黄曲霉生防菌的筛选鉴定及高效菌株JPP1的生防机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境中存在多种生物致癌因素,如黄曲霉在土壤中广泛存在,在适宜条件下侵染寄生体产生毒素。黄曲霉毒素能引起人畜的急慢性中毒,且具有“三致”作用,甚至影响生态安全。花生在我国是重要的油料和经济作物,但黄曲霉毒素含量超标非常严重。传统的方法是利用农药防治,但农药的大量频次使用将造成农业面源污染,对土壤、水体甚至大气产生危害。对环境友好的生物防治技术是花生产前治理黄曲霉毒素污染的有效方法,而微生物农药是生物防治的重要手段。
     本研究利用不同类型的培养基,从全国6个省份花生主产区的花生样品果壳中分离获得内生细菌236株。经过可视化平板培养筛选,其中72株对黄曲霉毒素产生有明显抑制效果。采用tip-culture方法定量确定了其中24株对菌丝生长的拮抗率大于90%;54株对黄曲霉毒素产生的拮抗率大于90%。
     以16S rDNA基因序列分析为基础,结合形态学观察和部分生理生化特性测定,将筛选出的72株内生菌进行系统发育学分析。结果表明,归于芽孢杆菌科(Bacillaceae)的绝大部分(48株)属于芽孢杆菌属(Bacillus),为具有生防作用的花生果壳内生菌的优势种群,分别聚类于7个种:解淀粉芽孢杆菌(B.amyloliquefaciens),枯草芽孢杆菌(B. subtilis),甲基营养型芽孢杆菌(B.methylotrophicus),短小芽孢杆菌(B. pumilus),特基拉芽孢杆菌(B.tequilensis),梭状芽孢杆菌(B. fusiformis)和蜡样芽孢杆菌(B. cereus);归于活动球菌科(Planococcaceae)的仅有一株BPM12-1,与Lysinibacillus xylanilyticus CCUG57438T亲缘关系最近。归于肠杆菌科(Enterobacteriaceae)的18株分别属于肠杆菌属(Enterobacter)和沙雷氏菌属(Serratia),其中肠杆菌属(Enterobacter)的7株分别属于阿氏肠杆菌(E.asburiae)、阴沟肠杆菌(E.cloacae)和E.ludwigii;沙雷氏菌属(Serratia)的11株均为粘质沙雷氏菌(S. marcescens)。归类于黄单胞菌科(Xanthomonadaceae)的3株属于寡养单胞菌属(Stenotrophomonas)的嗜麦芽窄食单胞菌(S. maltophilia)。归类于假单胞菌科(Pseudomonadaceae)的2株属于假单胞菌属(Pseudomonas)的地中海假单胞菌(P. mediterranea)。
     采用透明圈法确定筛选出的72株内生菌降解几丁质的能力,其中22株有水解圈产生。采用DNS法测定其中各类群代表菌株的酶活,沙雷氏菌属(Serratia)和寡养单胞菌属(Stenotrophomonas)的代表菌株酶活相对较高。选择其中一株酶活较高且生防作用显著的细菌,综合利用表型、生理生化特征、基因型和系统发育分析结果将该菌鉴定为粘质沙雷氏菌(Serratia marcescens),菌株编号为JPP1。通过PCR扩增获得长度为1789bp的核苷酸序列,含有一个完整的1500bp的开放阅读框,编码499个氨基酸,经过相似性比对和系统进化分析,确定菌株JPP1所产几丁质酶为ChiB。该酶分子量为55480.3Da、等电点5.93、较稳定、属脂溶蛋白、具有一定亲水性。二级结构为31.66%的α螺旋,20.64%的延伸带和47.70%的无规则卷曲。三级结构与一株野生型粘质沙雷氏菌所产几丁质酶ChiB复合物的结构同源性为98.6%。
     通过PB实验设计和中心组合设计法确定粘质沙雷氏菌JPP1的产几丁质酶优化培养基配方为:胶体几丁质12.70g,葡萄糖7.34g,蛋白胨5.00g,硫酸铵1.32g,K2HPO_40.7g,MgSO_4·7H2O0.5g。通过中心组合设计法,确定发酵条件的装液量、转速、接种量分别为23.2ml、116rpm和4.3%时,所建立模型的最大响应值酶活为31.96U,摇瓶培养验证实验结果与之较为接近。
     几丁质酶的稳定性试验显示该酶热稳定性较好;pH值5~8范围内相对酶活在80%以上;Zn~(2+)、Cu~(2+)、Fe3+对酶活有明显的抑制作用,Ca~(2+)、Mn~(2+)对酶活有一定的促进作用,Na+和K+对酶活的影响不大;保护剂EDTA、巯基乙醇和Tween80可以一定程度保护酶的活性,变性剂SDS则使得酶活有明显降低。
     扫描电镜结果显示菌株JPP1产生的几丁质酶使得寄生曲霉菌丝的细胞壁被部分降解;采用tip-culture方法,确定酶液浓度与菌丝生长的抑制率和毒素产生的抑制率呈现出良好的线性关系;TLC实验结果显示经酶液处理后产毒寄生曲霉菌株没有明显产生黄曲霉毒素。RT-PCR实验表明经过该酶处理的曲霉菌株不存在aflR、aflC(pksL1)和aflO(dmtA)基因的转录。因此确定该菌株产生的几丁质酶是其发挥生防作用的主要机制。
     确定花生生物种衣剂的主要配方,配比为4:1的聚乙烯醇和羧甲基纤维素钠为复合成膜剂,增塑剂为1%的甘油,与发酵菌液按照4:1的配比混合均匀后包衣,再用2%的CaCl2作为交联剂处理。该配方对生防粘质沙雷氏菌JPP1的生长没有抑制作用。花生种子包衣处理后,发芽率达到98%,且对种子萌发有明显的促进作用;实验室中对毒素产生的抑制率达到88.5%,优于农业常用杀菌剂多菌灵的抑制效果。
A variety of biological carcinogens exist in the environment,for exampleAspergillus flavus is widely present in the soil and infects the host under appropriateconditions to produce aflatoxins (AF). AF can cause acute and chronic poisoning,but also has carcinogenic, teratogenic and mutagenic effects on humans and animals,even could affect ecological safety. Peanut is an important oil and economic crop inChina, but the aflatoxin content in peanut exceeds the standard seriously.Traditional control method was to use chemical pesticides, but a large number ofhighly toxic pesticides continuous use will result in agricultural non-point sourcepollution and harm to the soil, water and atmosphere. Biological control technologyis friendly to the environment and effective to control AF contamination in peanuts.Microbial pesticide is one of the important means of biological control.
