数控成形磨床移动式立柱温度特性分析及拟合方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了改善成形磨削加工过程中的热态特性,进一步提升高性能磨床的加工精度,在分析了成形磨床移动式立柱温度场特性基础上,针对移动式立柱温度场非线性、大滞后的特点,提出了逐级递推拟合式算法以预测立柱温度场变化趋势。为了检测并分析移动式立柱温度场分布,采用LabVIEW(Laboratory VirtualInstrument Engineering Workbench)虚拟仪器开发了多通道温度场检测仪器。结合实验数据将拟合算法应用到移动式立柱温度场热误差与变形分析中,拟合曲线与实验检测数据进行对比,证明此算法具有较高的拟合精度,而且运算过程快速、方法简单实用,适用于移动式立柱温度特性分析、热误差预测建模与误差消除等方面。具体包括:
     第一章,本章介绍了高性能成形磨床技术国内外发展现状,讨论了热误差引起的变形对制造精度的影响。详细阐述了国外发达工业国家在温度场分析与热误差建模方面的研究现状,以及国内重点大学对此课题的研究成果。最后论述了课题的研究意义,提出了论文的主要研究内容及结构。
     第二章,本章介绍了虚拟仪器在温度检测领域的作用和意义,详细阐述了温度采集系统方案的硬件配置与性能参数。采用虚拟仪器LabVIEW开发了一套多通道温度采集系统,并且解释了温度采集仪器各个模块的用途、程序设计方案、人机交互界面的设计理念与操作方法等,为后续的温度场检测实验以及算法拟合应用奠定坚实基础。
     第三章,本章首先介绍了温度场热传递基础理论,并在此基础上阐述了稳态与瞬态温度场有限元分析的数学建模方法。基于实验数据绘制温度场走势图像,并对成形磨床中腰导轨移动式立柱进行工况与热源分析,通过温度对比图像说明立柱前、后侧表面存在温度差。运用有限元理论与ANSYS软件对立柱热源所产生的温度场分布进行分析,进一步证明立柱温度场分布不均衡,也为后续温度数据拟合研究建立依据。
     第四章,本章提出了逐级递推拟合算法,详细阐述了实验方法、过程及结果,并根据实验数据对移动式立柱温度场热误差、热变形、误差消除进行系列研究。针对移动式立柱温度场变化符合多阶指数函数规律的特点,为了建立准确的热误差数学模型,高精度地预测立柱温度场变化趋势,针对实时间数跨度较大的多阶指数函数,提出一种新的逐级递推拟合式算法。根据不同时间常数的指数函数具有不同平衡时间的特点,通过数学方法变化,采用一阶指数函数的拟合算法进行拟合并逐级递推,分别得到多阶指数函数的不同项的时间常数和相应的幅值。最后将所提出的算法在温度场数据拟合、热变形数据拟合以及误差消除等方面进行应用,将拟合曲线与实验检测数据进行对比,证明此算法具有较高的拟合精度,而且运算过程快速、方法简单实用,适用于移动式立柱温度特性分析和热误差预测建模。
     第五章,对全文进行全面的总结,并系统回顾本文的研究思路和成果。展望下一步的研究工作和计划,并为将来的研究提出设想。
In order to improve thermal characteristic of form-grinding process and further enhance machining accuracy, a step-by-step recu(?)sive fitting algorithm has been presented to predict the variation trend of form grinder movable upright column based on the analysis of non-linear and time-lagging features. To measure temperature distribution on column, a multi-channel temperature measuring device was developed on the platform of virtual instrument LabVIEW (Laboratory Virtual Instrument Engineering Workbench), and then finite element analysis was carried out. High fitting precision has been proved by comparing the fitting curve with the test curve. The fitting algorithm is suitable for temperature characteristic analysis, thermal error prediction modeling and error elimination.
     Chapter One. Developing situation of high-performance form grinder both at home and abroad was introduced. Negative influence caused by thermal error and deformation was then explained. The research progress on temperature field analysis and thermal error modeling conducted by foreign developed countries and domestic key universities was clarified. At the end, the significance, content and structure of this study were presented.
