滚珠丝杠旋风硬铣削加工热变形误差及其控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速旋风铣削淬硬丝杠(HRC60以上)是一种新兴的高效绿色加工方法,加工时工件一次铣削完成,不使用任何切削液,加工效率大约是磨削加工的5-8倍,在国外滚动部件加工行业得到了广泛应用。国内一些生产厂家也先后购买了旋风硬铣机床,但滚珠丝杠的加工精度与国外还存在很大差异,主要原因有以下几个方面:一是缺乏对旋风硬铣机理和实验研究;二是国内、外生产企业在工件材料存在差异,在控制工件热变形误差上没有可以参考的数据。上述原因限制了旋风硬铣削丝杠精度的提高。如何减小滚珠丝杠旋风硬铣削加工的热变形误差,进一步提高螺距加工精度,是当前功能部件企业亟待解决的一个问题。
     滚珠丝杠旋风硬铣削加工过程中,刀具工件接触区产生大量的切削热,使工件温度升高产生了热变形。基于此,本文深入分析高速切削的切削热问题的研究现状,指出了当前关于切削的研究集中在连续切削领域,而对于成型刀具的高速断续切削的切削热问题研究仍存在不足。课题以控制旋风硬铣加工的热变形误差为目的,建立了参数化的切削热仿真模型和热变形仿真模型,通过温度分布实验验证了模型的正确性;建立了基于BP神经网络的热变形规律预测模型,研究了热变形误差补偿的实现方法,实现了基于预测模型的热变形误差补偿,提高了的大型滚珠精密丝杠加工的螺距精度。主要研究内容如下:
     1、深入研究旋风硬铣削加工工艺参数、工件材料、刀具材料、工件的装夹方式、工件刀具运动方式,分析了影响旋风硬铣削加工精度的动态和静态因素,指出影响工件螺距累积误差的主要是工件待加工段的热变形。同时,深入研究工件螺距误差曲线变化规律及旋风硬铣滚珠丝杠的工艺过程,提出工件与液压悬浮支架的摩擦热而产生的热变形,加工区域液压悬浮支架的回落与上升而形成的工件弹性变形,也是影响螺距误差的两个重要因素。
     2、分析了旋风硬铣削加工机理,在考虑工件型号、工艺参数对铣削热的影响的基础上,建立了参数化的旋风硬铣削仿真模型。该模型区别于以往的2D或3D正交切削仿真模型的等厚度切削仿真,考虑了成型刀具在切削过程中切削量由薄变厚又由厚变薄对切削温度及切削热的影响。应用该参数化模型计算了不同工件型号、工艺参数条件下,成型PCBN刀具高速旋风硬铣淬硬轴承钢工件时刀具、工件的温度以及切削热分配比例,优化了工艺参数,并为进一步的工件温度场和热伸长分析奠定了载荷基础。
     3、建立了基于傅里叶定律的工件热传导方程,分析了移动热源作用下的工件温度分布动态变化规律,在此基础上进行工件的热变形规律研究。滚珠丝杠旋风硬铣加工过程中切削热源沿工件螺旋线移动,工件上的温度分布在时间上和空间上都是变化的。首先建立工件的热传导方程,确定了工件端面和表面的边界条件。然后建立参数化有限元仿真模型,研究了工件动态温度分布规律、待加工段温度分布变化规律,分析了工件参数对温度分布的影响规律。用T1400红外测温仪进行工件温度分布实验,提取工件轴向温度分布数据,验证了仿真结果的有效性。在ANSYS中进行热一结构耦合,得出了加工过程中工件的热伸长变化规律,重点研究了影响螺距累积误差的待加工段热伸长变化规律,指出待加工段的热伸长变化分为动态和准稳态两个阶段。
     4、针对旋风硬铣滚珠丝杠热伸长规律的预测问题,提取了工件待加工段热伸长规律特征值,建立了基于BP神经网络算法的预测模型,并用已经深入研究过的工件热伸长数据训练网络。对于热误差的补偿问题,直接提取样本工件仿真实验数据,利用机床数控系统螺距补偿功能,采用插值补偿算法实现螺距误差补偿。对于未经过实验验证变形规律的工件,用BP神经网络算法预测工件热变形规律的曲线特征,以曲线特征为基础进行曲线拟合,拟合的结果作为热变形误差补偿的依据。
     滚珠丝杠旋风硬铣削热变形误差补偿试验结果表明,应用基于BP神经网络预测的插值补偿控制方法,大型滚珠丝杠的旋风硬铣加工螺距精度显著提高。本课题所采用的工件热变形误差及控制的研究思路及成果可为其他杆类零件的热变形误差控制提供参考,对促进我国大型精密机械制造技术的发展具有重要的借鉴意义。
High speed and hard whirling ball screw (above HRC60) is a new high efficiency and precision machining technique. The work piece machining can be finished by only once milling without cutting fluid. The milling efficiency could be5to8times than grinding method, so it has been widely used in foreign rolling components processing industry. Some domestic manufacturers also have purchased the whirlwind hard milling machine. However, there is a great difference between domestic and foreign ball screw precision, mainly due to the following aspects:First, the lack of a whirlwind hard milling mechanism and experimental studies; Second, there are differences in the workpiece material between domestic and foreign manufacturers,and there are no reference data on the workpiece thermal deformation error controlling. These reasons largely restricted to improve the accuracy of screw whirlwind hard milling. It is an urgent problem to be solved in the current rolling features enterprise that how to control the thermal deformation error of the whirlwind hard milling and further improve the precision of large ball screws.
