微小型无人直升机飞控平台与姿态融合算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无人机可以在“枯燥任务领域、恶劣环境任务领域和危险任务领域”三个特定的环境领域发挥出重要作用。由于具有体积小、成本低、可垂直起降和定点悬停、机动灵活、隐蔽性好、无人员伤亡、战场生存能力强等优点,微小型无人直升机近年来已经成为国内外的研究热点。
     在微小型无人直升机的研究中,飞控平台的构建是实现自主飞行前急需解决的关键问题。本论文的主要工作是针对微小型无人直升机对载重、成本敏感的特点,系统而完整地给出了低成本飞控平台和姿态融合算法的原理设计、工程实现及实验验证,包括:飞控系统硬件选型与集成,传感器校正,基于GPS加速度补偿和滤波切换的低成本MARG传感器姿态融合算法的设计、实现及实验验证,速度位置估计算法的设计与实现,以及发动机转速定速器的设计与实现。论文结合低成本MARG传感器的特点,重点研究了无人直升机姿态融合算法的设计。论文的研究成果为微小型无人直升机的辨识建模与自主飞行实现提供了有力保障。论文的主要工作为:
     1.介绍了论文的研究背景与意义,概述了微小型无人直升机的国内外研究现状,然后对无人机姿态测量技术进行了综述,最后给出了论文的研究目标、内容与篇章结构。
     2.给出了飞控系统的硬件设计与实现方案,介绍其基本功能;然后介绍了关键传感器的误差模型,对传感器的误差源进行了分析;最后针对捷联传感器的误差特点,提出了一种基于递推最小二乘的椭球校正法,并给出了实验结果,该方法具有一定的创新性和实用性,非常适合低成本捷联加速度计、磁传感器的校正。
     3.针对基于重力场和地磁场矢量观测的低成本MARG传感器姿态测量系统易受载体运动加速度影响的特点,提出一种用GPS加速度补偿运动加速度以提高载体机动时的姿态测量精度的方法。首先利用三阶最佳差分器从GPS速度差分获得GPS加速度,并对其测量精度进行了实验验证;然后利用GPS加速度与加速度计输出一起构建了比力矢量观测方程;最后给出了基于修正罗德里格参数的姿态融合算法和基于四元数Kalman滤波器的姿态融合算法;前者利用迭代最小二乘姿态确定算法从比力矢量和地磁矢量观测方程得到参考姿态,该参考姿态与陀螺仪输出进行互补滤波融合,其中着重解决了观测滞后与修正罗德里格参数姿态表示方法的奇异问题;后者通过构建线性虚拟观测方程,将带观测滞后的非线性系统滤波问题转化成带时间相关噪声与状态相关噪声的线性系统滤波问题并给出了相应的Kalman滤波算法。
     4.针对基于重力场和地磁场矢量观测的低成本MARG传感器姿态测量系统易受载体运动加速度影响的特点,提出了一种基于滤波切换的姿态融合算法。利用两个互补滤波器分别估计重力场与地磁场,并分析了互补滤波器的性能;为减小运动加速度对重力场估计的影响,在载体作机动时将重力场滤波器切换到陀螺仪开环积分;分析表明,在一定的切换条件下,切换滤波系统的估计误差是有界的;将该算法和第三章两种算法进行了仿真和实验研究,结果表明三种算法估计的姿态均具有良好静态精度和动态性能,与低成本MARG传感器结合均能满足无人直升机自主飞行的要求。
     5.在获得姿态的基础上,采用了分级式GPS/SINS组合导航结构,给出了基于互补滤波器的速度位置估计算法;该算法估计无人直升机相对地面站的速度与位置,实现简单、计算量低,适用于短航程无人直升机应用。实验结果表明,该算法都能使分级式GPS/SINS组合导航系统具有较高的导航定位精度,可以满足无人直升机自主飞行的要求。
     6.给出了一种基于前馈-模糊自整定P1控制的无人直升机发动机转速定速器的设计与实现方案;并将此发动机转速定速器应用于OS MAX 70SZ、YS 91 ST和Rotax 582发动机的转速控制,实验结果表明,被控发动机在有负载干扰的情况下能很好地保持转速稳定,具有良好的抗干扰性能。该方法实际可行、易工程化,可用于其他无人直升机的发动机控制。
     7.总结了论文的研究成果,并对未来的研究工作做了展望。
The unmanned aerial vehicle (UAV) has been playing an important role in "dull, dirty, or dangerous" missions where human intervention is considered difficult or dangerous. Due to the advantage of small size, low cost, vertical take off and landing ability, hovering ability, maneuverability, good concealment ability, no casualties and strong viability in the battlefield, the study of mini autonomous helicopter (MAH) has been one of the most interesting research fields in the world.