     Using several kinds of media,236strains of endophytic bacteria weresuccessfully isolated from hulls of peanut plants growing in6provinces in China.By visual agar plate assay to screen,72strains of endophytic bacteria significantlydecreased AFs production. Using tip-culture method24strains were determined tohave decreased mycelia growth levels by>90%and54strains decreased AFsproduction levels by>90%.
     A total of72isolates of endophytic bacteria were sequenced for their16SrDNA,combined with morphological observation and some physiological andbiochemical characteristics to analyze their phylogenetic relations. The majority ofendophytic bacteria in Bacillaceae belonged to the genus Bacillus (48),which wasdominant and could be classified into seven species, B.amyloliquefaciens, B.subtilis, B. methylotrophicus, B. pumilus, B. tequilensis, B. fusiformis and B. cereus.The only one strain BPM12-1affiliated with the family Planococcaceae, andexhibited99%similarity with the strain of Lysinibacillus xylanilyticus. There were18strains affiliated with the family of Enterobacteriaceae with the two genera ofEnterobacter and Serratia. Among them,7strains belonging to the genus ofEnterobacter could be classified into three species, E. ludwigii, E. asburiae, and E.cloacae. The other11strains belonging to the genus of Serratia were related to thesame species Serratia marcescens. There were3strains which affiliated with thefamily of Xanthomonadaceae belonged to the same genus of Stenotrophomonas andshowed sequence similarity value of99%to Stenotrophomonas maltophilia. Thetwo strain affiliated with the family Pseudomonadaceae and exhibited99% similarity with the strain of Pseudomonas mediterranea.
     By transparent ring method22strains of identified endophytic bacteriadegraded chitin on the chitin medium plate. Using DNS method to determine theenzyme activity of represent bacteria, the strains which showed stronger chitinolyticactivity belonged to the genera Serratia and Stenotrophomonas. A strain with higherenzyme activity and exhibited remarkable biocontrol effect was selected. Combinedwith morphological, physiological, biochemical characteristics and phylogeneticrelations, the strain was identified as Serratia marcescens and designated S.marcescens JPP1. Polymerase chain reaction (PCR) amplification of the chitinasegene was performed and obtained a1,789bp nucleotide sequence, its ORF was1,500bp and encoded499amino acids. After similarity alignment and phylogeneticanalysis, the chitinase produced by strain JPP1was determined as ChiB. Themolecular weight and the isoelectric point of ChiBjp were55480.3Da and5.93,respectively. It was a fat-soluble protein and relatively stable and hydrophilic. Itspredicted secondary structure was31.66%alpha helix,20.64%extended strand and47.70%random coil. Its predicted tertrary structure exhibited similarity of98.6%with ChiB from S. marcescens wildtype in complex with catalytic intermediate.
     Using Plackett-Burman design and central composite design, the mediumformula for chitinase production of S. marcescens JPP1was optimized. The formulawas (g/l): colloidal chitin12.70, glucose7.34, peptone5.00,(NH4)2SO_41.32,K2HPO_40.7, MgSO_4·7H2O0.5. By central composite design, the maximumresponse enzyme activity of established model was31.96U when the fermentationconditions of volume, rotary speed and inoculum size were separately23.2ml,116rpm and4.3%. The result of flask fermentation experiment was close to themaximum enzyme activity.
     Stability test of chitinase exhibited better thermal stability and the relativeenzyme activity was more than80%at pH5~8. The metal ions of Zn~(2+), Cu~(2+)andFe3+showed significant inhibitory effect on the chitinase activity, while Ca~(2+)andMn~(2+)had positive effect, Na+and K+had little effect on chitinase activity. Proteinprotectants of EDTA, mercaptoethanol and Tween80could protect the chitinaseactivity in certain degree, while denaturant of SDS significantly reduced thechitinase activity.
     SEM analysis showed major damage of the mycelia and the cell wall of A.parasiticus was partially degraded in the presence of chitinase produced by S.marcescens JPP1. Using tip-culture method the chitinase concentration withantifungal ratio and antiaflatoxigenic ratio exhibited satisfied linear relationship.TLC experiment showed that toxigenic A. parasiticus treated with chitinase had not visibly produced AFs. RT-PCR results showed that ChiBjp repressed thetranscription of aflR, aflC (pksL1) and aflO (dmtA) genes. Therefore, the chitinaseproduced by the strain played the biocontrol effect.
     The formulation of biological seed coating agent was determined, polyvinylalcohol and carboxymethyl cellulose sodium (4:1, v/v) were mixed to yield thecomplex filmogen. The glycerin (1%) acted as plastifier, then the whole bacteriummedium and the filmogen (1:4, v/v) were fully mixed. After coating, the peanutseeds were treated with CaCl2(2%) as crosslinker. The formulation did not inhibitthe growth of biocontrol bacterium. After coating treatment, the germination rate ofpeanut seeds was up to98%. The seed coating agent significantly promoted the seedgermination and in vitro the antiaflatoxigenic ratio was up to88.5%, its antagonisticeffect was better than the agricultural fungicide of carbendazim.