     A lot of cutting heat is generated in the contact area of tool and the workpiece, which leads to the deformation of the workpiece. Based on this, this paper analyzes the research status of the high-speed cutting heat and points out that the current study focused on continuous cutting. However, there is still insufficient in the study of the forming tool's high-speed intermittent cutting. In order to control thermal deformation error of the whirlwind hard milling, establish a parameterized cutting heat simulation model and thermal deformation simulation model,and verify the correctness of the model through the temperature distribution experiment; establish a thermal deformation prediction model of BP neural network, study on the thermal deformation error compensation method, achieve the error compensation based on thermal deformation prediction model,improve the accuracy of the large pitch precision ball screw machining. The main contents are as follows:
     1. Investigate the whirlwind hard milling technology, such as process parameters, workpiece material, tool material, workpiece clamping way, the motion mode of the workpiece and tool and so on. Analysis the dynamic and static factors that affecting whirlwind hard milling precision, point out that the mainly factor affecting the cumulative pitch error is thermal deformation of workpiece section to be machined. Simultaneously, the workpiece pitch error curve analysis shows that pitch error forming factors also include workpiece's thermal deformation causede by frictional heat of the workpiece and hydraulic suspension bracket and the elastic deformation caused by the fall and rise of hydraulic suspension bracket.
     2. Analysis the principle of the whirlwind hard milling, establish a parameterized whirlwind hard milling simulation model in consideration of the workpiece and the process parameters effecting on the milling heat. This model is different from the previous2D or3D orthogonal cutting simulation models, considering the formed cutter and the changes of cutting thickness in the processing. Calculate the temperature of the tool, workpiece and cutting heat distribution ratio under different parts models and different process parameters when PCBN tools whirlwind milling hardened bearing steel, optimize process parameters and lay the load foundation for further analysis of temperature field and thermal deformation.
     3. Establish workpiece heat conduction equation based on Fourier's law, analyze the dynamic changes of the workpiece temperature distribution under the effect of moving heat source, on this basis, analyze thermal structure coupling to obtain the thermal deformation of the workpiece. Deformation of the workpiece is caused by cutting heat which moves along the workpiece helix and enables the workpiece temperature to rise. Temperature distribution of the workpiece is changing in time and space during processing, establish workpiece heat conduction equation firstly, establish a parameterized finite element simulation model, determine the boundary conditions, study on the dynamic temperature distribution of the workpiece, especially of segment to be processed; analyze the impact of parameters on the temperature distribution of the workpiece.Measure the axial distribution of the workpiece temperature by TI400infrared thermometer to verify the simulation results. Obtain thermal elongation variation of the workpiece segment to be processed by thermal structure coupling in ANSYS. Point out to divide thermal elongation into dynamic stage and quasi-steady stage.
     4. For prediction of whirlwind hard milling ball screw thermal elongation law, extract thermal elongation law eigenvalues of the segment to be machined, establish the prediction model based on BP neural network algorithm, and train network by studied thermal elongation data. For thermal elongation error compensation problem, compensate error by pitch compensation function of CNC system for the sample workpiece. For workpiece of new parameters, predict characteristic value of the thermal deformation curves with BP neural network algorithm, fit deformation curves based on characteristic value, and compensate the thermal deformation according to fitting curve.
     Whirlwind hard milling thermal deformation error compensation results show that the compensation control method makes the ball screw pitch accuracy improved significantly.Research methods and results of this study can be generalized to other types of process control, which provide theoretical and methodological reference for machining error control during the process of precision machining and have an important reference to promote the further development of precision machinery manufacturing technology.