     Chapter Two. Detailed design plan of temperature measurement device by virtual instrument LabVIEW was presented, including hardware configurations and software parameter settings. And then, the design process of this device was explained, including the function of each module, programming method, data acquisition and exchange, man-machine interface and operation principle, and thus laying solid foundation for the following temperature measurement test and algorithm application.
     Chapter Three. Finite element theory of steady-state and transient-state temperature field based on heat transfer principle was explained. Then operating condition and thermal source analysis of movable upright column was iterated through temperature contrast between the front and back profile of column. Temperature field distribution of each thermal source was analyzed by ANSYS, which further proved that temperature distribution on upright column was unbalanced and paved the way for the subsequent study on thermal data fitting of movable upright column on high-performance form grinder.
     Chapter Four. Thermal error of form grinder column possessed non-linear, time-lagging and multi-parameter characteristics based on the analysis of temperature field distribution on column. Based on the analysis of data, a step-by-step recursive fitting algorithm was presented to process multi-order exponential function with large span of time constant. In accordance with the feature that exponential function with various time constants has different equilibrium time, first-order exponential function fitting algorithm was adopted; then time constant and corresponding amplitude of multi-order exponential function through step-by-step fitting. High fitting precision has been proved by comparing the fitting curve with the test curve. The fitting algorithm is suitable for temperature characteristic analysis, thermal error prediction modeling and error elimination, which were proved by practical applications.
     Chapter Five. The study ideas were reviewed and results summarized. And the prospect of this thesis was also presented for further study.
引文
[1]张建明.现代超精密加工技术和装备的研究与发展[J].航空精密制造技术.2008,44(1):1-7.
    [2]J.Peklenic.Untersuchung der genauigkeritsfragen in der automatiserten fertigung[J].West-deutscherverlag,1967(2):19-24.
    [3]J.Bryan.International Status of Thermal Error Research[J].Keynote Paper Annals of the CIRP,1990,39(2):645-656.
    [4]关耀奇.热变形对精密加工的影响与控制[J].机械研究与应用,2001,14(2):1-2.
    [5]唐开勇.机床热变形的探讨[J].昆明理工大学学报,2002,27(3):51-54.
    [6]陶晓杰,王治森.滚齿机床热变形对加工精度的影响[J].机械传动,2006,29(3):54-55.
    [7]罗怀晓.利用成形砂轮在数控工具磨床上磨削复杂曲面[J].现代制造工程,2005(6):30-31.
    [8]金凤珠,周昕.杭机的强力成形磨床及应用[J].制造技术与机床,2006:23-24.
    [9]上海机床厂有限公司.MKA8612/H数控曲面成形磨[J].中国机电工业,2006(5):113-114.
    [10]林伟青,傅建中,许亚洲,陈子辰.基于最小二乘支持向量机的数控机床热误差预测[J].浙江大学学报(工学版)2008,42(6):905-908.
    [11]Zhang G.,Wang C.,Hu X.Error Compensation of Coordinate Measuring Machine Tools[J].Annuals of CIRP,1988,37(1).
    [12]Robert B.Aronson.War Against Thermal Expansion[J].Manufacturing Engineering,Jun 1996,116No.6.
    [13]Ferrerira,P.M.,Liu C.R.Analytical Quadratc Model for the Geometric Error of a Machine Tool[J].Journal of Manufacturing Systems,1986,5(1).
    [14]Soons J.A.,Theuws F.C.,Ferreira P.M.Modeling and Estimation of Quasistatic Machine Tool Errors[J].Transactions of NAMRI/SME.
    [15]张建国,张宏韬,童恒超等.数控机床热误差实施补偿应用[J],上海交通大学学报,2005,39No.9.
    [16]Yang J G,Ren Y Q,Du Z C.Robust modeling and real time compensation for the thermal error on a large number of CNC turning centers[J].Key Engineering Materials,2004,259-260:756-760.
    [17]ROBERTBA,The war against thermal expansion[J].Manufacturing Engineering,1996,6:45-50.
    [18]HATAMURAY,et al,Development of an intelligent machining center in corporating active compensation for thermal distortion[J].Annals of CIRP,1993,42(1):549-552.
