石灰石粉对混凝土性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了在建筑工程中有效利用石灰石粉资源,本文运用混凝土材料科学基本理论,通过试验测试手段,分析了石灰石粉的基本性质,较为系统地研究了石灰石粉掺量、细度对砂浆、混凝土工作性能和强度的影响,并比较分析了掺石灰石粉的混凝土的碳化性能、干缩性能及孔隙结构。取得如下研究成果:
     1、在试验采用的三个等级的石灰石粉、水泥和Ⅱ级粉煤灰中,小于10μm粒径的细颗粒含量分别为40.8%、43.8%、47.2%、20.3%、27.2%,需水量比分别为95.7%、93.9%、91.3%、100%、100%,可见石灰石粉中的细颗粒含量远大于水泥,其填充效应将产生一定的减水效果。
     2、采用45μm方孔筛筛余4.6%的石灰石粉,当砂浆中石灰石粉掺量不大于20%时,石灰石粉的活性指数及水泥的强度贡献系数都较高,对体系中单位质量水泥强度的发挥有积极作用。
     3、混凝土工作性能和抗压强度受石灰石粉掺量和细度影响较大。适当增大石灰石粉细度,能改善混凝土的工作性能,且能提高混凝土的早期强度。石灰石粉掺量大于20%后,混凝土的强度下降较快。掺入适量减水剂,有利于增大石灰石粉混凝土的流动性,强度略有升高。采用45μm方孔筛筛余4.6%的石灰石粉,在掺量不大于20%时,掺石灰石粉混凝土28天龄期抗压强度略低于普通混凝土,90天龄期抗压强度与普通混凝土相当。
     4、石灰石粉适量取代水泥和细骨料,能够改善混凝土拌合物的流动性,增大其保水性和粘聚性,且能减小仅以石灰石粉等量取代水泥后对混凝土强度的不利影响。超量取代系数宜在1.3左右。
     5、石灰石粉混凝土的毛细孔隙率要稍大于普通混凝土。石灰石粉掺量不大于20%时,石灰石粉混凝土的孔隙率随石灰石粉掺量的增加呈降低趋势。
     6、同强度等级条件下,石灰石粉混凝土与普通混凝土的碳化性能无显著差异。石灰石粉混凝土的干缩随石灰石粉细度和掺量的增大呈现降低趋势,采用45μm方孔筛筛余为0.6%的石灰石粉,以15%的掺量,超量系数1.3配制的石灰石粉混凝土的干缩要稍低于普通混凝土。
In order to use limestone powder validly in the constructional engineering, the paper analyses the basic properties of limestone powder using the basic theory of concrete material science by means of laboratory test. It studies the influence to the workability and strength of mortar and concrete by adding quantity and fineness of limestone powder. Besides, this paper makes a comparative analysis on the anti-carbonation, dry shrinkage and pore structure of limestone concrete. The research results are as follows:
     1. In the three degrees of the limestone powder,cement and class II Coal Ash used in the experiments, the content of fine particle whose grain diameter is smaller than 10μm is 40.8%、43.8%、47.2%、20.3%、27.2% and the water requirement is 95.7%、93.9%、91.3%、100%、100% respectively, the content of fine partice of limestone powder is more than that of cement, the filling effect of which can arouse water-reducing effect.
     2. When the adding of mixing quantity of the limestone power in the mortar is not more than 20%, the activity index of limestone power and the strength factor of cement are both above normal by the use of limestone power with 4.6% 45μm sieve remains. It plays a positive role in unit mass of the cement strength in the whole system.
     3. The adding content and fineness of limestone powder greatly affect the workability and compressive strength of concrete. Increasing the fineness properly can improve the workability and increase the early strength. If the content is more than 20%, the strength decreases rapidly. Adding the water-decreasing agent can help to improve the fluidness and the strength. When the limestone content of powder with 4.6% 45μm sieve remains is less than 20%, the 28 days' compressive strength is a little less than the normal concrete and the 90 days' compressive strength is nearly the same as the normal concrete.
     4. The replacement of cement and fine aggregate by limestone powder can improve the workability and water-remain performance. This method is better than replacing the cement by the limestone powder. The exceeding substitution index is about 1.3.
     5. The capillary porosity of limestone powder concrete is larger than that of the normal concrete. If the mixing quantity is less than 20%, the capillary porosity decreases with the content increases.
     6. On condition of the same strength, the anti-carbonation properties between the limestone powder concrete and normal concrete is nearly the same. The dry shrinkage of limestone powder concrete decreases when the fineness and the content increases. When the content of limestone powder with 4.6% 45μm sieve remain is 15%, the exceed coefficient is 1.3, the dry shrinkage is smaller than the normal concrete.
