磷脂酶A1的发酵制备、分离纯化及催化特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酶法脱胶是油脂精炼过程中的一种生化脱胶技术,相比传统脱胶方法,具有高效、绿色环保等优点。目前市场上使用的磷脂酶存在反应条件要求严格,不能回收利用等问题,限制了磷脂酶在工业生产中的应用。
     本研究以实验室保存的Bacillus cereus sp. AF-1为出发菌株,以提高发酵液磷脂酶活力为目的,优化发酵工艺得到较高酶活力的粗酶液,通过分离纯化得到磷脂酶并对其性质进行分析评价;采用化学修饰、固定化等方法来提高磷脂酶的稳定性和重复使用性,以期为磷脂酶的开发利用探索新的途径。主要研究内容与结果如下:
     1.采用NaOH滴定法测定磷脂酶活力,通过单因素实验和响应面实验优化,确定磷脂酶活力测定的最优条件为:底物质量浓度4g/100mL、反应终点pH值9.0、酶液稀释倍数100倍、反应pH值5.1、反应温度53℃、反应时间8min。结果表明NaOH滴定法是一种准确、快捷的测定磷脂酶活力的方法。
     2.以Bacillus cereus sp. AF-1为出发菌株,采用发酵法得到粗酶液,通过对培养基组成和发酵工艺条件的优化,并从摇瓶水平扩大到15L发酵罐水平,得到的最佳培养基为:葡萄糖浓度为2%,蛋白胨浓度为3%,无机盐的组成为:Na_2HPO_4·12H_2O1.5%,KH_2PO_4·2H_2O0.3%,MgSO_4·7H_2O0.06%,CaCl_20.01%;15L发酵罐最佳发酵条件为:发酵时间为30h、发酵温度为35℃、发酵液pH为7.5、接种量为10%、通气量为0.3m3/h。此条件下得到的粗酶液酶活力为41.57U/mL。
     3.粗酶液通过硫酸铵沉淀及透析、DEAE-52离子交换层析、葡聚糖凝胶G-75凝胶层析等方法进行分离纯化,得到的磷脂酶类型为PLA1,其分子量为20kD,酶活力为1195.24U/mg,磷脂酶A1的Km和Vmax分别为11.11mg/mL和1.302mmol/L mg;最佳作用温度和pH值分别为35℃和7.5;4℃下贮藏5周,磷脂酶的酶活力没有变化,贮藏8周,能保持90%以上的酶活力。
     4.采用化学修饰剂CC-mPEG对磷脂酶进行修饰,当修饰率为14%,酶活力回收率为88.75%时,得到的修饰酶MPLA1分子量约为25kD,MPLA1的热稳定性、pH稳定性、对底物的亲和力以及催化效率都得到了提高。酶在337nm处最大荧光强度的降低和圆二色谱β-折叠的降低和回转的升高,从MPLA1结构上进一步说明了修饰酶比PLA1具有更好的稳定性。
     5.采用聚乙烯醇-海藻酸钠为载体,以固定化酶的活力,酶活力回收率和稳定性等参数为主要评价指标,对磷脂酶进行固定化,确定最佳工艺条件为:载体聚乙烯醇和海藻酸钠的浓度分别为10%和2%,交联剂硼酸和氯化钙的浓度分别为4%和2%,固定化时间为30min,酶的添加量为10mg/100g,固定化酶(IPLA1)的粒径为4mm;相比游离酶,IPLA1的最佳作用温度和pH值以及热稳定性和pH稳定性较游离酶得到提高;IPLA1重复使用8次,剩余酶活力仍然超过50%;在4℃下贮藏9周,IPLA1能保持90%以上的酶活力。
     6.粗酶、纯化后的磷脂酶(PLA1)、修饰酶(MPLA1)和固定化酶(IPLA1)用于菜籽毛油脱胶,以毛油中磷含量为依据,对四种酶的脱胶效果进行比较,研究结果表明:粗酶能将毛油中磷含量降低到10mg/kg以下,但酶的使用量和作用时间均高于其他三种酶;当添加量为480U/kg,处理3h时,PLA1和IPLA1将毛油中磷的含量降低到10mg/kg以下,MPLA1将毛油中磷的含量降低到5mg/kg以下。PLA1经化学修饰和固定化后得到的MPLA1和IPLA1具有较好的脱胶效果。
Enzymatic degumming is a biochemical degumming technology in oil refining process whichwas much more effective and environmentally friendly than traditional methods. At present,commercial phospholipases have strict requirement for reaction condition and can’t be recycled.All these limit phospholipase application in industrial production.
     Phospholipase produced from Bacillus cereus sp. AF-1which perserved in the laboratory.The purpose of this study is to improve activity of phospholipase by optimizing fermentationprocess. The phospholipase was purified and the characteristics of the purified enzyme have beenstudied. In order to explore new method to improve stability and reusability, chemicalmodification and immobilization of phospholipase were applied. The main results and conclusionsobtained are as follows.
     1. The activity of phospholipase was messured by liberated fatty acids titrated with NaOH.The optimal condition was obtained through single factor experiments and response surfacemethodology. The optimal conditions for determining phospholipase activity required substrateconcentration of4g/100mL, final pH9.0, enzyme dilution factor of100, reaction pH5.1, reactiontemperature of53℃and reaction time of8min.The results revealed that titration is a accurateand rapid method for assay activity of phospholipase.
     2. Medium component and fermentation process were optimized for production ofphospholipase from Bacillus cereus sp. AF-1. Fermentation parameters were further optimized infermentor(15L). The results showed that the culture medium were as the following (%): peptone3,glucose2, NaH_2PO_4·12H_2O1.5, KH_2PO_4·2H_2O0.3, MgSO_4·7H_2O0.06, CaCl_20.01, pH7.2. Thefermentation parameters were as follow: cultured at35°C for30h, initial pH was adjusted to7.0,at inoculation of10%, at ventilatory volume of0.3m3/h. In such condition, the activity ofphospholipase can reach41.57U/mL.
     3. The enzyme was purified with precipitated by (NH4)2SO4, eluted in DEAE-52and G-75columns. The enzyme was identified as phospholipase A1. The purified enzyme has a molecularweight of20kDa with specific activity1195.24U/mg. The enzyme showed maximum activity(Vmax) of1.302mmol/L mg-1proteins with its corresponding Km value of11.11mg/mL. Theoptimal temperature and pH for phospholipase A1were35℃and7.5. The enzyme biocatalystretained100%and90%of the initial activity after storing5and8weeks at4℃, respectively.
     4. PLA1was modified with CC-mPEG. The optimum modification degree and recovery ofthe enzyme activity were14%and88.75%, respectively. The purified MPLA1has a molecularweight of25kDa. Compared with PLA1, the thermal stability, pH stability, affinity towards thesubstrate and catalytic efficiency value of MPLA1have been improved. The decrease of thefluorescence intensity at337nm and the changes of β-turns, rotation structure which could explainthe better stability of MPLA1.