    [19]国家自然科学基金委员会,机械制造科学(冷加工),科学出版社,1994.
    [20]M.H.Attia,S.Fraser,M.O.M.Osman.Online Estimation of Time-variant Thermal Load Applied to Machine Tool Structures Using a S-domain Inverse Solution[J].Internal Journal of Machine Tools and Manufacture,1999(39):985-996.
    [21]M.H.Attia,S.Fraser.A Generalized Modeling Methodology for Optimized Real-time Compensation of Thermal Deformation of Machine Tools and CMM structures[J].Internal Journal of Machine Tools and Manufacture,1999(39):1001-1012.
    [22]M.Mitsuishi,S.Warisawa,R.Hanayama.Development of an Intelligent High-speed Machining Center[J].Annals of the CIRP,2001,50(1):275-280.
    [23]R.Ramesh,M.A.Mannan,A.N.Poo.Thermal Error Measurement and Modeling in Machine Tool.Part Ⅰ.Influence of Varying Operating Conditions[J].International Journal of Machine Tools and Manufacture,2003,43(2):391-404.
    [24]R.Ramesh,M.A.Mannan,A.N.Poo.Thermal Error Measurement and Modeling in Machine Tool.Part Ⅱ.Influence of Varying Operating Conditions[J].International Journal of Machine Tools and Manufacture,2003,43(2):405-419.
    [25]C.Brecher,P.Hirsch,M.Weck.Compensation of Thermo-elastic Machine Tool Deformation Based on Control Internal Data[J].Annals of the CIRP,2004,53(1):299-304.
    [26]Niels Wessel,Jan Konvicka,Udo Schwarz.Prediction Thermal Displacements in Modular Tool System[J].Chaos,2004,14(1):23-29.
    [27]傅建中.数控机床误差建模新方法[J].1992年全国机床热误差控制和补偿研究会议论文集,浙江大学出版社.
    [28]黎坚等.多坐标数控机床通用运动学模型的建立[J].中国机械工程,1999,10(1):12-16.
    [29]杨建国,任永强,朱卫斌.数控机床热误差补偿模型在线修正方法研究[J].机械工程学报,2003,39(3):81-84.
    [30]傅建中,陈子辰.精密机械热动态误差模糊神经网络建模研究[J].浙江大学学报(工学版),2004,38(6):742-746.
    [31]李永祥,童恒超,曹洪涛等.数控机床热误差的时序分析法建模及其应用[J].四川大学学报(工学版),2006,38(2):74-78.
    [32]林伟青,傅建中,许亚洲,陈子辰.基于在线最小二乘支持向量机的数控机床热误差建模与补偿[J].计算机集成制造系统,2008,14(2):295-299.
    [33]王一丁,张国雄,臧艳芬等.数控加工中心的位置误差补偿模型[J].1995,10(3):200-205.
    [34]张奕群,李书和,张国雄.机床热误差建模中温度测点选择方法研究[J].航空精密制造技术,1996,32(6):37-39.
    [35]陶湘保,张德贤,刘筱连等.机床热变形的主动补偿[J].中国机械工程,1999,10(8):923-926.
    [36]张德贤,刘筱连,师汉民等.神经网络在数控机床热变形控制中的应用[J].制造技术与机床,1995,1:8-11.
    [37]廖平兰.机床加工过程综合误差实时补偿研究[J].机械工程学报,1992,28(2):65-68.
    [38]赵汝嘉,白作霖,江平宇等.机床热特性研究的智能集成系统[J].中国机械工程,1996,7(2):52-54.
    [39]谭久彬.精密测量中的误差补偿技术[D].哈尔滨,哈尔滨工业大学出版社,1995.
    [40]樊志伟.基于CCD的焊接温度场实时监测系统[D].武汉,华中科技大学,2006:1-4.
    [41]杨秀英.航空短型热电偶自动监测装置技术研究[J].仪器仪表学报,2005,26(8):374-376.
    [42]陈忠华.基于单片机的温度智能控制系统的设计与实现[D].大连,大连理工大学,2006.
    [43]张铁锋.基于虚拟仪器的热电偶自动检测系统[D].大连,大连理工大学,2006.
