邵立华,杨海坤,李祥锐,等.铁路防雷及接地工程的技术要求[J].中国铁路,2008,12.76-79.
    [69]苏鹏程.客运专线电气化铁道的综合接地技术[J].电气化铁道,2005:39-42.
    [70]S.T. Sobral, V. G. P. Fleury, J.R. Villalba, et al. Decoupled method for studying large inter conneeted grounding systems using microcomputers [J]. IEEE Transactions on Power Delivery, 1988,3(4):1536-1552.
    [71]M. Rodrigues, I. Aziz, P. Bansal. Earthing and bonding strategy for a large distributed system [J]. IET Seminar on EMC in Railways, 2006,2006(11492):127-136.
    [72]K.S. Bahra, P.G. Batty. Earthing and bonding of electrified railways [J]. IEE Conference Publication,1998,453:296-30.
    [73]陈晶晶,马德明.高速铁路常用供电方式接地回流研究[J].铁道技术监督,2007,35(10):24-26.
    [74]潘光艳.客运专线路基与相关站后专业系统集成问题探讨[J].铁路标准设计,2005,3:1-3.
    [75]董文俊.高速客运专线综合接地系统研究[D].成都:西南交通大学硕士学位论文.
    [76]孟巍.客运专线的综合接地预留方案与工程实践[J].铁路通信信号工程技术,2007,4(5):19-21.
    [77]J.A. Gitemes. Method for calculating the ground resistance of grounding grids using FEM [J]. IEEE Transaction on Power Delivery, 2004,19(2):595-600.
    [78]张丽萍,袁建生,李中新.变电站接地网不等电位模型数值计算[J].中国电机工程学报,2000,20(1):1-3.
    [79]鲁志伟,文习山,史艳玲,等.大型变电站接地网公频接地阐述的数值计算[J].中国电机工程学报,2003,23(12):89-93.
    [80]B. Nekhoul, C. Guerin, P. Labie, et al. A finite element method for calculating the electromagnetic fields generated by substation grounding systems [J]. IEEE Transactions on Magnetics, 1995,31(3):2150-2153.
    [81]J Nahman, I Paunovic. Effects of the local soil nonuniformity upon performances of ground grids [J]. IEEE Transactions on Power Delivery, 2007,22(4):2180-2184.
    [82]F. Dawalibi. Earth resistivity measurement interpretation techniques [J]. IEEE Transactions on Power Apparatus and Systems, 1984,103(2):374-382.
    [83]M. Carlo, M.V. Giuseppe. Impulse behavior of ground electrodes [J]. IEEE Transactions on Power Delivery, 1983,102(9):3148-3154.
    [84]R. Velazquez, D. Mukhedkar. Analytical modeling of grounding electrodes transient behavior [J]. IEEE Transations on Power Apparatus and Systems, 1984,103(5): 1314-1322.
    [85]余德武,缪柏年.无碴轨道综合接地系统方案的探讨[J].铁道通信信号,2005,41(8):1-2.
    [86]吕永宏,姜贺彬.客运专线牵引供电综合接地系统仿真研究[J].甘肃科技,2007,23(12):85-88.
    [87]李中新,袁建生,张丽平.变电站接地网模拟计算[J].中国电机工程学报,1999,19(5):76-79.
    [88]孙结中,刘力.运用等值复数镜像法求解复合分层土壤结构的格林函数[J].中国电机工程学报,2003,23(9):146-151.
    [89]刘春,何俊佳,尹小根,等.复合接地网接地电阻的计算机仿真[J].中国电机工程学报,2003,23(6):159-163.
    [90]李红梅.客运专线接触网回流接地系统的优化设计[J].中国铁路,2005,11:41-43.
    [91]程辉海.牵引变电所地网腐蚀与改造研究[J].电气化铁道,2006,1:16-18.
    [92]王国英,彭为民.关于牵引轨道及其关联设施在牵引网中重要性的探讨[J].太原铁道科技,2005:1-3.
    [93]路勇.综合接地技术在铁路客运专线建设中的实践应用[J].陕西建筑,2007,11:21-24.
    [94]高国强,董安平,张雪原,等.高速铁路综合地线的接地效果[J].西南交通大学学报,2011,46(1):103-108.
    [95]董安平,张雪原,邓明丽,等.直供方式下综合地线对牵引回流的影响[J].西南交通大学学报,2010,45(1):55-59.
    [96]艾兵,董安平,吴广宁,等.重载电气化铁道钢轨及地表电位分布特性研究[J].电气应用,2010,29(4):33-37.
    [97]田长海,魏瑜,向泽伟.大秦线2亿吨运输能力若干问题的探讨[J].中国铁道科学,2004,25(1):115-119.
    [98]S.N. Talukdar, R.L. Koo. The analysis of electrified ground transportation networks [J]. IEEE Transactions on Power Apparatus and Systems, 1997,96(1):240-247.
    [99]高筱纲,赵国谦,马其祥.关于层式结构土壤情况下阻性耦合的计算[J].铁道学报,1982,4(3):34-41.
    [100]L.D. Grcev, M. Heimbach. Frequency dependent and transient characteristics of substation grounding systems [J]. IEEE Transactions on Power Delivery, 1997,12(1): 172-178.
    [101]A.P. Meliopoulos, M.GMoharam. Transient analysis of grounding systems [J], IEEE Transactions on Power Apparatus and Systems, 1983,102(2):389-399.
    [102]M.I. Lorentzou, N.D. Hatziargyriou. Investigation of the effect of mutual coupling of grounding conductors [C]. Proceedings of the Mediterranean Electrotechnical Conference,1998,1:474-478.
    [103]李群湛,连级三,高仕斌.高速铁路电气化工程[M].成都:西南交通大学出版社,2006.
    [104]何俊文,李群湛,刘炜,等.交流牵引供电系统仿真通用数学模型及其应用[J].电网技术,2010,34(7):32-39.
    [105]王语园,田铭兴.高速铁路常用供电方式的牵引回流研究[J].铁道运营技术,2011,17(1):77-82.
    [106]张秀峰,连级三.基于斯科特变压器的新型同相AT牵引供电系统[J].机车电传动,2006(04):66-70.
    [107]E. Pilo, L. Rouco, A. Fernandez, et al. A simulation tool for the design of the electrical supply system of high-speed railway lines [C]. Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, 2000,2:1053-058.
    [108]W. Staudt, C. Heising, A. Steimel. Advanced simulation concept for the power train of an AC locomotive and its verification[C].7th Internatonal Conference on Power Electronics,2007:66-70.
    [109]Jianhua Li, Shizhu Huang, Juan Zhao, et al. Simulation for probabilistic harmonic currents of electrical railway traction substation [C]. Proceedings on Power System Technology,2002:99-103.
    [110]J.H. Seo, H. Sugiyama; A.A. Shabana, et al. Three-dimensional large deformation analysis of the multibody pantograph/catenary systems [J]. Nonlinear Dynamics, 2005, 42(2):199-215.
    [111]陈家斌.接地技术与接地装置[M].北京:中国电力出版社,2002.
    [112]J.D. Woodhouse, R.H. Middleton. Assessment of analysis techniques used in determining grounding system potential rise from the fall of potential method [C].2000 IEEE Power Engineering Society Summer Meeting, 2000,2:1153-1158.
    [113]J.H. Seo, S.W. Kim, I.H. Jung, et al. Dynamic analysis ofa pantograph-catenary system using absolute nodal coordinates [J]. Vehicle System Dynamics, 2006,44(8):615-630.
    [114]杜松怀.电力系统接地技术[M].北京:中国电力出版社,2011.