     5. Polyvinyl alcohol (PVA)–alginate beads was used as a carrier for immobilized enzymes.Effects of PVA–alginate on phospholipase A1immobilization was evaluated by testing someparameters, such as immobilized phospholipase activity, immobilization yield and stability. Theresults showed that the optimal condition were as follow: beads prepared with10%PVA and2%sodium alginate,4%boric acid and2%calcium chloride solution, process time in boric acid solution was30minutes,10mg enzyme per100g PVA–alginate matrix, diameter of bead is4mm. The pH and temperature optimum for the PVA–alginate immobilized phospholipase A1werehigher than free phospholipase A1. The PVA-alginate beads showed better thermal stability andpH stability than free phospholipase A1. The enzyme immobilized in the beads remained morethan50%of the initial activity in the eighth cycle. The enzyme biocatalyst immobilized in thebeads retained more than90%of the initial activity after storing9weeks at4℃.
     6. Crude phospholipase, PLA1, MPLA1and IPLA1were used for rapeseed oil degumming.Effects of4enzymes were evaluated by phosphorus content of oil. The result revealed that theother three enzymes were more effective than crude phospholipase in oil degumming. The residualphosphorus content decreases steadily to less than10mg/kg, when the optimum degummingconditions are determined as time3h and PLA1(or IPLA1) dosage480U/kg. The residualphosphorus content even decreases under5mg/kg with3h and MPLA1dosage480U/kg. MPLA1and IPLA1have better effect of degumming after chemical modify and immobilization.
引文
[1]钱峰,裘爱泳.磷脂酶法改性研究进展[J].粮食与油脂,2007(12):8-11.
    [2]冯波,吴卫甲,钱嵘,等.竹叶青蛇毒磷脂酶A2的分离纯化和性质研究[J].生物化学与生物物理学报,1996,28(2):201-201.
    [3] Givskov, M. and Molin, S. Secretion of Serratia liquefaciens phospholipase from Escherichiacoli[J]. Molecular microbiology,2006,8(2):229-242.
    [4] Kim, M., Kim, J. and Rhee, J. Isolation of a phospholipase A1-producing microorganism[J].Journal of Industrial Microbiology&Biotechnology,1996,16(3):171-174.
    [5]高林,磷脂酶C高产菌株的筛选,鉴定和培养条件的优化研究[D].安徽农业大学,合肥:2007.
    [6] Hartmann, M., Guberman, A., Florin-Christensen, M. et al. Screening for andcharacterization of phospholipase A1hypersecretory mutants of Tetrahymenathermophila[J]. Applied microbiology and biotechnology,2000,54(3):390-396.
    [7] Nishihara, M., Kamata, M., Koyama, T. et al. New phospholipase A1-producing bacteriafrom a marine fish[J]. Marine Biotechnology,2008,10(4):382-387.
    [8] Kim, M.K. and Rhee, J.S. Simple and rapid screening methods for microorganisms withphospholipase A1, A2and C activities[J]. Biotechnology techniques,1994,8(9):635-638.
    [9] Clausen, I.G., Patkar, S.A., Borch, K. et al. Method for reducing phosphorus content ofedible oils.2000, Google Patents.
    [10] Roy, S., Rao, B.V. and Prasad, R.B. Enzymatic degumming of rice bran oil[J]. Journal ofthe American Oil Chemists' Society,2002,79(8):845-846.
    [11]付建红,唐辉桂,姚斌,等.一株产低温碱性磷脂酶A1耐冷细菌的筛选及发酵条件的初步研究[J].工业微生物,2008,38(5):12-16.
    [12]司武阳,磷脂酶A1产生菌的选育[D].安徽工程大学,芜湖:2010.
    [13]王金梅,姜芳燕,戴大章,等.磷脂酶高产菌株的筛选,诱变及其在豆油脱胶中的应用[J].环境科学研究,2010(007):948-952.
    [14]王道营,张牧晗,张露娟,等.磷脂酶的分离纯化技术研究进展[J].江西农业学报,2012,24(9):142-145.
    [15]查红光,张云. Sepharose4B一步法对金环蛇蛇毒磷脂酶A2的分离纯化[J].动物学研究,2001,22(6):433-436.
    [16]胡博新,顾鸽青,朱裕辉,等.链霉菌磷脂酶D的分离纯化及部分酶学性质[J].中国医药工业杂志,2008,39(9):655-658.
    [17] Mo, S., Kim, J.-h. and Cho, K.W. A novel extracellular phospholipase C purified from amarine bacterium, Pseudoalteromonas sp. J937[J]. Biotechnology letters,2009,31(1):89-94.
    [18] Karray, A., Frikha, F., Ali, Y.B. et al. Purification and biochemical characterization of asecreted group IIA chicken intestinal phospholipase A2[J]. Lipids in health and disease,2011,10(1):27.
    [19] Sugimori, D., Kano, K. and Matsumoto, Y. Purification, characterization, molecular cloningand extracellular production of a phospholipase A1from Streptomyces albidoflavusNA297[J]. FEBS Open Bio,2012.
    [20]占剑峰,姜绍通,潘丽军.磷脂酶酶活力测定条件的优化[J].食品科学,2012,33(17):174-178.
    [21]赵树铭.磷脂酶A2测定方法进展[J].国外医学:临床生物化学与检验学分册,1995,16(6):242-244.
    [22] Song, J.K., Han, J.J. and Rhee, J.S. Phospholipases: Occurrence and production inmicroorganisms, assay for high-throughput screening, and gene discovery from naturaland man-made diversity[J]. Journal of the American Oil Chemists' Society,2005,82(10):691-705.
    [23] Ramchuran, S.O., Vargas, V.A., Hatti-Kaul, R. et al. Production of a lipolytic enzymeoriginating from Bacillus halodurans LBB2in the methylotrophic yeast Pichia pastoris[J].Applied microbiology and biotechnology,2006,71(4):463-472.
    [24]李维琳,袁德军,傅家忠.检测磷脂酶A2的气相色谱法的建立与应用[J].华中农业大学学报,2002,21(2):183-185.
    [25]刘春叶,王亚明.酶的固定化及化学修饰[J].云南化工,2002,29(5):29-31.
    [26]朱俊晨,王小菁.酶的分子设计,改造与工程应用[J].中国生物工程杂志,2004,24(8):32-37.
    [27]陈惠,刘彩云,陈伟.酶的人工修饰[J].中国食品添加剂,2008(4):94-97.
    [28] Kodera, Y., Matsushima, A., Hiroto, M. et al. Pegylation of proteins and bioactivesubstances for medical and technical applications[J]. Progress in polymer science,1998,23(7):1233-1271.