    [44]雷进波.基于温度场半反馈控制的纳米级热驱动部件系统研究[D].杭州,浙江大学,2005:5-42.
    [45]杨乐平,李海涛,肖相生.LabVIEW程序设计与应用[M].北京:电子工业出版社,2001.
    [46]Robert H B著,乔瑞萍,林欣译.LabVIEW 6i实用教程[M].北京:电子工 业出版社,2003.
    [47]刘君华,郭会军,赵向阳.基于LabVIEW的虚拟仪器设计[M].北京:电子工业出版社,2003.
    [48]刘军华.虚拟仪器图形化编程语言LabVIEW教程[M].西安:西安电子科技大学出版社,2001.
    [49]赵永美.铝合金汽缸盖凝固过程温度-应力场有限元分析及优化[D].东南大学,2006:13-21.
    [50]周庆田,张文志,宗家富.变分法在H型钢万能轧制温度计算中的应用[J].中国机械工程,2006,11(6):678-681.
    [51]于树友,陈虹,赵海艳.非线性离散时间系统的准无限时域NMPCIJ].吉林大学学报(工学版),2009,39(4):1002-1006.
    [52]丁勇,薛明德,姚海民.空间薄壁管结构瞬态温度场、热变形有限元分析[J].应用力学学报,2003,20(1):42-48.
    [53]Thornton E A,Paul Donald B.Thermal Structural Analysis of Large Space Structure:an assessment of recent advance.Journal of Spacecraft and Rockets[J].1985,22(4):385-393.
    [54]Bathe K J.Finite Element Procedures in Engineering Analysis[M].Prentice-Hall Inc.,Englewood Cliffs,New Jersey 1982.
    [55]Tang C,Yan H Q,Zhang H,et al.The arbitrary order implicit multistep schemes of exponential fitting and their applications[J].Jour of Comp and App Math,2005,173(1):155-168.
    [56]Vigo-Aguiar J,Martin-Vaquero J,Criado R.On the stability of exponential fitting BDF algorithms[J].Jour of Comp and App Math,2005,175(1):183-194.
    [57]Dul'kin,I.N.,Garas'ko.G.I.Analytical solutions of 1-D heat conduction problem for a single fin with temperature dependent heat transfer coefficient-Ⅰ.Closed-form inverse solution;ume[J]:45,Issue:9,April,2002,pp.1895-1903,International Journal of Heat and Mass Transfer.
    [58]陈全发,王国利等.一类A-稳定对角隐式Runge-Kutta法的指数拟合[J].吉林大学学报,2008,46(6):1061-1067.
    [59]郝艳棒,王国利等.基于双指数函数拟合的冲击波形参数提取算法[J].高电压技术,2000,26(3):31-3.
    [60]吴新元.解Stiff常微分方程的精确指数拟合法[J].南京大学学报,1997,33(1):1-5.
    [61]Anthonis,Jan,Raman,Herman.Linear mechanical systems and dyadic transfer function matrices[J];ume:39,Issue:8,August,2003,pp.1353-1363.
    [62]Martin Vaquero J,Vigo Aguiar J.Exponential fitting BDF algorithms:explicit and implicit 0-stable methods[J].Jour of Comp and App Math,2006,192(1):100-113.
    [63]Coleman J P,Ixaru L G.Truncation Errors in exponential fitting oscillatory problems[J].SIAM J Num,2006,44(4):1441-1465.
    [64]Yih,K.A.Coupled heat and mass transfer in mixed convection over a wedge with variable wall temperature and concentration in porous media:the entire regime[J];ume:25,Issue:8,November,1998,pp.1145-1158;International Communications in Heat and Mass Transfer.
    [65]胡旭晓,杨克己.逐级递推式超精密温度控制策略研究[J].机械工程学报,2004,40(2):64-67.
    [66]鲁远栋,徐中行,刘立新.数控机床热变形误差补偿技术[J].机床与液压,2007,30(2):43-45.
    [67]彭玉灵,赵永翔.确定截尾实验数据统计分布模型的方法[J].机械强度,2008,30(1):047-051.