引文
[1]冯虎田.大型、重载、精密滚珠丝杠副设计及硬旋铣加工装备关键技术[J].金属加工,2010(6):12-15.
    [2]徐宗俊.功能部件发展是装备产业振兴的必要条件[J].制造技术与机床,2003(5):65-67.
    [3]黄祖尧.CNC螺纹旋风硬铣削-高效绿色制造技术[J].机械工人(冷加工),2004(9):26-28.
    [4]高乃坤,许舜.硬体旋铣技术在滚珠丝杠制造中的应用[J].机械工人,2006(5):19-20.
    [5]黄祖尧.从CCMT2004看滚动功能部件产品的发展[J].制造技术与机床,2004(07):88-90.
    [6]杨德一,张孝华,孙志建.高速切削加工技术及其应用[J].机械,2007(08):53-55+65.
    [7]Kahles J F, High Speed Machining, Possibilities and Needs, Annals of the CIRP,1978, 27(2):551-560.
    [8]F. Hashimoto, Y. B. Guo, A. W. Warren. Surface Integrity Difference between hard turned and ground surfaces and its impact on fatigue life [J]. CIRP Ann.2006, 55(1):81-84.
    [9]王志刚,难加工材料的高速切削[D].南京:南京航空航天大学,2001
    [10]Tanaka Y, Cutting Mechanism in Ultra-High Speed Machining, ASME paper,1967.
    [11]张永强.高速切削及其关键技术的发展现状[J].航空精密制造技术,2001(02):1-5.
    [12]李迎.硬切削加工技术的研究现状与发展趋势[J].组合机床与自动化加工技术,2011(6):107-112.
    [13]许舜,吴元徽.高速硬体旋风铣削在滚珠螺母滚道加工中的应用[J].新技术新工艺,2005(11):59-60.
    [14]高岩.大直径内螺纹的旋风铣加工[J].机械工程师,2005(8):120-121.
    [15]黄祖尧.滚珠丝杠螺纹制造技术向高效、低耗、绿色方向发展(上)[J].金属加工,2010(20):14-17.
    [16]产品评论.精准稳定的PW 300型旋铣机[J].现代金属加工,2007,(9):13.
    [17]庞俊忠,王敏杰.高速切削淬硬钢的研究进展[J].中国机械工程,2006,17(8):421425.
    [18]文东辉,刘献礼,胡荣生.PCBN刀具的硬态切削加工机理[J].机电工程,2001,18(6):76-79.
    [19]曹永泉,张弘弢.PCBN刀具的硬态切削技术的研究与进展[J].机械制造,2005,43(10):58-60.
    [20]文东辉,刘献礼,肖露,等.硬态切削机理研究的现状与发展[J].工具技术,2002,36(6):3-7.
    [21]李军,邓顺贤.螺纹旋风硬铣削技术研究及应用[J].精密制造与自动化,2012(04):3-5.
    [22]谭立新,胡竟湘,傅彩明.旋风铣削刀具的通用设计与分析系统[J].机械工程与自动化,2008,(147):98-100.
    [23]谭加才,谭立新,傅彩明.旋风铣削刀具的设计与有限元结构分析[J].工具技术,2007,41(3):37-39.
    [24]谭立新.高速旋风铣削头的优化设计[J].机械设计与制造,2008, (6):4143.
    [25]谭立新,龚进,刘迎春.五轴数控旋风铣削机床加工螺纹的误差补偿研究[J].机床与液压,2007,35(12):28-32.
    [26]常学峰.大型丝杠的旋风铣削加工工艺优化研究[D].南京理工大学硕士学位论文,2012.
    [27]李隆.基于震动的大型螺纹旋风铣削建模与工艺试验研究[D].南京理工大学硕士学位论文,2013.
    [28]蔡伟.大型螺纹旋风铣削工艺参数优化及刀具磨损在线监测研究[D].南京理工大型硕士学位论文,2013.
    [29]谭立新.五轴联动旋风铣削机床切削运动仿真及误差补偿研究[D].中南大学硕士学位论文,(2007):4-5.
    [30]Umbrello D, Hua J, Shivpuri R. Hardness-based flow stress and fracture models for numerical simulation of hard machining AISI52100 bearing steel [J]. Journal of Materials Science and Engineering, 2004(374):90-100.
    [31]Ozel T, Zeren E. Determination of work material flow stress and friction for FEA of machining using orthogonal cutting tests [J]. Journal of material processing technology, 2004(153-154):1019-1025.