     The development of flight control platform is the linchpin before the realization of MAH's autonomous flight. The main work of this dissertation is giving the systematic and complete theoretic design, realization and experimental validation of a flight control platform and attitude fusion algorithms according to the low cost and low weight requirement for MAH, including the hardware selection and integration of flight control system, sensor calibration, design, realization and experimental validation of two GPS acceleration compensation based low cost MARG sensors attitude fusion algorithms and a low time consuming MARG sensors attitude fusion algorithm based on switch technology, design and realization of cascade GPS/SINS integrated navigation system and engine speed controller for mini UAV. The key parts of this dissertation are the research on attitude fusion algorithms for low cost MARG sensors. We believe that the outcome of this dissertation can provide powerful ensurence for system idenfication and autonomous flight control of MAH. The main work of this dissertation is:
     1. The background and significance of this dissertation are presented and the current progress of MAH is introduced, then a brief introduction to attitude determination technologies of UAV is given, and finally the research purposes, contents and organization of this dissertation are shown.
     2. The hardware design and realization scheme of flight control system is presented, then the error models of key sensors are analized, finally a recursive least squares based ellipsoid hypothesis calibration algorithm suitable for low cost strapdown accelerometers and magnometers is presented.
     3. Because the translational acceleration may affect accelerometer output and result in performance reduction of accelerometers and magnetometers based low cost MARG sensors attitude determination system, the GPS-derived acceleration is introduced to improve the attitude measurement accuracy during maneuvers. Firstly, the translational acceleration is derived from GPS velocity through three order optimal differentiator and its accuracy is experimental validated. Then the GPS-derived acceleration and accelerometers' output are used to form the specific force vector observation equation. Finally two GPS acceleration compensation based low cost MARG sensors attitude fusion algorithms are proposed. The first algorithm employs an iterative least square attitude determination algorithm to determine the MRPs attitude from the specfic force and magnetic field vector observations, then MPRs attitude is then fused with the measurements of rate gyros using complementary filter, the observation delay and singularity of MRPs are also considered. The other algorithm employs linear pseudo-measurement equation to transform the nonlinear system with delayed measurement to a linear system with state dependent noises and temporal correlated observation noises, and gives the corresponding linear kalman filter design.
     4. A low time consuming MARG sensors attitude fusion algorithm based on switch technology is presented. The algorithm is composed of two complementary filters that estimate gravity and magnetic field vectors, and the filter performance is analyzed. To reduce the undesirable effect of translational acceleration, the gravity field complementary filter may switch to open loop integration using gyros' output during maneuver. Analysis indicates that the estimation error of the proposed switched system is bounded under certain switching condition. Simulations and experiments have been carried out to verify the performance of the proposed algorithms in Chapter 3 and Chapter 4, both simulation and experimental results show that the three algorithms are superior in steady state accuracy and dynamic performance, and can fulfil the autonomous flight requirements of the unmanned autonomous helicopter using low cost MARG sensors.
     5. The cascaed GPS/SINS integrated navigation structure is adopted on the basis of attitude estimates in Chapter 3 and Chapter 4, and a velocity and position estimate algorithm using complementary filter is given. The algorithm employs two complementary filters to estimate velocity and position of the MAH relative to ground station. This method is easy to realize, low time consuming and suitable for short voyage MAH. The experimental results show that the algorithm possesses good navigation accuracy and can fulfil the autonomous flight requirements of MAH.
     6. The design and implementation scheme of an engine speed controller that adopts the control algorithms of feed forward and fuzzy tuned PI is presented. The proposed engine speed controller is then applied to the engine speed control of OS MAX 70SZ, YS 91 ST and Rotax 582 engines, the experimental results have shown that the controlled engine possess excellent disturbance rejection peformance and can hold its speed constant well under load disturbance. This method is feasible and can be benfit for engine speed control of other MAHs.
