半球谐振陀螺仪误差机理分析与误差抑制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半球谐振陀螺仪(Hemispherical Resonator Gyroscope,HRG)具有的长寿命、高精度、高稳定性、低噪声、低功耗、抗辐射等优点,使其在长寿命惯性导航中具有很大的应用前景。因此,对HRG进行误差机理分析及在现有技术条件下寻找进一步提高HRG精度的方法具有重要的意义。本文以半球谐振子的误差源为研究对象,建立了具有误差缺陷谐振子的动力学方程,据此深入研究了谐振子频率裂解与密度不均匀误差之间的关系。然后从以下三个方面重点研究了HRG误差抑制方法:控制谐振子不同的振动位移分量,调节激励电极相对于谐振子的位置,平衡谐振子参数的不均匀误差。此外还深入研究了陀螺仪角速率解算方法及解算误差补偿方法等,为提高HRG的使用精度提供了理论指导。本文的具体工作如下:
     建立了半球谐振子的动力学方程。首先推导出谐振子薄壳上任一点的惯性力表达式,然后通过选取谐振子中曲面微元并分析其受力状态,建立了谐振子薄壳单元的力平衡方程。在此基础上,利用布勃诺夫-加廖尔金法建立了谐振子振动的动力学方程,并推导得出了谐振子振动振型精确的进动因子,为研究HRG误差机理及误差抑制方法奠定了基础。
     谐振子频率裂解及HRG开环模式的误差分析。首先建立了环向密度分布不均匀谐振子的动力学方程,据此推导出谐振子固有频率极大值与极小值的表达式,进而得到了谐振子固有频率裂解与环向密度不均匀误差之间的关系。其次在开环位置激励模式下,推导波腹方位角的稳态解和角速率解算表达式,通过仿真得到开环控制模式下为保证HRG角速率解算精度的密度不均匀第四次谐波的允差。
     研究了HRG力反馈控制模式下,通过不同控制模式控制谐振子不同的振动位移分量来抑制密度不均匀误差的方法,并给出了HRG角速率解算方法。首先推导了普通控制模式下角速率解算表达式,并通过仿真分析了密度不均匀第四次谐波对角速率解算精度的影响。其次推导了正交控制模式下角速率解算表达式。针对开环控制、普通控制及正交控制各自存在的问题,提出了拟正交控制模式,并推导了拟正交控制模式下角速率解算表达式。通过仿真分析,得出了拟正交控制模式在误差抑制方面的优势,并分析了其在工程中的可实行性。此外还详细推导了拟正交控制模式下波腹方位角表达式和振幅控制的稳态模型。
     研究了HRG精度提高方法及密度不均匀误差的平衡。首先根据固有刚性轴的特性得到了在谐振子密度不均匀误差下固有刚性轴的方位。然后在陀螺仪开环控制模式及拟正交控制模式下,通过调节激励电极与固有刚性轴的夹角,得到了提高陀螺仪精度的方法,并通过仿真验证其有效性。为了消除密度不均匀误差,提高HRG精度,建立了含有谐振子密度不均匀1~4次谐波成分的动力学方程,根据动力学方程建立了辨识密度不均匀各次谐波的模型,进而依据辨识模型详细论述辨识密度不均匀各次谐波幅值及相位的方法。在对密度不均匀各次谐波的幅值及相位辨识后,详细论述并推导了通过在谐振子上去除质量点以平衡谐振子密度不均匀误差的方法。
     HRG误差模型的建立与误差分析。首先建立了含谐振子固有参数不均匀、尺寸参数不均匀及激励参数误差的动力学方程,据此得到辨识各误差的方法及动力学方程中的非等弹性与非等阻尼误差项,并提出了平衡谐振子非阻尼类误差的方法。然后通过数值计算得到了谐振子频率裂解达到一定要求时谐振子各参数不均匀误差的最大值,并计算了当陀螺仪工作在开环控制模式与拟正交控制模式下满足惯导级陀螺仪要求时,谐振子各参数不均匀误差的允差。最后提出了提高谐振子阻尼不均匀误差允差的方法,从而降低了加工工艺难度。
HRG has a promising application in the inertial navigation of long-lifespacecraft due to its advantages, such as longevity, high precision, high reliability,low noise, low power and free of nuclear radiation. So it is meaningful to analyzethe HRG’s error and to explore the methods of raising HRG’s accuracy under currenttechnical conditions. In this paper, the error analysis for HRG is based on theresonator with defects in the circular direction. The dynamics equations of resonatorwith error are established, then the relationship between the frequency split and thedensity nonuniformity error is deeply analyzed. The error restraint method isresearched from the following three aspects: control different parts of theresonator’s vibration displacement, adjust the position of the excitation electroderelative to the resonator, balance the resonator’s nonuniformity error. Moreover, themethods of angular rate calculation and error compensation are deeply researched,which give the guidance for raising HRG’s accuracy. The specific tasks of thisdissertation are as follows:
     The dynamics equations of resonator are established. At first, the inertia forcesof an arbitrary point in the hemispherical thin shell are deduced, then the forceequilibrium equations of the thin shell element which is sectioned from the mediumplane are gained. On the basis of it, the dynamics equations of the resonator areestablished by way of Bubonov–Galerkin method, and the accurate expression of theangular precession factor is deduced. All those lay a foundation for further analyzingthe error mechanism and error restraint method of HRG.