    [32]Huang Y,Liang S Y. Cutting forces modeling considering the effect of tool thermal property-application to CBN hard turning [J]. International journal of machine tools and manufacture, 2003(43):307-315.
    [33]Denkena B, Altan T. Influence of materials models used in finite element modeling on predicted scaling effects in machining [J]. Production engineering, 2006(WGP 13): 103-108.
    [34]Kountanya R, Al-Zkeri I, Altan T. Effect of tool edge geometry and cutting conditions on experimental and simulated chip morphology in orthogonal hard turning of100Cr6 steel[J]. Journal of material processing technology, 2009(209):5068-5076.
    [35]Baker M, Rosler J, Siemers C. A finite element model of high speed metal cutting with adiabatic shearing [J].Computers and Structures, 2002(80):495-513.
    [36]Vaz JrM, Owen D R J. Modeling and simulation of machining processes [J]. Archives of computational methods in engineering, 2007(14):173-204.
    [37]Atkins A G. Modeling metal cutting using modern ductile fracture mechanics: quantitative explanations for some longstanding problems [J]. International journal mechanical sciences, 2003(45).
    [38]Rosa P A R, Martins P A F, Atkins A G. Revisiting the fundamentals of metal cutting by means of finite elements and ductile fracture mechanics [J]. International journal of machine tools & manufacture, 2007(47):607-617.
    [39]Zorev N N. Results of work in the field of the mechanics of the metal cutting process[C]. In proceedings of the conference on the technology of engineering manufacture. Institution of mechanical engineers, 1958,p.255-266 and Plates 4-7.
    [40]Atkins A G. Toughness, the shearing of self-mated junctions, and friction [J].Wear, 2004(257):154-156.
    [41]Ozel T, Zeren E. Determination of work material flow stress and friction for FEA of machining using orthogonal cutting tests [J]. Journal of materials processing technology, 2004(153-154):1019-1025.
    [42]Poulachon G, Moisan A, Jawahir I S. Tool-wear mechanisms in hard turning with polycrystalline cubic boron nitride tools[J].Wear, 2001(250):576-586.
    [43]Gerard Poulachon, Bandyopadhyay B P, Jawahir I S.Wear behavior of CBN tools while turning various hardened steels[J].Wear, 2004(256):302-310.
    [44]Attanasio A, Ceretti E. Investigation and FEM-based simulation of toolwear in turning operations with uncoated carbide tools [J].Wear, 2010(269):344-350.
    [45]Yong Huang, Ty G Dawson. Tool crater wear depth modeling in CBN hard turning [J].Wear, 2005(208):1455-1461.
    [46]H. K. Tonshoff, et al. Developments and Trends in Monitoring and Control of Machining Processes[J].Annals of the CIRP,1988,37(2).
    [47]H. K. Tonshoff, et al. Developments and Trends in Monitoring and Control of Machining Processes[J].Annals of the CIRP,1988,37(2).
    [48]高宏立.切削加工过程中刀具磨损的智能监测技术研究[D].博士学位论文,西南交通大学,2005.
    [49]G. F. Micheletti, et al. In-process Tool Wear Sensor for Cutting operation [J].Annal of CIRP,1976,25(2).
    [50]A. M. Al-Ghamd,D. Mba. A Comparative Experimental Study on the Use of Acoustic Emission and Vibration Analysis for Bearing Defect Identification and Estimation of Defect Size[J].Mechanical Systems and Signal Processing,2006(20):1537-1571.
    [51]N. Baydar, A. Ball. A Comparative Study of Acoustic and Vibration Signals in Detection of Gear Failures Using Wigner-Ville Distribution[J]. Mechanical Systems and Signal Processing, 2001,15(6):1091-1107
    [52]D. E. Dimla, Snr. The Correlation of Vibration Signal Features to Cutting Tool Wear in A Metal Turning Operation[J]. Int J Adv Manuf Technol, (2002) 19:705-713
    [53]J. S. Kim, M. C. Kang, B. J. Ryu, Y. K.. Ji. Development of An On-line Tool-life Monitoring System Using Acoustic Emission Signals in Gear Shaping[J]. International Journal of Machine Tools & Manufacture,39 (1999):1761-1777
    [54]C. Scheffer,P. S. Heyns. Wear Monitoring in Turning Operations Using Vibration and Strain Measurements[J]. Mechanical Systems and Signal Processing, 2001,15(6), 1185-1202
    [55]X. L. Li. A Brief Review: Acoustic Emission Method for Tool Wear Monitoring During Turning[J]. International Journal of Machine Tools & Manufacture, 42 (2002) 157-165.