     7. The main work of the dissertation is summarized and recommendations for future research are presented.
引文
[1]小小译.国际无人机系统协会和无人机分类.电子工程信息,6:55-56,2005.
    [2]陈怡枢.加快我国无人直升机的发展.尖兵之翼—2006 中国无人机大会论文集,1:10-16,2006.
    [3]吴巍薇,王冰.警用无人机,无人机应用的新领域.尖兵之翼—2006 中国无人机大会论文集,1:82-85,2006.
    [4]URL http://baike.baidu.com/view/463482.htm
    [5]URL http://avdil.gtri.gatech.edu/AUVS/IARCLaunchPoint.html.
    [6]J.S.Dittrich,E.N.Johnson.Multi-sensor navigation system for an autonomous helicopter.21~(th) Digital Avionics Systems Conference,2:8C1/1-8C1/19,2002.
    [7]J.S.Dittrich.Design and integration of an unmanned aerial vehicle navigation system.Master dissertation:Georgia Institute of Technology,USA:Atlanta,2002.
    [8]B.Ludington,E.Johnson,G.Vachtsevanos.Augmenting UAV autonomy.IEEE Robotics & Automation Magazine,13(3):63-71,2006.
    [9]V.Gavrilets,A.Shterenberg,M.A.Dahleh and et al.Avionics system for a small unmanned helicopter performing aggressive maneuvers.19~(th) Digital Avionics Systems Conference,1:1E2/1-1E2/7,2000.
    [10]K.Sprague,V.Gavrilets,D.Dugail and et al.Design and applications of an avionics system for a miniature acrobatic helicopter.20~(th) Digital Avionics Systems Conference,1:3C5/1-3C5/10,2001.
    [11]V.Gavrilets.Autonomous aerobatic maneuvering of miniature helicopters.Ph.D.dissertation:Massachusetts Institute of Technology,USA:Massachusetts,2003.
    [12]URL www.cs.cmu.eduafscsprojectchopperwwwpublicationscomp-paper.ps.
    [13]URL http://robotics.eecs.berkeley.edu/bear/index.html.
    [14]D.H.Shim,H.J.Kim,S.Sastry.A flight control system for aerial robots:algorithms and experiments,IFAC Control Engineering Practice,11(12):1389-1400,2003.
    [15]A.R.Conway.Autonomous control of an unstable model helicopter using carrier phase GPS only.Ph.D.dissertation:Stanford University,USA:Stanford,1995.
    [16]S.Saripalli,J.M.Roberts,P.I.Corke and et al.A tail of two helicopters.2003IEEE/RSJ International Conference on Intelligent Robots and Systems.1:805-810,2003.
    [17]J.M.Roberts,P.I.Corke,G.Buskey.Low-cost flight control system for a small autonomous helicopterl.2003 IEEE International Conference on Robotics and Automation.1:546-551,2003.
    [18]G.Buskey,J.M.Roberts,P.Corke and et al.Sensing and control for a small size helicopter.Experimental Robotics Ⅷ.5:476-486,2003.
    [19]王荇卫.对加速我国无人直升机发展的几点建议.尖兵之翼—2006 中国无人机大会论文集,1:17-20,2006.
    [20]南京航空学院航空陀螺仪原理编写组.航空陀螺仪原理.国防工业出版社,北 京,1981.
    [21]邓正隆.惯性技术.哈尔滨工业大学出版社,哈尔滨,2006.
    [22]D.Gebre-Egziabher.Design and performance analysis of a low-cost aided dead reckoning navigator.Ph.D.dissertation:Stanford University,USA:California,2004.
    [23]Z.Berman,J.D.Powell.The role of dead reckoning and inertial sensors in future general aviation navigation.In Proceedings of the IEEE Position Location and Navigation Symposium,1:510-517,1998.
    [24]Y.Yang,J.Farrell,M.Barth.High-accuracy,high-frequency differential carrier phase GPS aided low-cost INS.In Proceedings of the IEEE Position Location and Navigation Symposium,1:148-155,2000.