    [29]马晓建,白净,任珂,等.酶工程研究的新进展[J].化工进展,2003,22(8):813-817.
    [30]徐金库,张媛媛,刘均洪.酶稳定性的研究进展[J].化学与生物工程,2004,21(3):1-3.
    [31] Sherwood, R.F., Baird, J.K., Atkinson, T. et al. Enhanced plasma persistence of therapeuticenzymes by coupling to soluble dextran[J]. Biochemical Journal,1977,164(2):461.
    [32] Gómez, L. and Villalonga, R. Functional stabilization of invertase by covalent modificationwith pectin[J]. Biotechnology letters,2000,22(14):1191-1195.
    [33] Roberts, M., Bentley, M. and Harris, J. Chemistry for peptide and protein PEGylation[J].Advanced drug delivery reviews,2012.
    [34] Veronese, F.M., Mero, A. and Pasut, G. Protein PEGylation, basic science and biologicalapplications[J]. PEGylated Protein Drugs: Basic Science and Clinical Applications,2009:11-31.
    [35] Bailon, P., Palleroni, A., Schaffer, C.A. et al. Rational design of a potent, long-lasting formof interferon: a40kDa branched polyethylene glycol-conjugated interferon α-2a for thetreatment of hepatitis C[J]. Bioconjugate chemistry,2001,12(2):195-202.
    [36] Schiavon, O., Caliceti, P., Ferruti, P. et al. Therapeutic proteins: a comparison of chemicaland biological properties of uricase conjugated to linear or branched poly (ethylene glycol)and poly (N-acryloylmorpholine)[J]. Il Farmaco,2000,55(4):264-269.
    [37] Abuchowski, A., Van Es, T., Palczuk, N. et al. Alteration of immunological properties ofbovine serum albumin by covalent attachment of polyethylene glycol[J]. Journal ofBiological Chemistry,1977,252(11):3578-3581.
    [38]吴洁,刘景晶,胡卓逸.蛋白质药物的聚乙二醇修饰[J].药学进展,2002,26(3):146-151.
    [39] Matsushima, A., Nishimura, H., Ashihara, Y. et al. modification of e. coli asparaginase with2,4-bis (o-methoxypolyethylene glycol)-6-chloro-s-triazine (activated peg2);disappearance of binding ability towards anti-serum and retention of enzymic activity[J].Chemistry Letters,1980,9(7):773-776.
    [40]尹亮,赵树进.聚乙二醇修饰超氧化物歧化酶稳定性变化的研究[J].生物技术,2003,13(4):29-30.
    [41]张继娟,吴梧桐.聚乙二醇(PEG-5000)对胰激肽释放酶化学修饰的初步研究[J].药物生物技术,2006,13(6).
    [42]孙毅毅,侯世祥,陈彤,等.壳聚糖-聚乙二醇接枝共聚物的合成与表征[J].四川大学学报:工程科学版,2005,37(2):76-79.
    [43]张伟,刘琳婕,何仲贵.聚乙二醇在药物制剂中的应用[J].中国药剂学杂志,2007,5(2):67-67.
    [44]毛益斌,张蓓蕾.单甲氧聚乙二醇化学修饰药物酶的研究进展[J].中国医药工业杂志,2003,34(5):250-255.
    [45] Abuchowski, A., McCoy, J.R., Palczuk, N.C. et al. Effect of covalent attachment ofpolyethylene glycol on immunogenicity and circulating life of bovine liver catalase[J].Journal of Biological Chemistry,1977,252(11):3582-3586.
    [46]应国清,易喻,石陆娥,等.单甲氧基聚乙二醇修饰蚓激酶的制备及性质研究[J].高校化学工程学报,2005,19(4):527-531.
    [47]舒薇,房师松,崔堂兵,等.木瓜凝乳蛋白酶的单甲氧基聚乙二醇化学修饰及其对酶活力和抗原性的影响[J].卫生研究,2006,35(3):304-307.
    [48] Yandri, T.S., Dian, H. and Sutopo, H. The chemical modification of protease enzymeisolated from local bacteria isolate, Bacillus subtilis ITBCCB148with cyanuric chloridepolyethylenglycol[J]. European Journal of Scientific Research,2008,23(1):177-186.
    [49] Quintanilla-Guerrero, F., Duarte-Vázquez, M., Tinoco, R. et al. Chemical modification ofturnip peroxidase with methoxypolyethylene glycol enhances activity and stability forphenol removal using the immobilized enzyme[J]. Journal of agricultural and foodchemistry,2008,56(17):8058-8065.
    [50] Davis, B.G. Chemical modification of biocatalysts[J]. Current opinion in biotechnology,2003,14(4):379-386.
    [51]吴华昌,邓静,吴晓莉,等.蛋白质工程在改造工业用酶中的应用[J].四川轻化工学院学报,2004,17(2):79-82.
    [52]居乃琥.21世纪酶工程研究的新动向[J].工业微生物,2001,31(1):43-43.
    [53] Oue, S., Okamoto, A., Yano, T. et al. Redesigning the substrate specificity of an enzyme bycumulative effects of the mutations of non-active site residues[J]. Journal of BiologicalChemistry,1999,274(4):2344-2349.
    [54] Jeffery, C.J., Gloss, L.M., Petsko, G.A. et al. The role of residues outside the active site:structural basis for function of C191mutants of Escherichia coli aspartateaminotransferase[J]. Protein engineering,2000,13(2):105-112.
    [55]邹承鲁.酶学研究的现状与展望[J].中国生物化学与分子生物学报,1999,15(3):351-354.
    [56]伍志权,黄卓烈,金昂丹.酶分子化学修饰研究进展[J].生物技术通讯,2007,5.
    [57]胡和兵,王牧野,吴勇民,等.酶的固定化技术及应用[J].中国酿造,2006(7):4-8.
    [58]郭勇,酶工程原理与技术[M].高等教育出版社,北京:2005.
    [59] Powell, L. Developments in immobilized-enzyme technology[J]. Biotechnology&geneticengineering reviews,1984,2:409.
    [60]张伟,杨秀山.酶的固定化技术及其应用[J].自然杂志,2000,22(5):282-286.
    [61] Albayrak, N. and Yang, S.-T. Immobilization of Aspergillus oryzae β-galactosidase ontosylated cotton cloth[J]. Enzyme and microbial technology,2002,31(4):371-383.
    [62]刘秀伟,司芳,郭林,等.酶固定化研究进展[J].化工技术经济,2003,21(4):12-17.
    [63]王新,李培军,巩宗强.固定化细胞技术的研究与进展[J].农业环境保护,2001,20(2):120-122.
    [64]乔丽娜,周在德,肖丹.酶生物传感器中酶的固定化技术[J].化学研究与应用,2005,17(3):299-302.