引文
[1]马良,李培武,张文,等.花生及其制品中黄曲霉毒素B1免疫亲和柱净化-荧光快速检测技术[J].中国油料作物学报,2007,29(2):199-203.
    [2]黄相东,龙朝阳,梁春穗,等.广东省市售大米花生及其制品中黄曲霉毒素污染水平调查[J].华南预防医学,2007,33(3):62-63.
    [3] Amaike S, Nancy P. Aspergillus flavus[J]. The Annual Review ofPhytopathology,2011,49:107-133.
    [4] Dorner JW. Management and prevention of mycotoxins in peanuts[J]. FoodAdditives and Contaminants,2008,25(2):203-208.
    [5]王勇生,刘福柱,谢明.浅谈黄曲霉毒素[J].饲料世界,2003,107(5):19-22.
    [6] K Reddy, C Reddy, K Muralidharan. Characterization of aflatoxin B1producedby Aspergillus flavus isolated from discolored rice grains[J]. Journal ofMycology and Plant Pathology,2005,35(3):470-474.
    [7] B Sundaram, R Krishnamurthy, S. Subramanian. Aflatoxin-producing fungi instored paddy[J]. Proceedings of the Indian Academy of Sciences (PlantSciences),1988,98(4):291-297.
    [8]郁庆福.现代卫生微生物学[M].北京:人民卫生出版社,1995:241-247.
    [9]杨勇.黄曲霉毒素研究进展[J].陕西能源职业技术学院学报,2006,1:42-44.
    [10] Lewis L, M Onsongo, H Njapau, H Schurz-Rogers, G Luber, S Kieszak, JNyamongo, L Backer, A Dahive, A Misore, K DeCock, C Rubin. AflatoxinContamination of Commercial Maize Products during an Outbreak of AcuteAflatoxicosis in Eastern and Central Kenya[J]. Environmental HealthPerspectives,2005,113(12):1763-1767.
    [11] Strosnider H, Azziz-Baumgartner E, Banziger M, Bhat RV, Breiman R, BruneM, DeCock K, Dilley A, Groopman J, Hell K, Henry SH, Jeffers D, Jolly C,Jolly P, Kibata GN, Lewis L, Liu X, Luber G, McCoy L, Mensah P, Miraglia M,Misore A, Njapau H, Ong C, Onsongo MTK, Page SW, Park D, Patel M,Phillips T, Pineiro M, Pronczuk J, Schurz Rogers H, Rubin C, Sabino M,Schaafsma A, Shephard G, Stroka J, Wild C, Williams JT, Wilson D.Workgroup Report: Public Health Strategies for Reducing Aflatoxin Exposurein Developing Countries[J]. Environmental Health Perspectives,2006,114:1989-1903.
    [12] Kirk GD, Bah E, Montesano R. Molecular epidemiology of human liver cancer:Insights into etiology, pathogenesis and prevention from The Gambia[J].Carcinogenesis,2006,27:2070-82.
    [13] Groopman JD, Kensler TW, Wild CP. Protective Interventions to PreventAflatoxin-Induced Carcinogenesis in Developing Countries[J]. Annual Reviewof Public Health,2008,29:187-203.
    [14] Wu F, Khlangwiset P. Health economic impacts and cost-effectiveness ofaflatoxin reduction strategies in Africa: Case studies in biocontrol andpostharvest interventions[J]. Food Additives and Contaminants,2010,27:496-509.
    [15] Liu Y, Wu F. Global Burden of Aflatoxin-Induced Hepatocellular Carcinoma: ARisk Assessment[J]. Environmental Health Perspectives,2010,118:18-24.
    [16] Van Egmond, Dragacci S. Liquid Chromatographic Method for Aflatoxin M1in Milk[J]. Methods in Molecular Biology,2001,157:59-69.
    [17] Tekinsen K, Eken H S. Aflatoxin M1levels in UHT milk and kashar cheeseconsumed in Turkey[J]. Food and Chemical Toxicology,2008,46:3287-3289.
    [18]张宸,岳田利,高振鹏,等.食品中黄曲霉毒素B1检测方法研究进展[J].农产品加工,2008,7:18-22.
    [19]王喜萍.粮油食品中黄曲霉毒素的污染及预防措施[J].食品工业科技,2004,9:141-142.
    [20] Liu X. Strengthen research work of exposure and control of mycotoxin[J].Chinese Journal of Preventive Medicine,2006,40:307-308.
    [21] Zhu X. Preliminary survey of AFM1in ate milk and milk powder on inhabitantin urban area of Shanghai[J]. Tumor,1991,11:175-176.
    [22]王若军,苗朝华,张振雄,等.中国饲料及饲料原料受霉菌毒素污染的调查报告[J].饲料工业,2003,24(7):11-15.
    [23]孙秀兰,晏丽,徐丹,等.酱油中黄曲霉毒素B1的风险评估[J].中国微生态学杂志,2010,22(8):748-750.
    [24] Liu, F. The Inhibitory Effect Of Plant Ribosome Inactivating Proteins (RIPs)On Aspergillus Flavus[J]. Acta Scientiarum Naturalium UniversitatisNankaiensis (Natural Science Edition),2001,34:78-81.
    [25]段淑芬,胡文广,戴良香.花生黄曲霉毒素国家标准与绿色贸易壁垒[J].中国农学通报,2006,22(6):95-98.
    [26] Han, E M, H R ark, S J Hu, K S Kwon, H M Lee, M S Ha, K M Kim, E J Ko, SD Ha, H S Chun, D H Chung, D H Bae. Monitoring of aflatoxin B1in livestockfeeds using ELISA and HPLC[J]. Microbiology and Biotechnology,2006,16:643-646.
    [27] Kamkar A, Karim G, Aliabadi F S, Khaksar R. Fate of aflatoxin M1in Iranianwhite cheese processing[J]. Food and Chemical Toxicology,2008,46:2236-2238.