    [25]X.Kong.INS algorithm using quaternion model for low cost IMU,Robotics and Autonomous Systems,46(4):221-246,2004.
    [26]J.Wendel,O.Meister,C.Schlaile and et al.An integrated GPS/MEMS-IMU navigation system for an autonomous helicopter.Aerospace Science and Technology,10(6):527-533,2006.
    [27]J.F.Vasconcelos,P.Oliveira,C.Silvestre.Inertial navigation system aided by GPS and selective frequency contents of vector measurement.AIAA Guidance,Navigation,and Control Conference and Exhibit,1:1-15,2005.
    [28]S.Ronnback.Development of a INS/GPS navigation loop for an UAV.Master.dissertation:Lulea University of Technology,Swedish:Lulea,2000.
    [29]J.H.Kim,S.Sukkarieh.Flight test results of GPS/INS navigation loop for an autonomous unmanned aerial vehicle(UAV).15th International Technical Meeting of the Satellite Division of The Institute of Navigation,1:510-517,2002.
    [30]A.K.Brown.GPS/INS uses low-cost MEMS IMU,IEEE A&E Systems Magazine,20(9):3-10,2005.
    [31]C.Yoo,L.Ahn.Low cost GPS/INS sensor fusion system for UAV navigation.22~(th)Digital Avionics Systems Conference,2:8A1/1-8A1/9,2003.
    [32]J.H.Kim,S.Wishart,S.Sukkarieh.Real-time navigation,guidance,and control of a UAV using low-cost sensors,Field and Service Robotics,24:299-309,2006.
    [33]H.Qi,J.B.Moore.Direct kalman filtering approach for GPS/INS integration,IEEE Transactions on Aerospace and Electronic Systems,38(2):687-693,2002.
    [34]P Zhang,J.Gu,E.E.Milios,and et al.Navigation with IMU/GPS/digital compass with unscented kalman filter.IEEE International Conference on Mechatronics & Automation,1:1497-1502,2005.
    [35]J.L.Crassidis.Sigma-point kalman filtering for integrated GPS and inertial navigation,IEEE Transactions on Aerospace and Electronic Systems,42(2):750-756,2006.
    [36]R.van der Merwe,E.A.Wan.Sigma-point kalman filters for integrated navigation.In Proceedings of the 60~(th) Annual Meeting of the Institute of Navigation,1:1-14,2004.
    [37]Y.Li,J.Wang,C.Rizos and et al.Low-cost tightly coupled GPS/INS integration based on a nonlinear kalman filtering design.Proceedings of ION National Technical Meeting 2006,1:958-966,2006.
    [38]D.T.Knight.Rapid development of tightly-coupled GPS/INS systems,IEEE AES Systems Magazine,12(2):- 14-18,2007.
    [39]M.George,S.Sukkarieh.Tightly coupled INS/GPS with bias estimation for UAV applications.Proceedings Australiasian Conference on Robotics and Automation(ACRA)2005,1:958-966,2005.
    [40]J.S.Jang,D.Liccardo.Automation of small UAVs using a low cost MEMS sensor and embedded computing platform.25~(th) Digital Avionics Systems Conference,1:1-9,2006.
    [41]D.B.Kingston,R.W.Beard.Real-time attitude and position estimation for small UAVs using low-cost sensors.AIAA 3rd "Unmanned Unlimited" Technical Conference,1:1-9,2004.
    [42]M.Jun,S.I.Roumeliotis,G.S.Sukhatme.State estimation of an autonomous helicopter using kalman filtering.Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems,1:1346-1353,1999.
    [43]X.Yun,E.R.Bachmann,R.B.Mcghee and et al.Testing and evaluation of an integrated GPS/INS system for small AUV navigation,IEEE Journal of Oceanic Engineering,24(3):396-404,1999.
    [44]C.Eck,H.P.Geering.Filter comparison for integrated navigation systems for unmanned aerial vehicles.AIAA Guidance,Navigation,and Control Conference and Exhibit,1:1-8,2003.
    [45]周坤芳,孔键,周湘蓉.紧耦合GPS/INS组合导航能力分析.中国惯性技术学报,13(6):50-53,2005.