     Analysis on the frequency split and the error analysis for HRG under open-loopcontrol mode are achieved. Firstly, the dynamics equations of resonator with densitydistributed nonuniformity are established. According to the dynamics equations, theexpressions of natural frequency of hemispherical resonator are solved. Thefrequency split mechanism caused by density distribution nonuniformity error of thehemispherical resonator is achieved. Secondly, under open-loop mode, thesteady-state solutions of the antinode’s azimuth and the expression of the angularrate calculation are given. By simulation calculating, the tolerance towards thefourth harmonic of density nonuniformity is determined to guarantee the accuracy ofHRG under open-loop mode.
     Under force-rebalance mode, the method that different parts of the resonator’svibration displacement are controlled by different modes to restrain densitynonuniformity error is researched, and the method of angular rate calculation isgiven. Firstly, the expression of the angular rate calculation is given under general control. By simulation calculating, the influence of the fourth harmonic of densitynonuniformity on angular rate calculation is analyzed. Secondly, the expression ofthe angular rate calculation is given under quadrature control. The quasi quadraturecontrol is put forward to solve the problems of open-loop control, general controland quadrature control. The expression of the angular rate calculation is deducedunder quasi quadrature control. By simulation and analyzing, the quasi quadraturecontrol has more advantages in the aspects of error restraint and practicalapplication. In addition, under the quasi quadrature control, the expression of theazimuth of radial vibration antinode is deduced, and the steady state model ofamplitude-control is established.
     The methods of enhancing HRG’s accuracy and balancing the densitynonuniformity error are put forward. At first, according to the characteristics of theinherent toughness axis, the azimuth of inherent toughness axis is given. Then themethods of raising HRG’s accuracy are given by adjusting the angle between theexcitation electrode and the azimuth of inherent toughness axis under open-loopcontrol and quasi quadrature control modes, and the method’s effectiveness isproved by simulating. To counteract density nonuniformity error and raise theaccuracy of HRG, the dynamics equations of resonator with the1st~4thharmonic ofdensity nonuniformity are established. The identification model of densitynonuniformity error is established through the dynamics equations, and then theamplitude and phase of each density nonuniformity harmonic are identified. Afterthat, the process of balancing the density nonuniformity error by removing the micromass out of resonator is analyzed and deduced.