    [28] Prandini A, Tansini G, Sigolo S, Filippi L, Laporta M, Piva G. On theoccurrence of aflatoxin M1in milk and dairy products[J]. Food and ChemicalToxicology,2009,47:984-991.
    [29]中华人民共和国卫生部,中国国家标准化管理委员会. GB2761-2005,食品中真菌毒素限量[S].北京:中国标准出版社,2005:1-2.
    [30]李佐卿,章再婷,谢东华,等.免疫亲和柱高效液相色谱法快速测定牛奶和奶粉中黄曲霉毒素M1、B1、B2、G1、G2[J].理化检验:化学分册,2005,(6):406-408.
    [31] Vosough M,Bayat M, Salemi A. Matrix-free analysis of aflatoxins in pistachionuts using parallel factor modeling of liquid chromatography diodearraydetection data[J]. Analytica chimica acta,2010,663(1):11-18.
    [32] W Mary, Trucksess, Michaele. Enzyme-linked immunosorbent assay ofAflatoxins B1,B2and G1in corn, cottonseed, peanuts, peanut butter, andpoultry feed Collaborative study[J]. Journal of AOAC International,1989,72(6):957.
    [33] Neagu D, Perrino S, Micheli L, Palleschi G, Moscone D. Aflatoxin M1determination and stability study in milk samples using a screen-printed96-well electrochemical microplate[J]. International Dairy Journal,2009,19(12):753-758.
    [34] Tan Y, Chu X, Shen G, Yu R. A signal-amplified electrochemicalimmunosensor for aflatoxin B1determination in rice[J]. Analyticalbiochemistry,2009,387(1):82-86.
    [35] Beate F, Rosmarie S, Kristin T, Mandy E, Jürgen S. Lipid Analysis byThin-Layer Chromatography-A Review of the current State[J]. Journal ofChromatography A,2011,1218(19):2754-2774.
    [36] A Vargase. Co-occurrence of aflatoxins B1, B2, G1, G2, zearalenone andfumonisin B1in Brazilian corn[J]. Food Additives and Contaminants,2001,11:981.
    [37] Schaafsma A, Nicol R, Savard M, Sinha R, Reid L, Rottinghaus G. Analysis ofFusarium toxins in maize and wheat using thin layer chromatography[J].Mycopathologia,1998,142:107-113.
    [38]高荣琨,高文伟.黄曲霉毒素的检测方法研究进展[J].养殖技术顾问,2007,11:97-98.
    [39] Elizalde Gonzalez M, Mattusch J, Wennrich R. Stability and determination ofaflatoxins by high-performance liquid chromatography with amperometricdetection[J]. Journal of Chromatography A,1998,828(1):439-444.
    [40] Herzallah S. Determination of aflatoxins in eggs, milk, meat and meat productsusing HPLC fluorescent and UV detectors[J]. Food Chemistry,2009,114(3):1141-1146.
    [41] Sheibani A, Tabrizchi M, Ghaziaskar H. Determination of aflatoxins B1and B2using ion mobility spectrometry[J]. Talanta,2008,75(1):233-238.
    [42] Sapsford K, Ngundi M, Moore M, Lassman M, Shriver-Lake L, Taitt C, LiglerF. Rapid detection of food-borne contaminants using an array biosensor[J].Sensors and Actuators B: Chemical,2006,113(2):599-607.
    [43] Nayak M, Kotian A, Marathe S, Chakravortty D. Detection of microorganismsusing biosensors-A smarter way towards detection techniques[J]. Biosensorsand Bioelectronics,2009,25(4):661-667.
    [44] Park B J, Takatori K, Sugita-Konishi Y, Kim I H, Lee M H, Han D W, Chung KH, Hyun S O, Park J C. Degradation of mycotoxins using microwave-inducedargon plasma at atmospheric pressure[J]. Surface and Coating Technology,2007,201:5733-5737.
    [45] Rustom I Y S. Aflatoxin in food and feed: occurrence legislation andinactivation by physical methods[J]. Food Chemistry,1997,59:57-67.
    [46] Hwang J H, Lee K G. Reduction of aflatoxin B1contamination in wheat byvarious cooking treatments[J]. Food Chemistry,2006,98:71-75.
    [47] Prado G, Carvalho E P D, Oliveira M S, Madeira J G C, Morais V D, Correa RF. Effect of gamma irradiation on the inactivation of aflatoxin B1and fungalflora in peanut[J]. Brazilian Journal of Microbiology,2003,34:138-140.
    [48] Gowda N K S, Malathi V, Suganthi R U. Effect of some chemical and herbalcompounds on growth of Aspergillus parasiticus and aflatoxin production[J].Animal Feed Science and Technology,2004,116:281-291.
    [49] Mendez-Albores A, Del Rio-Garcia J C, Moreno-Martinez E. Decontaminationof aflatoxin duckling feed with aqueous citric acid treatment[J]. Animal Feedscience and Technology,2007,135:249-262.
    [50] Buser M D, Abbas H K. Effects of extrusion temperature and dwell time onaflatoxin levels in cottonseed[J]. Journal of Agricultural and Food Chemistry,2002,50:2556-2559.
    [51] Mendez-Albores A, Arambula-Villa G, Loarca-Pina M G F, Castano-Tostado E,Moreno-Mart nez E. Safety and efficacy evaluation of aqueous citric acid todegrade B-aflatoxins in maize[J]. Food and Chemical Toxicology,2005,43(2):233-238.
    [52] Poppenberger B, Berthiller F, Lucyshyn D, Sieberer T, Schuhmacher R, KrskaR. Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDPglucosyl transferase from Arabidopsis thaliana[J]. Journal of BiologicalChemistry,2003,278:47905-47914.