    [46]刘准,陈哲.局部可观测理论在INS/GPS机动对准中的应用.北京航空航天大学学报,27(6):702-705,2001.
    [47]I.Rhee,M.F.Abdel-hafez,J.L.Speyer.Observability of an integrated GPS/INS during maneuvers,IEEE Transactions on Aerospace and Electronic Systems,40(2):526-535,2004.
    [48]S.Hong,M.H.Lee,H.Chun and et al.Observability of error states in GPS/INS integration.IEEE Transactions on Vehicular Technology,54(2):731-743,2005.
    [49]许江宁,朱涛,卞鸿巍.GPS姿态测量技术综述.海军工程大学学报,15(3):17-22,2003.
    [50]王博,缪玲娟,汪顺亭.GPS姿态测量中四元数迭代算法的改进.北京理工大学学报,27(6):521-526,2007.
    [51]J.C.Juang,G.S.Huang.Development of GPS-based attitude determination algorithms.IEEE Transaction on Aerospace and Electronic Systems,33(3):968-976,1997.
    [52]C.Comp.Optimal antenna configuration for GPS attitude determination.6~(th) Int.Tech.Meeting of the Satellite Division of the U.S.Institute of Navigation,1:773-779,1993.
    [53]M.Moore,C.Rizos,J.Wang and et al.Issues concerning the implementation of a low cost attitude solution for an unmanned airborne vehicle.6th Int.Symp.on Satellite Navigation Technology Including Mobile Positioning & Location Services,1:44-54,2003.
    [54]M.Moore,C.Rizos J.Wang.A GPS based attitude determination system for a UAV aided by low grade angular rate gyros.16~(th) Int.Tech.Meeting of the Satellite Division of the U.S.Institute of Navigation,1:2417-2424,2003.
    [55]B.R.Woodley,H.L.Jones,E.A.Lemaster and et al.Carrier phase GPS and computer vision for control of an autonomous helicopter.In Proceedings of the ION GPS-96,1:1-4,1996.
    [56]URL http://arl.stanford.edu/users/heli/.
    [57]G.Wahba.A least squares estimate of spacecraft attitude.SIAM Review,7(3):409,1965.
    [58]林玉荣,邓正隆.基于矢量观测确定飞行器姿态的算法综述.哈尔滨工业大学学报,35(1):38-45,2003.
    [59]M.D.Shuster,S.D.Oh.Three-axis attitude determination from vector observations,J.Guidance and Control,4(1):70-77,1981.
    [60]I.Y.Bar-Itzhack,R.R.Harman.Optimized TRIAD algorithm for attitude determination.Journal of Guidance,Control and Dynamics,20(1):208-211,1997.
    [61]F.L.Markley.Attitude determination using vetor observations and the singular value decomposition.Journal of the Astronautical Sciences,36(3):245-258,1988.
    [62]F.L.Markley.Attitude determination using vector observations:a fast optimal matrix algorithm.Journal of the Astronautical Sciences,41(2):261-280,1993.
    [63]D.Mortari.Euler-q algorithm for attitude determination from vector observations.Journal of Guidance,Control and Dynamics,21(2):328-334,1998.
    [64]D.Gebre-Egziabher,G.H.Elkaim,J.D.Powell and et al.A gyro-free quaternion-based attitude determination system suitable for implementation using low cost sensors.IEEE Position Location and Navigation Symposium,1:185-192,2000.
    [65]M.L.Psiaki.Extended QUEST attitude determination filtering.Flight Mechanics Symposium,1:1-15,1999.
    [66]M.L.Psiaki.Attitude determination via extended quaternion estimation.Journal of Guidance,Control and Dynamics,23(2):206-214,2000.
    [67]I.Y.Bar-Itzhack,M.Idan.Recursive attitude determination from vector observations:euler angle estimation.Journal of Guidance,Control and Dynamics,10(2):152-157,1987.
    [68]D.Gebre-Egziabher,R.C.Hayward,J.D.Powell.Design of multi-sensor attitude determination systems.IEEE Transactions on Aerospace and Electronic Systems,40(2):627-649,2004.
    [69]A.J.Baerveldt,R.Klang.A low-cost and low-weight attitude estimation system for an autonomous helicopter.1997 IEEE International Conference on Intelligent Engineering System,1:391-395,1997.