     The establishment of error model and error analysis for HRG are conducted.Firstly, the dynamics equations of resonator with the nonuniformity errors ofinherent parameters, dimension parameters and excitation parameters are established.The method of identifying the errors is given. The anisoelasticity and dampingnonuniformity are given through the dynamics equations. And the method ofbalancing the errors except damping nonuniformity error is also given. Secondly, themaximum values of errors are calculated under the requirement of frequency split,and the tolerances towards errors are determined to guarantee the accuracy of HRGunder open-loop control and quasi quadrature control modes. Finally, the method ofincreasing the tolerance towards damping nonuniformity error is given, so theprocessing and machining difficulty is reduced.
引文
[1]苏中,李擎,李旷振,等.惯性技术[M].北京:国防工业出版社,2010:1-63.
    [2]谭强,范燕平.我国卫星长寿命技术发展需求及组织与管理探讨[J].航天器工程,2011,20(5):111-115.
    [3]吕志清.半球谐振陀螺在宇宙飞船上的应用[J].压电与声光,1999,21(5):349-353.
    [4] Rozelle D M. The Hemispherical Resonator Gyro:From Wineglass to thePlanets[C]//19th AAS/AIAA Space Flight Mechanics Meeting. San Diego:Univelt Inc.,2009:1157-1178.
    [5] Матвеев B A,Липатников В И,Алехин А В.固体波动陀螺[M].杨亚非,赵辉,译.北京:国防工业出版社,2009:1-104.
    [6] Saunders H,Paslan P R. Inextensional Vibration of a Sphere–cone ShellCombination[J]. Journal of Acoustical Society of America,1959,31(8):579-583.
    [7] Shatalov M Y,Joubert S V,Coetzee Charlotta E,et al. Free Vibration ofRotating Hollow Spheres Containing Acoustic Media[J]. Journal of Sound andVibration,2009,332:1038-1047.
    [8] Yamada G,Irie T,Tagawa Y. Free Vibration of Non-circular Cylindrical Shellswith Variable Circumferential Profile[J]. Journal of Sound and Vibration,1984,95(1):117-126.
    [9] Kim D J,M’Closkey R T. A Systematic Method for Tuning the Dynamics ofElectrostatically Actuated Vibratory Gyros[J]. Control System Technology,2006,14(1):69-81.
    [10] Zhang X M,Liu G R,Lam K Y. Vibration Analysis of Thin Cylindrical ShellsUsing Wave Propagation Approach[J]. Journal of Sound and Vibration,2001,239(3):397-403.
    [11] Gallacher B J,Burdess J S,Harris A J. Principles of a Three-axis VibratingGyroscope[J]. IEEE Transactions on Aerospace and Electronic Systems,2001,37(4):1333-1343.
    [12] Su Z,Fu M Y,Li Q,et al. Research on Bell-shaped Vibratory Angular RateGyro's Character of Resonator[J]. Sensors,2013,13(4):4724-4741.
    [13] Swaddiwudhipong S,Tian J,Wang C M. Vibration of Cylindrical Shells withIntermediate Supports[J]. Journal of Sound and Vibration,1995,87(1):69-93.
    [14] Charnley T,Perrin R. Perturbation Studies with a Thin Circular Ring[J].Acustica,1973,28:140-146.
    [15] Trusov A A,Prikhodko I P,Zotov S A. Low-dissipation Silicon Tuning ForkGyroscopes for Rate and Whole angle measurements[J]. IEEE SensorsJournal,2011,11(11):2763-2770.
    [16] Yang B B,Katz S L,Willis K J,et al. A High-Q Terahertz Resonator for theMeasurement of Electronic Properties of Conductors and Low-lossDielectrics[J]. IEEE Transactions on Terahertz Science and Technology,2012,2(4):449-459.
    [17] Friedland B,Maurice F H. Theory and Error Analysis of Vibrating-MemberGyroscope[J]. IEEE Transactions on Automaitc Control,1978,23(4):545-556.
    [18] Souza V C M,Croll J G A. An Energy Analysis of the Free Vibrations ofIsotropic Spherical Shells[J]. Journal of Sound and Vibrations,1980,73(3):379-404.