    [65]拜永孝,李彦锋,马应霞,等.固定化酶技术及其应用[J].化学通报,2005,68(27):1-1.
    [66]于殿宇,罗淑年,王瑾,等.海藻酸钠-明胶固定化磷脂酶的研究[J].食品工业,2008(3):9-11.
    [67] Kim, J., Lee, C.-S., Oh, J. et al. Production of egg yolk lysolecithin with immobilizedphospholipase A2[J]. Enzyme and microbial technology,2001,29(10):587-592.
    [68] Freitas, F., Marquez, L., Ribeiro, G. et al. Optimization of the immobilization process ofβ-galatosidade by combined entrapment-cross-linking and the kinetics of lactosehydrolysis[J]. Brazilian Journal of Chemical Engineering,2012,29(1):15-24.
    [69] Sheelu, G., Kavitha, G. and Fadnavis, N.W. Efficient immobilization of Lecitase in gelatinhydrogel and degumming of rice bran oil using a spinning basket reactor[J]. Journal of theAmerican Oil Chemists' Society,2008,85(8):739-748.
    [70] Chen, J.-P. and Chen, J.-Y. Preparation and characterization of immobilized phospholipaseA2on chitosan beads for lowering serum cholesterol concentration[J]. Journal ofMolecular Catalysis B: Enzymatic,1998,5(5):483-490.
    [71] Adriano, W., Silva, J., Giordano, R. et al. Stabilization of penicillin G acylase byimmobilization on glutaraldehyde-activated chitosan[J]. Brazilian Journal of ChemicalEngineering,2005,22(4):529-538.
    [72] Ferreira, J.P.M., Sasisekharan, R., Louie, O. et al. Influence of chemistry in immobilizationof cobra venom phospholipase A2: implications as to mechanism[J]. Biochemistry,1993,32(32):8098-8102.
    [73] Shen, Z. and Cho, W. Highly efficient immobilization of phospholipase A2and itsbiomedical applications[J]. Journal of lipid research,1995,36(5):1147-1151.
    [74] Hong, Y.-J., Li, T.-Y., Chen, B. et al. Immobilization of Angiotensin Converting-enzymeon Chitosan Microspheres [J]. Chemical Journal of Chinese Universities,2009,2:023.
    [75] Sato, S., Murakata, T., Ochifuji, M. et al. Development of Immobilized Enzyme Entrappedwithin Inorganic Matrix and Its Catalytic Activity in Organic Medium[J]. Journal ofchemical engineering of Japan,1994,27(6):732-736.
    [76] Parascandola, P., Branduardi, P. and de Alteriis, E. PVA-gel (Lentikats) as an effectivematrix for yeast strain immobilization aimed at heterologous protein production[J].Enzyme and microbial technology,2006,38(1):184-189.
    [77]潘育松,熊党生,陈晓林.聚乙烯醇水凝胶的制备及性能[J].高分子材料科学与工程,2007,23(6).
    [78] Wong, F.L. and Abdul‐Aziz, A. Comparative study of poly (vinyl alcohol)‐basedsupport materials for the immobilization of glucose oxidase[J]. Journal of ChemicalTechnology and Biotechnology,2007,83(1):41-46.
    [79] Long, Z.-e., Huang, Y., Cai, Z. et al. Immobilization of Acidithiobacillus ferrooxidans by aPVA–boric acid method for ferrous sulphate oxidation[J]. Process Biochemistry,2004,39(12):2129-2133.
    [80]刘建红,王雷荣.海藻酸钠,聚乙烯醇包埋固定化技术对紫色非硫光合细菌脱氢酶活性影响的试验研究[J].安全与环境工程,2009,16(3):54-56.
    [81]雷生姣,王可兴,吕晓燕,等.聚乙烯醇-海藻酸钙固定化柚苷酶[J].食品科学,2011,32(3).
    [82] Idris, A., Zain, N.A.M. and Suhaimi, M.S. Immobilization of Baker's yeast invertase inPVA–alginate matrix using innovative immobilization technique[J]. Process Biochemistry,2008,43(4):331-338.
    [83] Nunes, M.A., Vila-Real, H., Fernandes, P.C. et al. Immobilization of naringinase inPVA–alginate matrix using an innovative technique[J]. Applied biochemistry andbiotechnology,2010,160(7):2129-2147.
    [84]程书红.几种毛油除杂设备的比较[J].粮油食品科技,1992,5:4.
    [85]倪培德.油脂加工技术[M].化学工业出版社,北京:2007.
    [86]何东平.油脂精炼与加工工艺学[M].化学工业出版社,北京:2005.
    [87]李秋生,杨继国,杨博,等.不同磷脂酶用于植物油脱胶的研究[J].中国油脂,2004,29(1):19-22.
    [88]高荫榆,郭磊,丁红秀,等.植物油脱胶研究进展[J].食品科学,2006,27(9):268-270.
    [89]杨继国,杨博,林炜铁.植物油物理精炼中的脱胶工艺[J].中国油脂,2004,29(2):7-10.
    [90]杨博,王旋.植物油物理精炼中多种脱胶方法评价[J].中国油脂,2004,29(12):18-21.
    [91] Hui, Y.,徐生庚,裘爱泳,贝雷:油脂化学与工艺学(第四卷)[M].中国轻工业出版社,北京:2001.
    [92] Ve’ronique Gibon, A.T. Removal of gums and waxes[J]. Inform,2000,11:524-535.
    [93]赵国志,刘喜亮,刘智锋.油脂脱胶技术[J].粮食与油脂,2004(1):3-8.
    [94] Dahlke, K. An enzymatic process for the physical refining of seed oils[J]. Chemicalengineering&technology,1998,21(3):278-281.
    [95]汪勇,欧仕益,吴建中,等.食用油脂膜分离超滤脱胶的研究进展[J].中国油脂,2004,29(7):20-22.
    [96] Lin, L., Rhee, K. and Koseoglu, S. Bench-scale membrane degumming of crude vegetableoil: process optimization[J]. Journal of membrane Science,1997,134(1):101-108.
    [97] Koseoglu, S. Editorial: Advantages of membrane degumming—real or imagined [J].European journal of lipid science and technology,2002,104(6):317-318.
    [98] Pagliero, C., Ochoa, N., Marchese, J. et al. Vegetable oil degumming with polyimide andpolyvinylidenefluoride ultrafiltration membranes[J]. Journal of Chemical Technology andBiotechnology,2003,79(2):148-152.
    [99] Hafidi, A., Pioch, D. and Ajana, H. Membrane-based simultaneous degumming anddeacidification of vegetable oils[J]. Innovative food science&emerging technologies,2005,6(2):203-212.