    [70]J.F.Vasconcelos,J.Calvario,P.Oliveira and et al.GPS aided IMU for unmanned air vehicles.5~(th) IFAC/EURON Symposium on Intelligent Autonomous Vehicles,1:1-15,2004.
    [71]E.J.Lefferts,F.L,Markley,M.D.Shuster.Kalman filtering for spacecraft attitude estimation.Journal of Guidance,Control and Dynamics,5(5):417-429,1982.
    [72]I.Y.Bar-Itzhack,J.Oshman.Attitude determination from vector observation:quaternion estimation.IEEE Transaction on Aerospace and Electronic Systems,21(1): 128-135,1985.
    [73]J.L.Crassidis,F.L.Markley.Unscented filtering for spacecraft attitude estimation.Journal of Guidance,Control and Dynamics,26(4):536-542,2003.
    [74]傅建国,王孝通,金良安,马野.一种基于地球重力场和磁场的估计新算法.电子学报,33(3):567-570,2005.
    [75]姜雪原,马广富,胡庆雷.改进型UKF滤波算法的卫星姿态估计.哈尔滨工程大学学报,26(4):543-549,2005.
    [76]X.Y.Jiang,G.F.Ma.Spacecraft attitude estimation from vector measurements using particle filter.Proceedings of the Fourth International Conference on Machine Learning and Cybernetics,1:682-687,2005.
    [77]林玉荣,邓正隆.二阶插值非线性滤波在卫星姿态确定中的应用.哈尔滨工业大学学报,38(3):343-347,2006.
    [78]D.Choukroun,I.Y.Bar-ltzhack,Y.Oshman.Novel quaternion kaiman filter.IEEE Transactions on Aerospace and Electronic Systems,42(1):174-190,2006.
    [79]D.Choukroun.Novel methods for attitude determination.Ph.D.dissertation:Israel Institute of Technology,Israel:Haifa,2003.
    [80]M.Idan.Estimation of rodrigues parameters from vector observations.IEEE Transaction on Aerospace and Electronic Systems,32(2):578-586,1996.
    [81]程杨,杨涤,崔祜涛.利用修正罗德里格参数进行飞行器姿态估计.飞行力学,20(4):18-21,2002.
    [82]G.F.Ma,X.Y.Jiang.Unscented kalman filter for spacecraft attitude estimation and calibration using magnetometer measurements.Proceedings of 4~(th) International Conference on Machine Learning and Cybernetics,1:506-511,2005.
    [83]张红梅,邓正隆,高玉凯.UFK在基于修正罗德里格参数的飞行器姿态确定中的应用.宇航学报,26(2):164-167,2005.
    [84]R.Sharma,A.Tewari.Optimal nonlinear tracking of spacecraft attitude maneuvers.IEEE Transactions on Control Systems Technology,12(5):677-682,2004.
    [85]C.J.Li,G.F.Ma,B.Song.Backstepping-based adaptive attitude stabilization of a spacecraft.2th IEEE Conference on Industrial Electornics and Applications,1:2802-2806,2007.
    [86]周宗锡,吴方向,李锋,佟明安.基于Rodrigues参数的飞行器姿态鲁棒控制.西北工业大学学报,22(2):133-136,2004.
    [87]H.Rehbinder,X.M.Hu.Drift-free attitude estimation for accelerated rigid bodies.Automatic,40(4):653-659,2004.
    [88]R.Zhu,D.Sun,Z.Y.Zhou,D.Q.Wang.A linear fusion algorithm for attitude determination using low cost MEMS-based sensors.Measurement,40(3):322-328,2007.
    [89]S.de La Parra,J.Angel.Low cost navigation system for UAV's.Aerospace Science and Technology,9(6):504-516,2005.
    [90]N.Metni,J.M.Pflimlin,T.Hamel,P.Soueres.Attitude and gyro bias estimation for a VTOL UAV,Control Engineering and Practice,14(12):1511-1520,2006.
    [91]Y.Li,A.Dempster,B.Li and et al.A low-cost attitude heading reference system by combination of GPS and magnetometers and MEMS inertial sensors for mobile application,Int.Symp.on GPS/GNSS,1:5A-01,2005.