    [53] Igawa T, Takahashi-Ando N, Ochiai N, Ohsato S, Shimizu T, Kudo T,Yamaguchi I, Kimura M. Reduced contamination by the Fusarium mycotoxinzearalenone in maize kernels through genetic modification with adetoxification gene[J]. Applied and Environmental Microbiology,2007,73(5):1622-1629.
    [54] Velazhahan R, Vijayanandraj S, Vijayasamundeeswari A, Paranidharan V,Samiyappan R, Iwamoto T, Friebe B, Muthukrishnan S. Detoxification ofaflatoxins by seed extracts of the medicinal plant, Trachyspermum ammi (L.)Sprague ex Turrill-Structural analysis and biological toxicity of degradationproduct of aflatoxin G1[J]. Food Control,2010,21:719-725.
    [55]周文强,樊慧梅.拮抗微生物在生物防治中的研究进展[J].辽宁农业科学,2005,5:32-34.
    [56]邵杰.生物农药研究进展[J].安徽科技学院学报,2008,22(5):10-14.
    [57]李艳,林坤耀,周桂元,等.花生品质性状与抗黄曲霉侵染关系的研究[J].花生学报,2006,35(3):1-5.
    [58]姜慧芳,任小平,王圣玉,等.花生黄曲霉侵染抗性持久性及种皮完整性对产毒的影响[J].作物学报,2006,32(6):851-855.
    [59]张建成,江晨,李双铃,等.花生黄曲霉毒素污染状况及防控技术[J].作物杂志,2006,1:67-68.
    [60] K Pal, B Gardener. Biological control of plant pathogens[J]. The plant healthinstructor,2006,17:2.
    [61]陈宗憋.解读世界各国制订的茶叶中农药最大残留限量(MRL)标准及其应对措施[J].中国植保导刊,2007,27(9):30-33.
    [62] R Brown, P Cotty, T Cleveland.Reduction in aflatoxincontent of maize byatoxigenic strains of Aspergillus flavus[J]. Journal of Food Protection,1991,54:623-626.
    [63]冯俊涛,祝木金,于平儒,等.西北地区植物源杀菌剂初步筛选[J].西北农林科技大学学报,自然科学版,2002,30(6):129-137.
    [64] E Sánchez, N Heredia, S Garcia. Inhibition of growth and mycotoxinproduction of Aspergillus flavus and Aspergillus parasiticus by extracts ofAgave species[J]. International Journal of Food Microbiology,2005,98:271-279.
    [65] A Selvi, G Joseph, G Jayaprakasha. Inhibition of growth and aflatoxinproduction in Aspergillus flavus by Garcinia indica extract and its antioxidantactivity[J]. Food Microbiology,2003,20:455-460.
    [66] SH Liu, DG Zhao. Effect of Eucommia Antifungal Peptide Aga in stAspergillus flavus[J]. Natural Product Research,2008,20:332-334.
    [67] K Reddy, C Reddy, K Muralidharan. Potential of botanicals and biocontrolagents on growth and aflatoxin production by Aspergillus flavus infecting ricegrains[J]. Food Control,2009,20:173-178.
    [68] SL Annis, HX Xu. Novel Procedure for Identification of Compounds Inhibitoryto Transcription of Genes Involved in Mycotoxin Biosynthesis[J]. Journal ofAgricultural and Food Chemistry,2000,48:4656-4660.
    [69] Sidhu, H Chandra, HM Behl. Occurrence of aflatoxins in mahua (Madhucaindica Gmel) seeds: Synergistic effect of plant extracts on inhibition ofAspergillus flavus growth and aflatoxin production[J]. Food and ChemicalToxicology,2009,(47):774-777.
    [70] C Reddy, K Reddy, M Prameela, UN Mangala, K Muralidharan. Identificationof antifungal component in clove that inhibits Aspergillus spp.colonizing ricegrains[J]. Journal of Mycology and Plant Pathology,2007,37(1):87-94.
    [71] YN Yin, LY Yan, JH Jiang, ZH Ma. Biological control of aflatoxincontamination of crops[J]. Journal of Zhejiang University SCIENCE B,2008,9(10):787-792.
    [72] N Boyraz, M Ozcan. Antifungal effect of some spice hydrosols[J]. Fitoterapia,2005,76:661-665.
    [73] H Haciseferogullary, M Ocan, F Demir. Some nutritional and technologicalproperties of garlic (Allium sativum L.)[J]. Journal of Food Engineering,2005,68:463-469.
    [74] P A Murphy, S Hendrich, C Landgren, C M Bryant. Food mycotoxins: Anupdate[J]. Journal of Food Science,2006,71(5):51-65.
    [75] P H Shetty, L Jespersen. Saccharomyces cerevisiae and lactic acid bacteria aspotential mycotoxin decontaminating agents[J]. Trends in Food Science andTechnology,2006,17:48-55.
    [76] H N Mishra, C Das. A review on biological control and metabolism ofaflatoxin[J]. Critical Reviews in Food Science and Nutrition,2003,43(3):245-264.
    [77] JW Dorner. Biological control of aflatoxin contamination of crops[J]. ToxinReviews,2004,23(2):425-450.
    [78]张柏林,张若鸿.乳酸菌抗真菌活性及其抑制真菌毒素的效果[J].中国乳品工业,2005,33(6):31-37.
    [79] YI Maing, J Ayres, P E Koehler. Persistence of aflatoxin during thefermentation of soy sauce[J]. Applied Microbiology,1973,25(6):1015-1017.
    [80] VA Nesci, RV Bluma, MG Etcheverry. In vitro selection of maize rhizobacteriato study potential biological control of Aspergillus section Flavi and aflatoxinproduction[J]. European Journal of Plant Pathology,2005,113(2):159-171.
    [81]刘姝,陆兆新,吕凤霞,等.一株海洋放线菌的分类鉴定及抗菌活性研究[J].南京农业大学学报,2007,30(4):124-129.