    [100] Subrahmanyam, C.V., Rao, M.V., Balasubrahmanyam, V. et al. Membrane degumming ofcrude rice bran oil: Pilot plant study[J]. European journal of lipid science and technology,2006,108(9):746-752.
    [101]钱伟光.大豆油的物理精炼及超临界CO2脱胶[J].四川粮油科技,1998,15(3):23-24.
    [102]黄显慈.大豆油超临界二氧化碳脱胶法简介[J].食品科技,1994(6):10-11.
    [103]万楚筠,黄凤洪,夏伏建.生物酶技术在油脂制取中应用[J].粮食与油脂,2005,11:33-35.
    [104] Buchold, H., Boensch, R. and Schroeppel, J. Process for enzymatically degummingvegetable oil.1996, Google Patents.
    [105] Ivanovski, G., Guben ek, F. and Punger ar, J. mRNA secondary structure can greatlyaffect production of recombinant phospholipase A2toxins in bacteria[J]. Toxicon,2002,40(5):543-549.
    [106] Hains, P.G., Nield, B., Sekuloski, S. et al. Sequencing and two-dimensional structureprediction of a phospholipase A2inhibitor from the serum of the common tiger snake(Notechis scutatus)[J]. Journal of Molecular Biology,2001,312(4):875-884.
    [107]薛正莲,司武阳,张珂.磷脂酶A1及其在植物油脱胶中的研究进展[J].粮油食品科技,2009,17(006):26-27.
    [108]吴可克,安庆大,江世德.酶促大豆油脱胶的研究[J].中国粮油学报,2004,19(2):79-81.
    [109] Jahani, M., Alizadeh, M., Pirozifard, M. et al. Optimization of enzymatic degummingprocess for rice bran oil using response surface methodology[J]. LWT-Food Science andTechnology,2008,41(10):1892-1898
    [1]高荫榆,郭磊,丁红秀,等.植物油脱胶研究进展[J].食品科学,2006,27(9):268-270.
    [2]李晶,胡婕伦,谢明勇,等.响应曲面法优化磷脂酶Lecitase Ultra用于茶油脱胶工艺的研究[J].食品科学,2008,29(9):326-330.
    [3]宋坷珂,汪勇,王丽丽,等.磷脂酶A1(Lecitase Ultra)催化水解油脂机理研究(I)-磷脂酶A1(Lecitase Ultra)组成及酶学特性[J].中国油脂,2009(10):36-41.
    [4]万楚筠,黄凤洪,夏伏建,等.酶处理对菜籽油脱胶及品质的影响[J].食品科学,2007,28(5):194-198.
    [5] Clausen, K. Enzymatic oil-degumming by a novel microbial phospholipase[J]. Europeanjournal of lipid science and technology,2001,103(6):333-340.
    [6]薛正莲,司武阳,张珂.磷脂酶A1及其在植物油脱胶中的研究进展[J].粮油食品科技,2009,17(6):26-27.
    [7]潘明喆,柴玉华,杜鹏.磷脂酶A1用于大豆油酶法脱胶技术的研究[J].食品工业科技,2008(5):219-222.
    [8] Kim, M.K. and Rhee, J.S. Simple and rapid screening methods for microorganisms withphospholipase A1, A2and C activities[J]. Biotechnology techniques,1994,8(9):635-638.
    [9]赵树铭.磷脂酶A2测定方法进展[J].国外医学:临床生物化学与检验学分册,1995,16(6):242-244.
    [10] Song, J.K., Han, J.J. and Rhee, J.S. Phospholipases: Occurrence and production inmicroorganisms, assay for high-throughput screening, and gene discovery from naturaland man-made diversity[J]. Journal of the American Oil Chemists' Society,2005,82(10):691-705.
    [11] Ramchuran, S.O., Vargas, V.A., Hatti-Kaul, R. et al. Production of a lipolytic enzymeoriginating from Bacillus halodurans LBB2in the methylotrophic yeast Pichia pastoris[J].Applied microbiology and biotechnology,2006,71(4):463-472.
    [12]李维琳,袁德军,傅家忠.检测磷脂酶A2的气相色谱法的建立与应用[J].华中农业大学学报,2002,21(2):183-185.
    [13] de Araújo, A.L. and Radvanyi, F. Determination of phospholipase A2activity by acolorimetric assay using a pH indicator[J]. Toxicon,1987,25(11):1181-1188.
    [14] Roberts, J., Stella, V.J. and Decedue, C.J. A colorimetric assay of pancreatic lipase: rapiddetection of lipase and colipase separated by gel filtration[J]. Lipids,1985,20(1):42-45.
    [15] Nieuwenhuizen, W., Kunze, H. and Haas, G. De. Phospholipase A2(phosphatideacylhydrolase, EC3.1.1.4) from porcine pancreas [J]. Methods in enzymology,1974,32:147-154.
    [16] Mor s-Varas, F., Shah, A., Aikens, J. et al. Visualization of enzyme-catalyzed reactionsusing pH indicators: rapid screening of hydrolase libraries and estimation of theenantioselectivity[J]. Bioorganic&medicinal chemistry,1999,7(10):2183-2188.
    [17]李脉,杨继国,杨博.磷脂酶A1酶活测定方法的研究[J].现代食品科技,2007,23(8):80-82.
    [18] Kim, M., Kim, J. and Rhee, J. Isolation of a phospholipase A1-producing microorganism[J].Journal of Industrial Microbiology&Biotechnology,1996,16(3):171-174.
    [19]占剑峰,姜绍通,潘丽军.磷脂酶酶活力测定条件的优化[J].食品科学,2012,33(017):174-178.
    [20]郝玉林,刘冬霓,王索芳. GB/T601-2002化学试剂标准滴定溶液的制备.2002,北京:中国标准出版社.
    [21]郭勇,酶工程原理与技术[M].高等教育出版社,北京:2005.
    [1]李秋生,杨继国,杨博,等.不同磷脂酶用于植物油脱胶的研究[J].中国油脂,2004,29(1):19-22.
    [2]李树雨,韩锋.酶法脱胶工厂化试验[J].大豆通报,2008(2):40-41.
    [3] Givskov, M., Olsen, L. and Molin, S. Cloning and expression in Escherichia coli of the genefor extracellular phospholipase A1from Serratia liquefaciens[J]. Journal of bacteriology,1988,170(12):5855-5862.
    [4]王金梅,姜芳燕,戴大章,等.磷脂酶高产菌株的筛选,诱变及其在豆油脱胶中的应用[J].环境科学研究,2010(007):948-952.
    [5]付建红,唐辉桂,姚斌,等.一株产低温碱性磷脂酶A1耐冷细菌的筛选及发酵条件的初步研究[J].工业微生物,2008,38(5):12-16.
    [6]司武阳,薛正莲,赵梦梦,等.磷脂酶A1产生菌株的筛选[J].食品与发酵科技,2010,46(002):27-30.