    [19] Zhbanov Y. Eight-point Model of the Hemispherical Resonator Gyro[C]//Proceedings of the Annual Meeting-Institute of Navigation. Virginia:Inst ofNavigation,1996:725-728.
    [20] Zhbanov Y K. Vibration of a Hemispherical Shell Gyro Excited by anElectrostatic Field[J]. Mechanics of Solids,2008,43(3):328-332.
    [21] Pavlovskii A M,Sarapulov S A. Dynamics of a Nonideal HemisphericalResonator with Translational Vibration of the Base[J]. Soviet AppliedMechanics (English Translation of Prikladnaya Mekhanika),1991,27(6):606-609.
    [22] Yu H. Vibration Character Analysis and Calculation for HemisphericalResonator Gyro[J]. Applied Mechanics and Materials,2013,271(1):1224-1228.
    [23] Li Z A,Chen M J,Liang Y C,et al. Structural Parameter Optimization of theHRG's Resonator Based on Finite Element Analysis of VibrationCharacteristics[J]. Journal of Harbin Institute of Technology,2010,17(1):183-186.
    [24] Huang S C,Soedel W. Effect of Coriolis Acceleration on the Free and Forcedin-plane Vibrations of Rotating Rings on Elastic Foundation[J]. Journal ofSound and Vibration,1987,115(2):253-274.
    [25] Chang C O,Hwang J J,Chou C S. Modal Precession of a RotatingHemispherical Shell[J]. International Journal of Solid sand Structures,1996,33(9):2739-2757.
    [26] Chou C S,Chang C O. Modal Precession of a Hemispherical Shell GyroExcited by Electrostatic Field[J]. Japanese Journal of Applied Physics,1997,36(11):7073-7082.
    [27] Lu Z Q. Signal Processing Technique for Hemispherical Resonator Gyro (HRG)[J]. Journal of Chinese Inertial Technology,2000,20(4):58-61.
    [28] Hwang J J,Chou C S,Chang C O. Precession of Vibrational Modes of aRotating Hemispherical Shell[J]. Journal of Vibration and Acoustics,1997,119:612-617.
    [29] Wang X,Fang Z,Wu W Q,et al. Procession Analysis of HRG Resonator Basedon Two Dimensional Mass Vibrations[J]. Journal of Chinese InertialTechnology,2011,19(5):621-626.
    [30] Chung J,Lee J M. Vibration Analysis of Nearly Axis-symmetric ShellStructure Using a New Finite Ring Element[J]. Journal of Sound andVibration,1999,219(1):35-50.
    [31] Eley R,Fox C H J,McWilliam S. Coriolis Coupling Effects on the Vibration ofRotating Rings[J]. Journal of Sound and Vibration,2000,238(3):459-480.
    [32] Li B R,Wu Y R,Wang C H. The Identification and Compensation ofTemperature Model for Hemispherical Resonator Gyro Signal[C]//3rdInternational Symposium on Systems and Control in Aeronautics andAstronautics. New Jersey:IEEE Computer Society,2010:398-401.
    [33] Shatalov M, Coetzee C. Dynamics of Rotating and Vibrating ThinHemispherical Shell with Mass and Damping Imperfections and ParametricallyDriven by Discrete Electrodes[J]. Gyroscopy and Navigation,2011,2(1):27-33.
    [34] IEEE Aerospace and Electronic Systems Society. IEEE Std1431TM IEEEStandard Specification Format Guide and Test Procedure for Coriolis VibratoryGyros[S]. New York:The Institute of Electrical and Electronics Engineers,2004:56-66.
    [35] Loveday P W,Rogers C A. The Influence of Control System Design on thePerformance of Vibration Gyroscopes[J]. Journal of Sound and Vibration,2002,255(3):417-432.
    [36] Shatalov M Y,Joubert S V,Coetzee C E. The Influence of Mass Imperfectionson the Evolution of Standing Waves in Slowly Rotating Spherical Bodies[J].Journal of Sound and Vibration,2011,330(3):127-135.