    [92]O.Amidi.An autonomous vision-guided helicopters.Ph.D.dissertation:Carnegie Mellon University,USA:Pittsburgh,1996.
    [93]O.Shakernia,Y.Ma,T.J.Koo,and S.Sastry.Landing an unmanned air vehicle:Vision based motion estimation and nonlinear control,In Asian J.of Control,1(3):128-145,1999.
    [94]C.S.Sharp,O.Shakernia,S.Sastry.A vision system for landing an unmanned aerial vehicle.Proceedings of IEEE International Conference on Robotics and Automation,1:1720-1728,2001.
    [95]O.Shakernia,R.Vidal,C.S.Sharp,and et al.Multiple view motion estimation and control for landing an unmanned aerial vehicle.Proceedings of IEEE International Conference on Robotics and Automation,1:2793-2798,2002.
    [96]P.J.Garcia-Pardo,G.S.Sukhatme,J.F.Montgomery.Towards vision-based safe landing for an autonomous helicopter.Robotics and Autonomous Systems,38(1):19-29,2001
    [97]S.Saripalli,J.F.Montgomery,and G.S.Sukhatme.Vision-based autonomous landing of an unmanned aerial vehicle.Proceedings of IEEE International Conference On Robotics and Automation,1:2799-2804,2002.
    [98]S.Saripalli and G.S.Sukhatme.Landing on a moving target using an autonomous helicopter,Proceedings of the International Conference on Field and Service Robotics,1:3960-3965,2003.
    [99]URL http://www.digi.com/products/wireless/xtend.jsp.
    [100]URL http://www.geltecsh.com.cn/catalog/pdf/pro_01.pdf
    [101]URL http://www.sedinfo.com.cn/Info/ShowInfo.asp?InfoID=54.
    [102]昭营.ICOP-1800 4个RS-232串口模块用户使用手册[EB/OL].http://www.icop.com.cn/USER_S_MANUAL/PC104_PERPHERIAL/ICOP-1800_V31.PDF,2002.
    [103]Freescale.MC9S08AW32 data sheet[EB/OL].http://www.freescale.com/files/microcontrollers/doc/data_sheet/MC9S08AW60.pdf?fpsp=1&WT_TYPE=Data%20Sheets&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=pdf&WT_ASSET=Documentation,2006.
    [104]TI.TLC3544,TLC3548 analog to digital converters with 0-5 V inputs[EB/OL].http://focus.ti.com/lit/ds/symlink/tlc3548.pdf,2003.
    [105]NS.CD4017BM/CD4017BC decade counter/driver with 10 decoded outputs[EB/OL].http://www.national.com/ds/CD/CD4017BC.pdf#page=7,1988.
    [106]URL http://www.maxim-ic.com.cn/pdfserv/cn/ds/MAX220-MAX249_cn.pdf
    [107]徐玉,韩波,李平.基于AVR的舵机控制器设计.工业控制计算机,17(11):38-39+42,2004.
    [108]ADI.±300°/s single chip yaw rate gyro with signal conditioning ADXRS300[EB/OL].http://www.analog.com/UploadedFiles/Data_Sheets/732884779ADXRS300_b.pdf,2004.
    [109]ADI.Precision ±1.7g single/dual axis accelerometer ADXL103/ADXL203[EB/OL].http://www.analog.com/UploadedFiles/Data_Sheets/279349530ADXL103_203_0.pdf,2004.
    [110]Honeywell.单轴和双轴磁传感器HMC1001/1002 HMC1021/1022[EB/OL].http://www.honeywell-sensor.com.cn/prodinfo/sensor_magnetic/datasheet/HMC1001-2_1021-2.pdf,2000.
    [111]URL http://www.novatel.com/Documents/Papers/SUPERSTAR.pdf
    [112]URL http://www.robot-electronics.co.uk/htm/srf08tech.shtml.
    [113]NS.LM2679 simple switcher 5A step down voltage regulator with adjustable current limit[EB/OL].http://cache.national.com/ds/LM/LM2679.pdf,2005.
    [114]NS.LM1577/LM2577 simple switcher step up voltage regulator[EB/OL].http://cache.national.com/ds/LM/LM1577.pdf,2005.