    [82]阿不都克里木热依木,迪力夏提托呼提,库热西麻木提汗.新疆沙漠放线茵XSS040811菌株抗生素合成条件[J].干旱区研究,2008,25:114-117.
    [83]张玲玲,董美玉,许凤春等.放线菌C3-11的抗菌活性筛选及发酵液稳定性研究[J].现代农业科技,2009,3:109-113.
    [84] PS Yan, HL Xu. Biocontrol of cucumber seedling damping-off byPseudomonas fluorescens[J]. Japanese Journal of Crop Science,2001,70:154-155.
    [85]杨怀文.我国农业病虫害生物防治应用研究进展[J].科技导报,2007,25(7):56-60.
    [86]余建,张志元,高必达.细菌在植物病害生物防治中的应用[J].江西农业学报,2007,19(8):53-55.
    [87] S Compant, B Duffy, J Nowak, C Clement, EA Barka. Use of growthpromoting bacteria for biocontrol of plant diseases: principle, mechanisms ofaction and future prospects[J]. Applied and Environmental Microbiology,2005,71(9):4951-4959.
    [88]彭化贤,刘波微,陈小娟等.水稻稻瘟病拮抗细菌的筛选与防治初探[J].中国生物防治,2002,18(1):25-27.
    [89] LP Kumar, SR Nranjana, HS Prakash. Effect of Pseudomonas fluorescensformulation against Pyricularia grisea in rice[J]. Crop Improvement,2000,27(2):159-166.
    [90]李社增,马平.利用拮抗细菌防治棉花黄萎病[J].华中农业大学学报,2001,20(5):410-414.
    [91]丁之铨,张杰,陈中义,黄大昉,李季伦.杀虫遗传工程荧光假单胞菌IPP202部分生物学特性研究[J].微生物学报,2001,41(1):3-8.
    [92] JW Dorner, RJ Cole. Effect of application of nontoxigenic strains ofAspergillus flavus and A. parasiticus on subsequent aflatoxin contamination ofpeanuts in storage[J]. Journal of stored products research,2002,38:329-339.
    [93] R Dey, K K Pal, D M Bhatt, S M Chauhan. Growth promotion and yieidenhancement of peanut (Arachis hypogaea L.) by application of plantgrowth-promoting rhizobacteria[J]. Microbiological Research,2004,159(4):371-394.
    [94]苗果园,贾志红,杨珍平,等.不同作物根际微生物差异的研究[J].山西农业大学学报,2004,24(2):93-96.
    [95]徐秀娟,赵志强,鄢洪海,等.绿色木霉菌剂及其在有机食品花生的应用[J].农药,2006,45(1):272-274.
    [96] CJ Mickler, KL Bowen, J W Kloepper. Evaluation of selected geocarpospherebacteria for biological control of Aspergillus flavus in peanut[J]. Plant and soil,1995,175:291-299.
    [97] V Anjaiah, R P Thakur, N Koedam. Evaluatin of bacteria and Trichoderma forbiocontrol of pre-harvest seed infection by Aspergillus flavus in groundnut[J].Biocontrol Scinece and Technology,2006,16(4):431-436.
    [98] SS Guan, PS Yan. Isolation of geocarposhere bacteria antagonistic toAspergillus parasiticus in peanut[C]. NongKhai, Thailand: The5thInternational Symposium on Biocontrol and Biotechnology,2007,138.
    [99]宋子红,丁立孝,马伯军,等译.花生内生菌的种群及动态分析[J].植物保护学报,1999,26(4):309-314.
    [100]方扬,张小平,陈露遥,等.天府花生内生细菌种群多样性研究[J].西南农业学报,2008,21(2):353-358.
    [101]陈殿绪,谢宏峰,卢俊玲,等.花生根瘤内生细菌对花生黑斑病和褐斑病拮抗作用的初步研究[J].山东农业科学,2011,7:76-78.
    [102]王小兵,骆永明,刘五星,等.花生青枯病内生拮抗细菌的鉴定、抗菌活性及其田间防效[J].中国生物防治学报,2011,27(1):88-92.
    [103]立孝,倪新江,王东昌,等泽.花生内生抗虫工程菌的应用研究[J].吉林农业大学学报,2001,23(3):41-45.
    [104] Li Qian-Wei, Yan Pei-sheng, Wu Han-Qi,Wang Kai. Inhibition of myceliagrowth and norsolorinic acid accumulation of Aspergillus parasiticus by peanutseed endophytic bacteria[C]. International Conference on Human Health andBiomedical Engineering (HHBE),2011,450-453.
    [105] Li Qian-Wei, Wang Zhuo, Yan Pei-Sheng, Wu Han-Qi. Phylogenetic analysisof bacterial strains from peanut and their antifungal activities[J]. Journal ofConvergence Information Technology,2011,6(12):293.
    [106] Jeounghyun R, M Madhaiyan, S oonguzhali, W Yim, P Indiragandhi, K Kim, RAnandham, J Yun, K H Kim, T Sa. Plant Growth Substances Produced byMethylobacterium spp. and Their Effect on Tomato (Lycopersicon esculentumL.) and Red Pepper (Capsicum annuum L.) Growth[J]. World Journal ofMicrobiology and Biotechnology,2006,16(10):1622-1628.
    [107]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001,353-398.
    [108] Edwards U, T Rogall, H Blocker, M Emde, E C Bottger. Isolation and directcomplete nucleotide determination of entire genes. Characterization of a genecoding for16S ribosomal RNA[J]. Nucleic Acids Research,1989,17(19):7843-7853.
    [109] Kerry B R. Rhizosphere interactions and the exploitation of microbial agentsfor the biological control of plant-parasitic nematodes[J]. Annual Review ofPhytopathology,2000,38:423-441.
    [110] Nesci AV, Bluma RV, Etcheverry MG. In vitro selection of maize rhizobacteriato study potential biological control of Aspergillus section Flavi and aflatoxinproduction[J]. European Journal of Plant Pathology,2005,113(2):159-171.