    [37]樊尚春,刘广玉,王振均.轴对称壳谐振子振型的进动研究[J].仪器仪表学报,1991,12(4):421-426.
    [38]樊尚春,刘广玉,王振均.半球壳弯曲振动的分析[J].应用数学与力学,1991,12(10):957-964.
    [39]樊尚春,刘广玉,王振均.半球谐振陀螺的理论与实验研究[J].测控技术,1994,13(1):29-33.
    [40]樊尚春,刘广玉.半球谐振陀螺振子耦合振动的近似解析分析[J].北京航空航天大学学报,1997,23(6):708-713.
    [41]李子昂.半球陀螺谐振子的力学性能及振动特性分析[D].哈尔滨:哈尔滨工业大学,2007.
    [42]梁嵬.半球陀螺仪谐振子振动特性及其结构研究[D].长春:长春理工大学,2008.
    [43]李广胜,蒋英杰,孙志强,等.基于多项式模型的半球谐振陀螺温度漂移建模[J].测试技术学报,2009,23(6):496-500.
    [44] Fox C H J. A Simple Theory for the Analysis and Correction of FrequencySplitting in Slightly Imperfect rings[J]. Journal of Sound and Vibration,1990,142(2):227-243.
    [45] Achong A. Vibrational Analysis of Mass Loaded Plates and Shallow Shells bythe Receptance Method with Application to the Steelpan[J]. Journal of Soundand Vibration,1996,191(2):207-217.
    [46] Schwartz D,Kim D J,M’Closkey R T. Frequency Tuning of a Disk ResonatorGyro Via Mass Matrix Perturbation[J]. ASME Journal of Dynamic SystemsMeasurement and Controls,2009,131(6):1004-1006.
    [47] Yamada G,Irie T,Notoya S. Natural Frequencies of Elliptical CylindricalShells[J]. Journal of Sound and Vibration,1985,101(1):133-139.
    [48] Hu Y T,Hu H L,Luo B,et al. Frequency Shift of a Crystal Quartz Resonatorin Thickness-shear Modes Induced by an Array of Hemispherical MaterialUnits[J]. IEEE Transactions on Ultrasonics,Ferroelectrics,and FrequencyControl,2013,60(8):1777-1781.
    [49] Kireenkov A A. An Algorithm for Calculating Natural Frequencies of aHemispherical Resonator Gyro[J]. Mechanics of Solids,1997,32(3):1–6.
    [50] Rouke A K,William S M,Fox C H J. Multi-mode Trimming of ImperfectRings[J]. Journal of Sound and Vibration,2001,248(4):695-724.
    [51] Yoon S J,Kim J H. A Concentrated Mass on the Spinning Unconstrained BeamSubjected to a Thrust[J]. Journal of Sound and Vibration,2002,254(4):621-634.
    [52] William S Mc,Ong J,Fox C H J. On the Statistics of Natural FrequencySplitting for Rings with Random Mass Imperfections[J]. Journal of Sound andVibration,2005,279(1/2):453-470.
    [53] Rao G V,Saheb K M,Janardhan G R. Fundamental Frequency for LargeAmplitude Vibrations of Uniform Timoshenko Beams with Central PointConcentrated Mass Using Coupled Displacement Field Method[J]. Journal ofSound and Vibration,2006,298:221-232.
    [54] Bisegna P,Caruso G. Frequency Split and Vibration Localization in ImperfectRings[J]. Journal of Sound and Vibration,2007,306:691-711.
    [55] Choi S Y,Kim J H. Natural Frequency Split Calculation for InextensionalVibration of Imperfect Hemispherical Shell[J]. Journal of Sound andVibration,2011,330:2094-2106.
    [56] Saukoski M,Aaltonen L,Halonen K A I. Zero-rate Output and QuadratureCompensation in Vibratory MEMS Gyroscopes[J]. IEEE Sensors Journal,2007,7(12):1639-1652.