    [115]NS.LM1117/LM1117I 800 mA low dropout linear regulator[EB/OL].http://cache.national.com/ds/LM/LM1117.pdf,2006.
    [116]Avago.HCNR200 and HCNR201 high linearity analog optocouplers[EB/OL].http://www.avagotech.com/assets/downloadDocument.do?id=1724&Source=SearchResultPa ge,2007.
    [117]邵科,李平,韩波,徐玉.智能电池组充电器设计与实现.工业控制计算机,20(9):63-64,2007.
    [118]宋浩.微小型无人直升机三轴飞行仿真转台设计.浙江大学硕士学位论文,杭州,2006.
    [119]徐金华,许江宁,朱涛等.降阶扩展卡尔曼滤波在INS/GPS导航系统中的应用.兵工学报,27(4):659-664,2006.
    [120]张学孚,陆怡良.磁通门技术.国防工业出版社,北京,1995.
    [121]孙红星.差分GPS/INS组合定位定姿及其在MMS中的应用.武汉大学博士学位论文,杭州,2006.
    [122]张斌珍,宋志平,李建钊.微型惯性测量组合的构成及标定技术.弹箭与制导学报,25(1):241-243.
    [123]魏萍.基于ARM的嵌入式航向姿态参考系统的研究.浙江大学硕士学位论文,杭州,2006.
    [124]M.J.Caruso.Applications of magnetoresistive sensors in navigation systems[EB/OL].http://www.ssec.honneywell.com/magnetic/datasheets/sae.pdf,2000.
    [125]A.M.Sabatini.Quaternion-based extended kalman filter for determining orientation by inertial and magnetic sensing.IEEE Transaction on Biomedical Engineering,53(7):1346-1356,2006.
    [126]M.L.Psiaki,S.P.Powell,P.M.Kintner and et al.The accuracy of the GPS-derived acceleration vector,a novel attitude reference.Proceedings of AIAA Guidance.1:751-760, 1999.
    [127]刘俊,石云波,李杰.微惯性技术.电子工业出版社,北京,2005.
    [128]W.F.Phillips,C.E.Hailey.Review of attitude representations used for aircraft kinematics.Journal of Aircraft,38(4):718-223,2001.
    [129]H.Schaub,P.Tsiotras,J.L.Junkins.Principal rotation representations of proper NxN orthogonal matrices.International Journal of Engineering Science,33(15):2277-2295,1995.
    [130]H.Schaub,J.L.Junkins.Stereographic orientation parameters for attitude dynamics:a generalization of the rodrigues parameters.Journal of the Astronautical Sciences,44(1):1-19,1996.
    [131]宗孔德,胡广书.数字信号处理.清华大学出版社,1988.
    [132]URL http://www.fmadirect.com/products.htm?cat=20&nid=6.
    [133]R.Andraka.A survey of CORDIC algorithms for FPGA based computers.Proceedings of the 1998 ACM/SIGDA 6th International Symposium on Field Programmable Gate Arrays,1:191-200,1998.
    [134]URL http://www.novatel.com.cn/products/oem4g21.htm.
    [135]吴建德.基于频域辨识的微小型无人直升机的建模与控制研究.浙江大学博士学位论文,杭州,2008.
    [136]陈永冰,钟斌.惯性导航原理.国防工业出版社.2007.
    [137]秦永元,张洪钺,汪叔华.卡尔曼滤波与组合导航原理.西北工业大学出版社.1998.
    [138]高正,陈仁良.直升机飞行动力学.科学出版社.2003.
    [139]M.van Nieuwstadt and J.Morris.Control of rotor speed for a model helicopter:a design cycle.In proc.American Control Conference:688-692,1995.
    [140]G.Buskey,J.Roberts,P.Corke and et al.Helicopter automation using a low-cost sensing system.Computing & Control Engineering Journal,15(2):8-9,2004.
    [141]Ira-Ramirez,M.Zribi and S.Ahmad.Dynamical sliding mode control approach for vertical flight regulation in helicopters,IEE Proc.-Control Theory Appl.141(1):19-24,1994.
    [142]刘金琨.先进PID控制及其MATLAB仿真.电子工业出版社.2003.