    [7] Kim, M., Kim, J. and Rhee, J. Isolation of a phospholipase A1-producing microorganism[J].Journal of Industrial Microbiology&Biotechnology,1996,16(3):171-174.
    [8] Simkhada, J.R., Cho, S.S., Lee, H.J. et al. Purification and biochemical properties ofphospholipase d (PLD57) produced byStreptomyces sp. CS-57[J]. Archives of pharmacalresearch,2007,30(10):1302-1308.
    [9]叶勤.发酵过程原理[M].化学工业出版社,北京:2005.
    [10]白秀峰.发酵工艺学[M].中国医药科技出版社,北京:2003.
    [11] Audet, P., Paquin, C. and Lacroix, C. Sugar Utilization and Acid Production by Free andEntrapped Cells of Streptococcus salivarius subsp. thermophilus, Lactobacillusdelbrueckii subsp. bulgaricus, and Lactococcus lactis subsp. lactis in a Whey PermeateMedium[J]. Applied and environmental microbiology,1989,55(1):185-189.
    [12] Roukas, T. and Kotzekidou, P. Continuous production of lactic acid from deproteinizedwhey by coimmobilized lactobacillus casei and lactococcus lactis cells in a packed‐bedreactor[J]. Food Biotechnology,1996,10(3):231-242.
    [13]欧阳平凯,曹竹安,马宏建.发酵工程关键技术及其应用[M].化学工业出版社,北京:2005.
    [14] Greasham, R. Bioprocessing[J]. Biotechnology,1983,3:128-139.
    [15]占剑峰,姜绍通,潘丽军.磷脂酶酶活力测定条件的优化[J].食品科学,2012,33(017):174-178.
    [16]沈萍,陈向东.微生物学实验[M].高等教育出版社,北京:2007.
    [17]沈萍,陈向东,卫扬保.微生物学[M].高等教育出版社,北京:2009.
    [18]华颖,纤维蛋白溶解酶的发酵制备,分离纯化及酶学性质研究[D].江南大学,无锡:2008.
    [19]赵春海,阚振荣.无机盐及微量元素对乙酰乳酸脱羧酶发酵活力的影响[J].中国酿造,2005,6:008.
    [20]张星元,发酵原理[M].科学出版社,北京:2005.
    [1]王道营,张牧晗,张露娟,等.磷脂酶的分离纯化技术研究进展[J].江西农业学报,2012,24(9):142-145.
    [2]查红光,张云. Sepharose4B一步法对金环蛇蛇毒磷脂酶A2的分离纯化[J].动物学研究,2001,22(6):433-436.
    [3]胡博新,顾鸽青,朱裕辉,等.链霉菌磷脂酶D的分离纯化及部分酶学性质[J].中国医药工业杂志,2008,39(9):655-658.
    [4] Mo, S., Kim, J.-h., and Cho, K.W. A novel extracellular phospholipase C purified from amarine bacterium, Pseudoalteromonas sp. J937[J]. Biotechnology letters,2009,31(1):89-94.
    [5] Karray, A., Frikha, F., Ali, Y.B. et al. Purification and biochemical characterization of asecreted group IIA chicken intestinal phospholipase A2[J]. Lipids in health and disease,2011,10(1):27.
    [6] Sugimori, D., Kano, K., and Matsumoto, Y Purification, characterization, molecular cloningand extracellular production of a phospholipase A1from Streptomyces albidoflavusNA297[J]. FEBS Open Bio,2012.
    [7] Fu, J., Huang, H., Meng, K. et al. A novel cold-adapted phospholipase A from Serratia sp.xjF1: Gene cloning, expression and characterization[J]. Enzyme and microbial technology,2008,42(2):187-194.
    [8] Hartmann, M., Guberman, A., Florin-Christensen, M. et al. Screening for andcharacterization of phospholipase A1hypersecretory mutants of Tetrahymenathermophila[J]. Applied microbiology and biotechnology,2000,54(3):390-396.
    [9] Nishihara, M., Kamata, M., Koyama, T. et al. New phospholipase A1-producing bacteriafrom a marine fish[J]. Marine Biotechnology,2008,10(4):382-387.
    [10] Thomas, A.E., Scharoun, J., and Ralston, H. Quantitative estimation of isomericmonoglycerides by thin-layer chromatography[J]. Journal of the American Oil Chemists'Society,1965,42(9):789-792.
    [11] Yamane, T., Hoq, M.M., Itoh, S. et al. Glycerolysis of fat by lipase[J]. Yukagaku,1986,35(8):625-631.
    [12] Laemmli, U.K. Cleavage of structural proteins during the assembly of the head ofbacteriophage T4[J]. nature,1970,227(5259):680-685.
    [13] Dole, V.P. and Meinertz, H. Microdetermination of long-chain fatty acids in plasma andtissues[J]. Journal of Biological Chemistry,1960,235:2595-2599.
    [14] Lineweaver, H. and Burk, D. The determination of enzyme dissociation constants[J].Journal of the American Chemical Society,1934,56(3):658-666.
    [15]占剑峰,姜绍通,潘丽军.磷脂酶酶活力测定条件的优化[J].食品科学,2012,33(017):174-178.
    [16] BradfordMM, A. Rapid and sensitive method for the quantitation of microgram quantitiesof protein utilizing the principle of protein–dye binding[J]. Anal Biochem,1976,72(7):248-254.
    [17] Sugimori, D., Kano, K. and Matsumoto, Y. Purification, characterization, molecularcloning and extracellular production of a phospholipase A from Streptomycesalbidoflavus NA297[J]. FEBS Open Bio,2012.
    [18] Bacha, A., Karray, A., Bouchaala, E. et al. Purification and biochemical characterization ofpancreatic phospholipase A2from the common stingray Dasyatis pastinaca[J]. Lipids inhealth and disease,2011,10(1):32.
    [19] Dekker, N., Tommassen, J., Lustig, A. et al. Dimerization regulates the enzymatic activityof Escherichia coli outer membrane phospholipase A[J]. Journal of Biological Chemistry,1997,272(6):3179-3184.
    [20] Givskov, M. and Molin, S. Secretion of Serratia liquefaciens phospholipase fromEscherichia coli[J]. Molecular microbiology,2006,8(2):229-242.
    [21] Shen, D.K., Noodeh, A.D., Kazemi, A. et al. Characterisation and expression ofphospholipases B from the opportunistic fungus Aspergillus fumigatus[J]. FEMSmicrobiology letters,2006,239(1):87-93.
    [22] Shiba, Y., Ono, C., Fukui, F. et al. High-level secretory production of phospholipase A1bySaccharomyces cerevisiae and Aspergillus oryzae[J]. Bioscience, biotechnology, andbiochemistry,2001,65(1):94-101.