    [57] Pi J,Myung H,Bang H. A Control Strategy for Hemispherical ResonatorGyros Using Feedback Linearization[C]//201111th International Conferenceon Control,Automation and Systems. New Jersey:IEEE Computer Society.2011:1880-1883.
    [58] Zhbanov Y K. Self-tuning Contour of Quadrature Suppression in aHemispherical Resonator Gyroscope[J]. Giroskop, Navigation,2007(2):37-42.
    [59] Zhbanov Y K,Zhuravlev V P. Effect of Movability of the Resonator Center onthe Operation of a Hemispherical Resonator Gyro[J]. Mechanics of Solids,2007,44(3):851-859.
    [60] Pai P,Chowdhury F K,Pourzand H,et al. Fabrication and Testing ofHemispherical MEMS Wineglass Resonators[C]//IEEE26th InternationalConference on Micro Electro Mechanical Systems. New Jersey:Institute ofElectrical and Electronics Engineers Inc.,2013:677-680.
    [61] Zhou X G,Wang L X,Fang Z,et al. Design of HRG Leveling System andSimulation Experiment[J]. Journal of Astronautics,2011,32(3):549-553.
    [62] Li B R,Wang C H. The Application of Wavelet Filtering on DenoisingHemispherical Resonator Gyro Signal[C]//3rd International Symposium onSystems and Control in Aeronautics and Astronautics. New Jersey:IEEEComputer Society,2010:402-405.
    [63] Dzhandzhgava G I,Bakhonin K A,Vinogradov G M,et al. Strapdown InertialNavigation System Based on a Hemispherical Resonance Gyro[J]. Gyroscopyand Navigation,2010,1(2):91-97.
    [64] Li Y,Luo B,Wang X,et al. Quadrature Control of Hemispherical ResonatorGyro Based on FPGA[C]//10th International Conference on ElectronicMeasurement and Instruments. New Jersey:IEEE Computer Society,2011:369-372.
    [65] Ragot V,Remillieux G. A New Control Mode Greatly Improving Performanceof Axisymmetrical Vibrating Gyroscopes[J]. Gyroscopy and Navigation,2011,2(4):229-238.
    [66] Park S J,Yong K R, Lee Y J,et al. Phase Control Loop Design Based onSecond Order PLL Loop Filter for Solid Type High Q-factor ResonantGyroscope[J]. Journal of Institute of Control,Robotics and Systems,2012,18(6):546-554.
    [67] Watson W S. Vibratory Gyro Skewed Pick-off And Driver Geometry[J].Journal of Micro Ma-chines,2010,4(10):171-179.
    [68] Asokanthan S F,Cho J. Dynamic Stability of Ring-based Angular RateSensors[J]. Journal of Sound and Vibration,2006,295:571-583.
    [69] Krylov S,Lurie K,Ya’akobovitz A. Compliant Structures with Time-varyingMoment of Inertia and Non-zero Averaged Momentum and Their Applicationin Angular Rate Microsensors[J]. Journal of Sound and Vibration,2011,330:4875-4895.
    [70] Tonin R F,Bies D A. Free Vibration of Circular Cylinders of VariableThickness[J]. Journal of Sound and Vibration,1979,62(2):165-180.
    [71] Mitao O,Hideki T,Tsunemi S. Vibration Analysis of Curved Panels withVariable Thickness[J]. Engineering Computations,1996,13(2):226-239.
    [72] Zhuravlev V P. Drift of an Imperfect Hemispherical Resonator Gyro[J].Mechanics of Solids,2004,39(4):15-18.
    [73] Pavlovskii A M,Sarapulov S A,Kisilenko S P. Conditions for DynamicalSymmetry of a Nonideal Hemispherical Shell with Perturbation of the Shape ofthe Rim[J]. Soviet Applied Mechanics (English Translation of PrikladnayaMekhanika).1990,25(9):941-947.