    [111] Burr T J, Matteson M C, Smith C A, Corral-Garcia M R, Huang T C.Effectiveness of bacteria and yeasts from apple orchards as biological controlagents of apple scab[J]. Biological Control,1996,6:151-157.
    [112] Yan PS, Song Y, Sakuno E, Nakajima H, Nakagawa H, Yabe K. Cyclo(L-leucyl-L-prolyl) produced by Achromobacter xylosoxidans inhibitsaflatoxin production by Aspergillus parasiticus[J]. Applied and EnvironmentalMicrobiology,2004,70:7466-7473.
    [113] Kong Q, S Shan, Q Liu, X Wang, F Yu. Biocontrol of Aspergillus flavus onpeanut kernels by use of a strain of marine Bacillus megaterium[J].International Journal of Food Microbiology,2010,139:31-35.
    [114] Moyne A L, Shelby R, Cleveland T E, Tuzun S. Bacillomycin D: an iturin withantifungal activity against Aspergillus flavus[J]. Journal of AppliedMicrobiology,2001,90:622-629.
    [115] Someya N, S Ikeda, T Morohoshi, M N Tsujimoto, T Yoshida, H Sawada, TIkeda, K Tsuchiya. Diversity of culturable chitinolytic bacteria fromrhizospheres of agronomic plants in Japan[J]. Microbes and Environments,2011,26(1):7-14.
    [116] Nektarios Kavroulakis, Spyridon Ntougias, Maria I Besi, Pelagia Katsou,Athanasia Damaskinou, Constantinos Ehaliotis, Georgios I Zervakis, KalliopeK. Antagonistic bacteria of composted agro-industrial residues exhibitantibiosis against soil-borne fungal plant pathogens and protection of tomatoplants from Fusarium oxysporum f.sp. radicis-lycopersici Papadopoulou[J].Plant Soil,2010,(333):233-247.
    [117] Nobutaka Someya, Seishi Ikeda, Tomohiro Morohoshi, Masako Tsujimoto,Takanobu Yoshida, Hiroyuki Sawada, Tsukasa Ikeda, Kenichi Tsuchiya.Diversity of Culturable Chitinolytic Bacteria from Rhizospheres of AgronomicPlants in Japan[J]. Microbes and Environments,2011,26(1):7-14.
    [118] Jeffrey D, Palumbo James, L Baker, Noreen E Mahoney. Isolation of BacterialAntagonists of Aspergillus flavus from Almonds[J]. Microbial Ecology,2006,(52):45-52.
    [119] Nicholson W L, Munakata N, Horneck G, Melosh H J, Setlow P. Resistance ofBacillus endospores to extreme terrestrial and extraterrestrial environments[J].Microbiology and Molecular Biology Reviews,2000,64:548-572.
    [120] X H Chena, A Koumoutsia, R Scholza, K Schneiderb, J Vaterb, R Sussmuthb, JPiel, R Borrissa. Genome analysis of Bacillus amyloliquefaciens FZB42reveals its potential for biocontrol of plant pathogens[J]. Journal ofBiotechnology,2009,140:27-37.
    [121] Chien Jui Huang, Tang Kai Wang, Shu Chun Chung, Chao-Ying Chen.Identification of an Antifungal Chitinase from a Potential Biocontrol Agent,Bacillus cereus28-9[J]. Journal of Biochemistry and Molecular Biology,2005,38(1):82-88.
    [122] A Reyes,B I Escudero, G Aguilar, P M Hayward, J Eleazar. AntifungalActivity of Bacillus thuringiensis Chitinase and Its Potential for the Biocontrolof Phytopathogenic Fungi in Soybean Seeds[J]. Journal of Food Science,2004,69(5):131-134.
    [123] L Cavaglieri, J Orlandoa, M I Rodríguez, S Chulzeb, M Etcheverry. Biocontrolof Bacillus subtilis against Fusarium verticillioides in vitro and at the maizeroot level[J]. Research in Microbiology,2005,156:748-754.
    [124] Ahmed I, Yokota A, Yamazoe A, Fujiwara T. Proposal of Lysinibacillusboronitolerans gen. nov., sp. nov., and transfer of Bacillus fusiformis toLysinibacillus fusiformis comb. nov. and Bacillus sphaericus to Lysinibacillussphaericus comb. nov[J]. International Journal of Systematic and EvolutionaryMicrobiology,2007,57:1117-1125.
    [125] Miwa H, Ahmed I, Yokota A, Fujiwara T. Lysinibacillus parviboronicapiens sp.nov., a low-boron-containing bacterium isolated from soil[J]. InternationalJournal of Systematic and Evolutionary Microbiology,2009,59:1427-1432.
    [126] Chang Soo Lee, Yong-Taek Jung, Sooyeon Park, Tae-Kwang Oh, Jung-HoonYoon. Lysinibacillus xylanilyticus sp. nov., a xylandegrading bacteriumisolated from forest humus[J]. International Journal of Systematic andEvolutionary Microbiology,2010,60:281-286.
    [127] Huang C J, T K Wang, S C Chung, CY Chen. Identification of an antifungalchitinase from a potential biocontrol agent, Bacillus cereus28-9[J]. Journal ofBiochemistry and Molecular Biology,2005,38:82-88.
    [128] Someya N, N Kataoka, T Komagata, K Hirayae, T Hibi, K.Akutsu. Biologicalcontrol of cyclamen soilborne diseases by Serratia marcescens strain B2[J].Plant Disease,2000,84:334-340.
    [129] Someya N, M Nakajima, K Watanabe, T Hibi, K Akutsu. Potential of Serratiamarcescens strain B2for biological control of rice sheath blight[J]. BiocontrolScience and Technology,2005,15:105-109.