    [23] Song, J.K., Kim, M.K. and Rhee, J.S. Cloning and expression of the gene encodingphospholipase A from Serratia sp. MK1in Escherichia coli[J]. Journal of biotechnology,1999,72(1):103-114.
    [24] Granum, P.E. and Lund, T. Bacillus cereus and its food poisoning toxins[J]. FEMSmicrobiology letters,2006,157(2):223-228.
    [25] kstad, O.A., Gominet, M., Purnelle, B. et al. Sequence analysis of three Bacillus cereusloci carrying PlcR-regulated genes encoding degradative enzymes and enterotoxin[J].Microbiology,1999,145(11):3129-3138.
    [26] Seo, Y.S., Kim, E.Y., Mang, H.G. et al. Heterologous expression, and biochemical andcellular characterization of CaPLA1encoding a hot pepper phospholipase A1homolog[J].The Plant Journal,2007,53(6):895-908.
    [27] Slein, M.W. and Logan, G.F. Characterization of the phospholipases of Bacillus cereus and
    their effects on erythrocytes, bone, and kidney cells[J]. Journal of bacteriology,1965,
    90(1):69-81.
    [1] Kodera, Y., Matsushima, A., Hiroto, M. et al. Pegylation of proteins and bioactivesubstances for medical and technical applications[J]. Progress in polymer science,1998,23(7):1233-1271.
    [2]马晓建,白净,任珂,等.酶工程研究的新进展[J].化工进展,2003,22(008):813-817.
    [3]徐金库,张媛媛,刘均洪.酶稳定性的研究进展[J].化学与生物工程,2004,21(3):1-3.
    [4] Sherwood, R.F., Baird, J.K., Atkinson, T. et al. Enhanced plasma persistence of therapeuticenzymes by coupling to soluble dextran[J]. Biochemical Journal,1977,164(2):461.
    [5] Gómez, L. and Villalonga, R. Functional stabilization of invertase by covalent modificationwith pectin[J]. Biotechnology letters,2000,22(14):1191-1195.
    [6] Abuchowski, A., Van Es, T., Palczuk, N. et al. Alteration of immunological properties ofbovine serum albumin by covalent attachment of polyethylene glycol[J]. Journal ofBiological Chemistry,1977,252(11):3578-3581.
    [7]毛益斌,张蓓蕾.单甲氧聚乙二醇化学修饰药物酶的研究进展[J].中国医药工业杂志,2003,34(5):250-255.
    [8] Abuchowski, A., McCoy, J.R., Palczuk, N.C. et al. Effect of covalent attachment ofpolyethylene glycol on immunogenicity and circulating life of bovine liver catalase[J].Journal of Biological Chemistry,1977,252(11):3582-3586.
    [9]应国清,易喻,石陆娥,等.单甲氧基聚乙二醇修饰蚓激酶的制备及性质研究[J].高校化学工程学报,2005,19(4):527-531.
    [10]舒薇,房师松,崔堂兵,等.木瓜凝乳蛋白酶的单甲氧基聚乙二醇化学修饰及其对酶活力和抗原性的影响[J].卫生研究,2006,35(3):304-307.
    [11] Yandri, T.S., Dian, H. and Sutopo, H. The chemical modification of protease enzymeisolated from local bacteria isolate, Bacillus subtilis ITBCCB148with cyanuric chloridepolyethylenglycol[J]. European Journal of Scientific Research,2008,23(1):177-186.
    [12] Quintanilla-Guerrero, F., Duarte-Vázquez, M., Tinoco, R. et al. Chemical modification ofturnip peroxidase with methoxypolyethylene glycol enhances activity and stability forphenol removal using the immobilized enzyme[J]. Journal of agricultural and foodchemistry,2008,56(17):8058-8065.
    [13] Tinoco, R. and Vazquez-Duhalt, R. Chemical modification of cytochrome C improves theircatalytic properties in oxidation of polycyclic aromatic hydrocarbons[J]. Enzyme andmicrobial technology,1998,22(1):8-12.
    [14] Lineweaver, H. and Burk, D. The determination of enzyme dissociation constants[J].Journal of the American Chemical Society,1934,56(3):658-666.
    [15] Conan, J. and Van Alstine, J.M. Prediction of the viscosity radius and the size exclusionchromatography behavior of PEGylated proteins[J]. Bioconjugate chemistry,2004,15(6):1304-1313.
    [16] Laemmli, U.K. Cleavage of structural proteins during the assembly of the head ofbacteriophage T4[J]. nature,1970,227(5259):680-685.
    [17]占剑峰,姜绍通,潘丽军.磷脂酶酶活力测定条件的优化[J].食品科学,2012,33(17):174-178.
    [18] Habeeb, A.F.S.A. Determination of free amino groups in proteins bytrinitrobenzenesulfonic acid[J]. Analytical biochemistry,1966,14(3):328-336.
    [19] Francis, G., Delgado, C. and Fisher, D. PEG-modified proteins[J]. Stability of proteinspharmaceuticals (Part B),1992:235-263.
    [20] Kazan, D., Ertan, H. and Erarslan, A. Stabilization of Escherichia coli penicillin G acylaseagainst thermal inactivation by cross-linking with dextran dialdehyde polymers[J].Applied microbiology and biotechnology,1997,48(2):191-197.
    [21] Zheng, L. and Brennan, J.D. Brennan. Measurement of intrinsic fluorescence to probe theconformational flexibility and thermodynamic stability of a single tryptophan proteinentrapped in a sol–gel derived glass matrix[J]. Analyst,1998,123(8):1735-1744.
    [1] Dahlke, K. An enzymatic process for the physical refining of seed oils[J]. Chemicalengineering&technology,1998,21(3):278-281.
    [2] Kim, J., Lee, C.-S., Oh, J. et al. Production of egg yolk lysolecithin with immobilizedphospholipase A2[J]. Enzyme and microbial technology,2001,29(10):587-592.
    [3] Freitas, F., Marquez, L., Ribeiro, G. et al. Optimization of the immobilization process ofβ-galatosidade by combined entrapment-cross-linking and the kinetics of lactosehydrolysis[J]. Brazilian Journal of Chemical Engineering,2012,29(1):15-24.
    [4] Sheelu, G., Kavitha, G. and Fadnavis, N.W. Efficient immobilization of Lecitase in gelatinhydrogel and degumming of rice bran oil using a spinning basket reactor[J]. Journal of theAmerican Oil Chemists' Society,2008,85(8):739-748.
    [5] Chen, J.-P. and Chen, J.-Y. Preparation and characterization of immobilized phospholipaseA2on chitosan beads for lowering serum cholesterol concentration[J]. Journal ofMolecular Catalysis B: Enzymatic,1998,5(5):483-490.