    [74] Kumar V,Singh A V. Approximate Vibrational Analysis of NoncircularCylinders Having Varying Thickness[J]. AIAA Journal,1991,30(7):1929-1931.
    [75] Wang H,Wei F T. Modeling the Random Drift of Micro-Machined Gyroscopewith Neural Network[J]. Neural Processing Letters,2005,22(3):235-247.
    [76]冯士伟.半球谐振陀螺误差分析与测试方法设计[D].哈尔滨:哈尔滨工业大学,2008.
    [77]祁家毅.半球谐振陀螺仪误差分析与测试技术[D].哈尔滨:哈尔滨工业大学,2009.
    [78]陈雪.半球谐振陀螺仪的误差机理分析和实验方法的研究[D].哈尔滨:哈尔滨工业大学,2009.
    [79]谢阳光.半球谐振陀螺星载惯性姿态测量系统研究[D].哈尔滨:哈尔滨工业大学,2009.
    [80]伊国兴,谢阳光,李清华,等.基于半球谐振陀螺与星敏感器的星载姿态测量系统实现[J].中国惯性技术学报,2012,20(1):58-62.
    [81]杨倩.基于半球谐振陀螺的惯性导航系统研究[D].哈尔滨:哈尔滨工业大学,2009.
    [82]沈博昌.基于半球谐振陀螺仪与星敏感器的卫星姿态确定[D].哈尔滨:哈尔滨工业大学,2010.
    [83]祁家毅,任顺清,冯士伟,等.半球谐振陀螺仪随机误差分析[J].中国惯性技术学报,2009,17(1):98-101.
    [84]王宇.半球谐振陀螺滤波技术研究及其FPGA实现[D].哈尔滨:哈尔滨工业大学,2009.
    [85]于伟,杨亚非,凌明祥.结构误差造成的半球谐振陀螺闭环检测误差分析[J].中国惯性技术学报,2003,11(4):40-44.
    [86]杨建业,汪立新,张胜修,等.半球谐振陀螺旋转惯导系统误差抑制机理研究[J].宇航学报,2010,31(10):2321-2327.
    [87]倪受东,吴洪涛,嵇海平,等.微型半球陀螺仪的误差源研究[J].传感器与微系统,2007,26(1):30-32.
    [88]杨金显,袁赣南,徐良臣.微机械陀螺测试与标定技术研究[J].传感技术学报,2006,19(5):2264-2267.
    [89]郭栓运,于集建.半球谐振陀螺的关键技术[J].应用光学,1994,15(4):45-49.
    [90]朱一纶.硅微机械谐振陀螺仪技术研究[D].南京:东南大学,2004.
    [91]高胜利.半球谐振陀螺的分析与研究[D].哈尔滨:哈尔滨工程大学,2008.
    [92]周小刚,汪立新,佘嫱,等.半球谐振陀螺加速度影响分析与实验研究[J].仪器仪表学报,2008,29(4):237-241.
    [93]周小刚,汪立新,佘嫱,等.半球谐振陀螺温度补偿与实验研究[J].宇航学报,2010,31(4):1083-1087.
    [94]李成,刘洁瑜,张斌.半球谐振陀螺仪随机漂移数学模型研究[J].压电与声光,2012,34(5):695-698.
    [95]张勇猛,吴宇列,席翔,等.杯形陀螺的温度性能与补偿方法研究[J].传感技术学报,2012,25(9):1230-1235.
    [96]程龙,王寿荣,叶甫.硅微机械振动陀螺零偏温度补偿研究[J].传感技术学报,2008,21(3):483-485.
    [97]雷霆.半球谐振陀螺控制技术研究[D].重庆:重庆大学,2006.
    [98]易康.半球谐振陀螺误差分析和滤波方法研究[D].长沙:国防科技大学,2005.
    [99]李云.半球谐振陀螺力再平衡数字控制技术[D].长沙:国防科技大学,2011.