引文
[1]涂成厚.石灰石粉的应用[J].国外建材科技,1999,20(40):19-22.
    [2]P.K.Mehta Advancements in Concrete Technology[J].Concrete International.June 1999.
    [3]秦蛟,陈世其.普定碾压混凝土拱坝施工[J].水力发电,1995,(10):34-37.
    [4]林家骅,姜长全,李继海.江垭大坝碾压混凝土配合比的特点[J].人民长江,1999,(6):20-26.
    [5]谭克忠.黄丹水电站人工砂石粉限值探讨及使用总结[J].四川水力发电,1998,(9):44-46.
    [6]陈连瑜.汾河二库碾压混凝土筑坝技术[J].山西水利科技,2004,(2):32-33.
    [7]周云虎.龙滩大坝碾压混凝土用石粉替代部分粉煤灰的研究[J].水力发电,1996,(6):51-53.
    [8]梅国兴,刘伟宝.掺凝灰岩粉、磷矿渣粉水泥浆体水化的SEM分析[J].混凝土,2003,(3):49-51.
    [9]P.Poitevin.Limestone aggregates concrete,usefulness and durability[J].Cement and Concrete Composites,1999,21(1):89-97.
    [10]Detwiler,R.J.and Tennis,P.D,The use of limestone in Portland cement:a state of the art review[M].Skokie,IL:Portland Cement Association,1996.
    [11]G.Kakali,S.Tsivilis,E.Aggeli,M.Bati,Hydration products of C3A,C3S and Portland cement in the presence of CaCO3[J].Cement and Concrete Research,2000,(30):1073-1077.
    [12]路平,路树标.CaCO3对C3S水化的影响[J].硅酸盐学报,1987,15(4):28-32
    [13]陈剑雄,崔洪涛等.掺入超细石灰石粉的混凝土性能研究[J].施工技术,2004,4(33):39-41.
    [14]陈剑雄,李鸿芳,陈寒斌.石灰石粉超高强高性能混凝土性能研究[J].施工技术,2005,35(4):27-28.
    [15]蔡胜华,杨华全等.石粉含量对大坝碾压混凝土性能的影响[J].水力发电,2008,34(1):32-34.
    [16]洪锦祥,蒋林华等.人工砂中石粉对混凝土性能影响及其作用机理研究[J].公路交通技术,2005,22(11):84-88.
    [17]雷昌聚.掺磨细石灰石粉混凝土的试验与应用[J].混凝土.1996(4):21-25,31.
    [18]马烨红,吴笑梅,樊粤明.石灰石粉作掺合料对混凝土工作性能的影响[J].混凝土,2007,6:56-59.
    [19]曹鹏飞,秦鸿根,庞超明.掺石灰石粉自密实混凝土性能的研究[J].施工技术,2005,34:35-37,43.
    [20]陈剑雄,李鸿芳,陈寒斌.石灰石粉超高强高性能混凝土性能研究[J].施工技术,2005,35(4):27-28.
    [21]V.Bonavetti,H.Donza,G Mene'ndez,O.Cabrera,E.F.Irassar.Limestone filler cement in low w/c concrete:A rational use of energy[J].Cement and Concrete Res,2003,33:865-871.
    [22]周云虎.龙滩大坝碾压混凝土用石粉代替部分粉煤灰的研究[J].水力发电,1996,(6):51-53.
    [23]陈剑雄,李鸿芳等.掺超细石灰石粉和钛矿渣粉超高强混凝土研究[J].建筑材料学报,2005,8(6):672-676.
    [24]陈剑雄,祝战奎等.锂渣、石灰石粉自密实高强高性能混凝土研究[J].施工技术,2007,36(4):52-54.
    [25]S.Tsivilis,G.Batis,E.Chaniotakis,Gr.Grigoriadis,D.Theodossis.Properties and behavior of limestone cement concrete and mortar[J].Cement and Concrete Res,2000,30:1679-1683.
    [26]邓德华,肖佳等.石灰石粉对水泥基材料抗硫酸盐侵蚀性的影响及其机理[J].硅酸盐学报,2006,34(10):1243-1248.
    [27]G.Kakali,S.Tsivilis,A.Skaropoulou,J.H.Shar Pb,R.N.Swamy.Parameters affecting thaumasite formation in limestone cement mortar[J].Cement and Concrete Composites,2003,25:977-9.
    [28]S.A.Hartshorn,J.H.Sharp,R.N.Swamy.Thaumasite formation in Portland-limestone cement pastes[J].Cement and Concrete Res,1999,29:1331-1340.
    [29]S.M.Torres,J.H.Sharp,R.N.Swamy,C.J.Lynsdale,S.A.Huntley.Long term durability of Portland-limestone cement mortars exposed to magnesium sulfate attack [J].Cement and Concrete Composites,2003,25:947-954.