    [6] Adriano, W., Silva, J., Giordano, R. et al. Stabilization of penicillin G acylase byimmobilization on glutaraldehyde-activated chitosan[J]. Brazilian Journal of ChemicalEngineering,2005,22(4):529-538.
    [7] Ferreira, J.P.M., Sasisekharan, R., Louie, O. et al. Influence of chemistry in immobilizationof cobra venom phospholipase A2: implications as to mechanism[J]. Biochemistry,1993,32(32):8098-8102.
    [8] hen, Z. and Cho, W. Highly efficient immobilization of phospholipase A2and its biomedicalapplications[J]. Journal of lipid research,1995,36(5):1147-1151.
    [9] Long, Z.-e., Huang, Y., Cai, Z. et al. Immobilization of Acidithiobacillus ferrooxidans by aPVA–boric acid method for ferrous sulphate oxidation[J]. Process Biochemistry,2004,39(12):2129-2133.
    [10] Idris, A., Zain, N.A.M. and Suhaimi, M.S. Suhaimi. Immobilization of Baker's yeastinvertase in PVA–alginate matrix using innovative immobilization technique[J]. ProcessBiochemistry,2008,43(4):331-338.
    [11] Nunes, M.A., Vila-Real, H., Fernandes, P.C. et al. Immobilization of naringinase inPVA–alginate matrix using an innovative technique[J]. Applied biochemistry andbiotechnology,2010,160(7):2129-2147.
    [12]雷生姣,王可兴,吕晓燕,等.聚乙烯醇-海藻酸钙固定化柚苷酶[J].食品科学,2011,32(3).
    [13] Doretti, L., Ferrara, D., Gattolin, P. et al. PEG-modified glucose oxidase immobilized on aPVA cryogel membrane for amperometric biosensor applications[J]. talanta,1998,45(5):891-898.
    [14] Bacheva, A.V., Plieva, F.M., Lysogorskaya, E.N. et al. Peptide synthesis in organic mediawith subtilisin72immobilized on poly (vinyl alcohol)-cryogel carrier[J]. Bioorganic&medicinal chemistry letters,2001,11(8):1005-1008.
    [15] Santos, J., Paula, A., Nunes, G. et al. Pseudomonas fluorescens lipase immobilization onpolysiloxane–polyvinyl alcohol composite chemically modified with epichlorohydrin[J].Journal of Molecular Catalysis B: Enzymatic,2008,52:49-57.
    [16] Busto, M., Meza, V., Ortega, N. et al. Immobilization of naringinase from Aspergillus nigerCECT2088in poly (vinyl alcohol) cryogels for the debittering of juices[J]. Foodchemistry,2007,104(3):1177-1182.
    [17] Takei, T., Ikeda, K., Ijima, H. et al. Fabrication of poly (vinyl alcohol) hydrogel beadscrosslinked using sodium sulfate for microorganism immobilization[J]. ProcessBiochemistry,2011,46(2):566-571.
    [18]占剑峰,姜绍通,潘丽军.磷脂酶酶活力测定条件的优化[J].食品科学,2012,33(017):174-178.
    [19] Chang, C.-C. and Tseng, S.-K. Immobilization of Alcaligenes eutrophus using PVAcrosslinked with sodium nitrate[J]. Biotechnology techniques,1998,12(12):865-868.
    [20] Grishin, S.I. and Tuovinen, O.H. Tuovinen. Scanning electron microscopic examination ofThiobacillus ferrooxidans on different support matrix materials in packed bed andfluidized bed bioreactors[J]. Applied microbiology and biotechnology,1989,31(5):505-511.
    [21] Chen, K.-C., Chen, S.-J. and Houng, J.-Y. Improvement of gas permeability of denitrifyingPVA gel beads[J]. Enzyme and microbial technology,1996,18(7):502-506.
    [22] Lozinsky, V. and Plieva, F. Poly (vinyl alcohol) cryogels employed as matrices for cellimmobilization.3. Overview of recent research and developments[J]. Enzyme andmicrobial technology,1998,23(3):227-242.
    [23] El‐Din, H.M.N., Alla, S.G.A. and El‐Naggar, A.W.M. Swelling, Thermal andMechanical Properties of Poly (vinyl alcohol)/Sodium Alginate Hydrogels Synthesized byElectron Beam Irradiation[J]. Journal of Macromolecular Science, Part A: Pure andApplied Chemistry,2007,44(3):291-297.
    [24] Altun, G.D. and Cetinus, S.A. Immobilization of pepsin on chitosan beads[J]. Foodchemistry,2007,100(3):964-971.
    [25] ekero lu, G., Fad lo lu, S. and G ü, F. Immobilization and characterization ofnaringinase for the hydrolysis of naringin[J]. European Food Research and Technology,2006,224(1):55-60.
    [26] Stanescu, M.D., Fogorasi, M., Shaskolskiy, B.L. et al. New potential biocatalysts by laccaseimmobilization in PVA cryogel type carrier[J]. Applied biochemistry and biotechnology,2010,160(7):1947-1954.
    [1]程书红.几种毛油除杂设备的比较[J].粮油食品科技,1992,5:4.
    [2]倪培德.油脂加工技术[M].化学工业出版社,北京:2007.
    [3]万楚筠,黄凤洪,夏伏建.生物酶技术在油脂制取中应用[J].粮食与油脂,2005,11:33-35.
    [4] Buchold, H., Boensch, R. and Schroeppel, J. Process for enzymatically degummingvegetable oil.1996, Google Patents.
    [5] Aalrust, E., Beyer, W., Ottofrickenstein, H. et al, Enzymatic method for reducing the amountof phosphorous-containing components in vegetable and animal oils.1999, EP Patent0,513,709.
    [6]薛正莲,司武阳,张珂.磷脂酶A1及其在植物油脱胶中的研究进展[J].粮油食品科技,2009,17(6):26-27.
    [7]吴可克,安庆大,江世德.酶促大豆油脱胶的研究[J].中国粮油学报,2004,19(2):79-81.
    [8]李秋生,杨继国,杨博,等.不同磷脂酶用于植物油脱胶的研究[J].中国油脂,2004,29(1):19-22.
    [9] Jahani, M., Alizadeh, M., Pirozifard, M. et al. Optimization of enzymatic degummingprocess for rice bran oil using response surface methodology[J]. LWT-Food Science andTechnology,2008,41(10):1892-1898.
    [10] Yang, B., Wang, Y.-H. and Yang, J.-G. Optimization of enzymatic degumming process forrapeseed oil[J]. Journal of the American Oil Chemists' Society,2006,83(7):653-658.
    [11] G.T.粮油检验磷脂含量的测定[S].2008.
    [12] Roy, S., Rao, B.V.S.K. and Prasad, R.B.N. Enzymatic degumming of rice bran oil[J].Journal of the American Oil Chemists' Society,2002,79(8):845-846.