    [130] Zhang Z, G Y Yuen, G Sarath, A R Penheiter. Chitinases from the plant diseasebiocontrol agent, Stenotrophomonas maltophilia C3[J]. Phytopathology,2001,91:204-211.
    [131] Someya N, M Nakajima, K Hirayae, T Hibi, K Akutsu. Synergistic antifungalactivity of chitinolytic enzymes and prodigiosin produced by biocontrolbacterium, Serratia marcescens strain B2against gray mold pathogen, Botrytiscinerea[J]. Journal of General Plant Pahtology,2001,67:312-317.
    [132] Legrand M, Kauffmann S, Geoffroy P. Biological function of pathogenesisrelated proteins: Four tobacco pathogenesis-related proteins are chitinases[J].Proceedings of the National Academy of Sciences,1987,84(19):6750-6754.
    [133] Heil M, Bostock R M. Induced systemic resistance (ISR) against pathogens inthe context of induced plant defences[J]. Annals of Botany,2002,89(5):503-512.
    [134] Rattanakit N, Plikomol A, Yano S. Utilization of shrimp shellfish waste as asubstrate for solid-state cultivation of Aspergillus sp. S1-13: Evaluation of aculture based on chitinase formation which is necessary for chitin-assimilation[J]. Journal of Bioscience and Bioengineering,2002,93(6):550-556.
    [135] Fukamizo T. Chitinolytic enzymes catalysis, substrate Binding, and theirapplication[J]. Current Protein and Peptide Science,2000,1(1):105-124.
    [136] Tamura K, Peterson D, Peterson N. MEGA5: molecular evolutionary geneticsanalysis using maximum likelihood, evolutionary distance, and maximumparsimony methods[J]. Molecular biology and evolution,2011,28(10):2731-2739.
    [137] Jitonnom J, Lee V S, Nimmanpipug P. Quantum mechanics/molecularmechanics modeling of substrate-assisted catalysis in family18chitinases:conformational changes and the role of Asp142in catalysis in ChiB[J].Biochemistry,2011,50(21):4697-4711.
    [138] Wu Y, Liu F, Liu Y C. Identification of chitinases Is-chiA and Is-chiB fromIsoptericola jiangsuensis CLG and their characterization[J]. Appliedmicrobiology and biotechnology,2011,89(3):705-713.
    [139] Tu S, Qiu X, Cao L. Expression and characterization of the chitinases fromSerratia marcescens GEI strain for the control of Varroa destructor, a honeybee parasite[J]. Journal of invertebrate pathology,2010,104(2):75-82.
    [140] Sahay A, Shakya M. In silico analysis and homology modelling of antioxidantproteins of Spinach[J]. J Proteomics Bioinform,2010,3:148-154.
    [141] Tripathi S, Mishra H N. Modeling and optimization of enzymatic degradationof aflatoxin B1(AFB1) in red chili powder using response surfacemethodology[J]. Food and Bioprocess Technology,2011,4(5):770-780.
    [142] Rahman Z, Zidan A S, Habib M J. Understanding the quality of protein loadedPLGA nanoparticles variability by Plackett–Burman design[J]. Internationaljournal of pharmaceutics,2010,389(1):186-194.
    [143] Palvannan T, Sathishkumar P. Production of laccase from Pleurotus floridaNCIM1243using Plackett–Burman design and response surfacemethodology[J]. Journal of basic microbiology,2010,50(4):325-335.
    [144] Zubair M, Nybom H, Lindholm C. Major polyphenols in aerial organs ofgreater plantain (Plantago major), and effects of drying temperature onpolyphenol contents in the leaves[J]. Scientia Horticulturae,2011,128(4):523-529.
    [145] Sun Y, Liu J, Kennedy J F. Application of response surface methodology foroptimization of polysaccharides production parameters from the roots ofCodonopsis pilosula by a central composite design[J]. Carbohydrate polymers,2010,80(3):949-953.
    [146] Singh G, Pai R S, Devi V K. Response surface methodology and processoptimization of sustained release pellets using Taguchi orthogonal array designand central composite design[J]. Journal of Advanced PharmaceuticalTechnology&Research,2012,3(1):30.
    [147] Dottori H A. Photometric procedure for quantitative analysis of aflatoxin B1inpeanuts by thin-layer chromatography using charge coupled device detector[J].Quím. Nova,2010,33(1):43-47.
    [148] Jiujiang Yu, Perng-Kuang Chang, Kenneth C Ehrlich. Clustered PathwayGenes in Aflatoxin Biosynthesis[J]. Applied and Environmental Microbiology,2004,70(3):1253-1262.
    [149] Yin W B, Amaike S, Wohlbach D J. An Aspergillus nidulans bZIP responsepathway hardwired for defensive secondary metabolism operates throughaflR[J]. Molecular microbiology,2012,83(5):1024-1034.
    [150] Ehrlich K C, Mack B M, Wei Q. Association with AflR in endosomes revealsnew functions for AflJ in aflatoxin biosynthesis[J]. Toxins,2012,4(12):1582-1600.
    [151] Schmidt-Heydt M, Rüfer C E, Abdel-Hadi A. The production of aflatoxin B1or G1by Aspergillus parasiticus at various combinations of temperature andwater activity is related to the ratio of aflS to aflR expression[J]. MycotoxinResearch,2010,26(4):241-246.
    [152] Ehrlich K C, Chang P K, Yu J. Control of aflatoxin biosynthesis inAspergilli[J]. Aflatoxins—Biochemistry and Molecular Biology,2011:21-40.
    [153] Abdel-Hadi A M, Caley D P, Carter D R F. Control of aflatoxin production ofAspergillus flavus and Aspergillus parasiticus using RNA silencing technologyby targeting aflD (nor-1) gene[J]. Toxins,2011,3(6):647-659.
    [154] Ernst T, Chase A J, Score J. Inactivating mutations of the histonemethyltransferase gene EZH2in myeloid disorders[J]. Nature genetics,2010,42(8):722-726.