    [100]王旭,吴文启,方针,等.力平衡模式下半球谐振陀螺正交误差控制[J].仪器仪表学报,2012,33(4):936-941.
    [101]陈小娟,李恺,王德钊,等.半球谐振陀螺力反馈控制回路设计[J].空间控制技术与应用,2012,38(3):33-36.
    [102]Matthews A,Rybak F J. Comparison of Hemispherical Resonator Gyro andOptical Gyros[J]. IEEE Aerospace and Electronic Systems Magazine,1992,7(4):40-46.
    [103]Strikwerda T E,Ray J C,Haley D R. The NEAR Guidance and ControlSystem[J]. Johns Hopkins APL Technical Digest,1998,19(12):205~212.
    [104]Bae S,Schutz B E. GLAS Spacecraft Attitude Determination Using CCD StarTracker and3-axis Gyros[J]. Advances in the Astronautical Sciences,1997,102(2):961-980.
    [105]Meyer A D, Rozelle D M. Milli-HRG Inertial Navigation System
    [C]//Proceedings of the2012IEEE/ION Position, Location and NavigationSymposium. New Jersey:Institute of Electrical and Electronics EngineersInc.,2012:24-29.
    [106]Johnson G M,Lefley A S,Toole P A. Development of the HRG Based ScalableSpace Inertial Reference Unit for Long-life Moderate and Precision PointingSpacecraft[J]. Advances in the Astronautical Sciences,2001,107:405-424.
    [107]吕志清.半球谐振陀螺(HRG)研究现状及发展趋势[C]//中国惯性技术学会.2003年惯性技术科技工作者研讨会论文集.湖北,2003:103-105.
    [108]张挺,徐思宇,冒继明,等.半球陀螺谐振子的金属化镀膜工艺技术研究[J].压电与声光,2006,28(5):538-540.
    [109]陈志勇,高钟毓,张嵘.振动轮式微机械陀螺频率配置和气压选择[J].中国惯性技术学报,2001,9(3):53-56.
    [110]军工动态[J].国防制造技术,2012(6):6.
    [111]刘鸿文.板壳理论[M].浙江:浙江大学出版社,1987:240-271.
    [112]黄克智,陆明万,薛明德.弹性薄壳理论[M].北京:高等教育出版社,1988:100-106.
    [113]邓正隆.惯性技术[M].哈尔滨:哈尔滨工业大学出版社,2006:30-31.
    [114]刘延柱,陈文良,陈立群.振动力学[M].北京:高等教育出版社,1998:7-27.
    [115]顾海明,周勇军.机械振动理论与应用[M].南京:东南大学出版社,2007:11-54.
    [116]东北师大数学系微分方程教研室.常微分方程[M].北京:高等教育出版社,1982:165-187.
    [117]景荣春.四次方程解法改进[J].镇江船舶学院学报,1990,4(4):79-84.
    [118]王跃华.浅谈三次方程与四次方程的解法[J].沈阳大学学报,2010,22(6):8-9.
    [119]郭志勇.计算n阶固有频率的一个简便公式[J].西安科技学院学报2003,23(3):354-356.
    [120]郭志勇,鹿洪禹,李建安,等.计算基频的一个简便公式[J].西安矿业学院学报,1999,19(4):368-370.
    [121]黄仁伟.谐振系统固有振频的计算方法[J].柳州师专学报,1999,14(3):102-104.
    [122]清华大学工程力学系.机械振动(上册)[M].北京:机械工业出版社,1980:188-310.
    [123]Nottebrock H.电容器[M].张政,译.北京:国防工业出版社,1958:11-48.
    [124]陈友朋,钱明钟,陈滨.两类微分方程组的特解表达式[J].高等数学研究,2011,14(3):3-5.
    [125]Fan S C,Liu G Y,Wang Z J. On Flexural Vibration of Hemispherical Shell[J].Applied Mathematics and Mechanics,1991,12(10):1023-1030.