    [30]Harald Justnes.Thaumasite formed by sulfate attack on mortar with limestone filler[J].Cement and Concrete Composites,2003,25:955-959.
    [31]贲克平.可持续发展理论研究扫描[J].人民日报,1998-2-21(5).
    [32]吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999.
    [33]NGALA V T,PAGE C L,PARROTT L J,et al.Diffusion in cementitious materials:further investigations of chloride and oxygen diffusion in well-cured OPC and OPC 30%PFA plasters[J].Cem Concr Res,1995,25(4):819-826.
    [34]刘伟.混凝土抗氯离子渗透性能研究[D].长沙:中南大学,2003.
    [35]蒲心诚.超高强高性能混凝土[M].重庆:重庆大学出版社,2004.12.
    [36]刘数华,阎培渝.石灰石粉在复合胶凝材料中的水化活性[J].水泥工程,2008,3:5-7,15.
    [37]杨静,李滢.矿物掺合料的颗粒级配对高性能混凝土浆体材料力学性能的影响[J].工业建筑,2003,33(6):55-58.
    [38]陆厚根编著.粉体技术导论[M].上海:同济大学出版社,1997.
    [39]乔龄山.水泥的最佳颗粒分布及其评价方法[J].水泥,2001,8:1-5.
    [40]葛新文,常洪民,刘永强.减水剂、粉煤灰及水灰比对混凝土坍落度的影响[J].混凝土,2002,4:9-10.
    [41]米文瑜.粉煤灰对高性能混凝土工作性的影响研究[J].煤炭科学技术,2007,35(5):77-79.
    [42]S.Takami.掺石灰石细粉的高流动度硬化混凝土的性能研究[J].The 5th International Symposium on Cement and Concrete,10.28-11.1,2002 SHANGHAI,CHINA.
    [43]杨华山,方坤河等.石灰石粉在水泥基材料中的作用及其机理[J].混凝土,2006,6:32-35.
    [44]马孝轩.我国主要类型土壤对混凝土材料腐蚀性规律的研究[J].建筑科学,2003,19(6):56-57.
    [45]袁润章.胶凝材料学[M].武汉:武汉理工大学出版社,1996.
    [46]毕忠俊,杨振辉,陈维杰等.混凝土的孔隙[J].混凝土,2008,8:43-44,53.
    [47]梅泰著.祝永年,沈威译.混凝土的结构、性能与材料[M].上海:同济大学出版社,1991.11.
    [48]潘莉莎,邱学青等.减水剂对混凝土耐久性影响的研究进展[J].混凝土,2007,1:48-51.
    [49]洪定海.混凝土中钢筋的腐蚀与保护[M].中国铁道出版社,1998.12-20.
    [50]柳俊哲,吕丽华,左红军.混凝土碳化腐蚀时亚硝酸钠保护钢筋作用的研究[J].混凝土,2003,(4):24-27.
    [5l]金威良,赵羽习.混凝土结构耐久性[M].科学出版社 2002,16.
    [52]柳俊哲等.混凝土碳化研究与进展(1)——碳化机理及碳化程度评价[J].混凝土,2005,11:10-13,23.
    [53]崔洪涛.超磨细石灰石粉掺合料混凝土性能的研究[D].重庆大学硕士论文,2004.
    [54]柳俊哲等.混凝土碳化研究与进展(2)——碳化速度的影响因素及碳化对混凝土品质的影响[J].混凝土,2005,12:11-13,17.
    [55]Smolczyk V.G Testing of Concrete[M].Proceeding of RILEM Symposium,1962,485-489.
    [56]牛荻涛等.混凝土结构耐久性与寿命预测[M].北京:科学出版社,2003.10-18.
    [57]Kroone.B.,Blakey.F.A.Reaction of CO_2 and Mortar[J].Journal of ACI,1959,31(6):496-510.
    [58]钱觉时等.大掺量粉煤灰混凝土抗碳化性能研究[J].重庆建筑大学学报,1999,21(1):5-9.
    [59]刘伯等.上海市粉煤灰应用技术手册[M].上海:同济大学出版社,1995.
    [60]沈旦申.粉煤灰混凝土[M].北京:中国铁道出版社,1989.
    [61]彭振斌,陈迎明,刘安邦.混凝土收缩机理及其诊治原理[J].混凝土,2003.3:12-13,55.
    [62]覃维祖.混凝土的收缩、开裂及其评价与防治[J].混凝土,2003,7:3-7.
    [63]肖瑞敏,张雄,乐嘉麟.胶凝材料对混凝土干缩影响的研究[J].混凝土与水泥制品,2002,5:11-13.
    [64]黄国兴,惠荣炎编著.混凝土的收缩[M].北京:中国铁道出版社,1990.