    [56]H. Shao, H. L. Wang, X. M. Zhao. A Cutting Power Model for Tool Wear Monitoring in Milling[J]. International Journal of Machine Tools & Manufacture, 44 (2004) 1503-1509.
    [57]H. L. Wang, H. Shao, M. Chen, D. J. Hu. On-line Tool Breakage Monitoring in Turning[J]. Journal of Materials Processing Technology, 139 (2003) 237-242.
    [58]李小俚.基于小波和模糊神经网络的刀具状态智能监测技术研究[D].博士学位论文,哈尔滨工业大学,1997.
    [59]迟忠德.滚珠丝杠螺纹旋风硬铣削工艺的改进研究[J].成组技术与生产现代化,2010(04):36-38.
    [60]何泽军.高精度滚珠丝杠磨削加工误差分析[J].重庆科技学院学报,2009,11(3):83-86.
    [61]刘艳香,李军英.滚珠丝杠磨削过程中热变形规律的研究[J].机械制造与自动化,2007,36(3):44-45,48.
    [62]宋现春,林明星,张承瑞,等.误差输入前馈补偿控制方法及其在滚珠丝杠磨削中的应用[J].机械工程学报,2002,38(4):100-102.
    [63]金鑫,韩军,冯虎田,等.丝杠磨削热误差补偿在840D数控系统中的实现[J].机械制造与自动化,2011(01):74-75+113.
    [64]陈琳,李郝林.丝杠磨削过程中的温度场和热变形分析[J].机械工人(冷加工),2007(10):36-38.
    [65]宋现春.精密滚珠丝杠磨削误差及其激光反馈补偿系统的研究[D].济南:山东大学,2001.
    [66]宋现春,王伟.精密滚珠丝杠磨削加工中热变形的计算分析[J].工具技术,2007, 41(7):37-39.
    [67]温效朔.精密滚珠丝杠磨削加工误差分析及其补偿控制[D].济南:山东大学,2004.
    [68]宋洪涛,宾鸿赞.精密长丝杠磨削过程中工件热变形的分析[J].光学精密工程,1997(2):31-37.
    [69]李汉伟.基于RS485现场总线的滚珠丝杠磨削加工误差补偿控制系统设计[D].济南:山东建筑大学,2006.
    [70]于艳美,李春梅,冯虎田.滚珠丝杠磨削加工中的振动测试与分析[J].机床与液压,2011,39(3):17-21.
    [71]李郝林,陈琳.滚珠丝杠磨削加工热变形误差的分段补偿方法[J].工具技术,2009(06):53-54.
    [72]付宝萍,田茂林.旋风硬铣削在滚珠丝杠加工中的应用[J].金属加工,2010(6):25-26.
    [73]ToenshoffH K, Arendt C, Ben A R. Cutting hardened steel[J]. Annals of the CIRP, 2000, 49(2):1-19.
    [74]Halpin T, Byrne G, Barry J. The performance of PCBN in hard turning[J].Industrial diamond review, 2005,4:52-60.
    [75]Fleming M, Bossom P K. PCBN performance goals for the 21st century[J].Industrial Diamond Review,2000(4):259-268.
    [76]王兆坦,刘宪银,李保民,等.提高数控旋风铣床加工精度的措施[J].金属加工(冷加工),2008(11):18-21.
    [77]艾兴.高速切削加工技术[M].北京:国防工业出版社,2003.
    [78]魏军,付宝萍.加工滚珠丝杠用PCBN刀具的研制[J].新技术新工艺,2008(01):29-30+2.
    [79]刘占强,艾兴.高速切削刀具的发展现状[J].工具技术,2001,35(03):3-8.
    [80]张京英,于启勋,庞思勤,等.聚晶立方氮化硼刀具材料的发展和应用[J].机械工程师,2008(03):24.
    [81]杨建国,张宏韬,童恒超,等.数控机床热误差实时补偿应用[J].上海交通大学学报,2005,39(9):1389-1392.
    [82]童恒超,曹洪涛,等.数控机床热误差的时序分析法建模及其应用[J].四川大学学报:工程科学版,2006,38(2):74-78.
    [83]吴昊,杨建国,张宏韬.精密车削中心热误差和切削力误差综合建模[J].四川大学学报(工程科学版),2008(02):165-169.
    [84]Mohan L. V., M. S. Shunmugam. Simulation of Whirling Process and tool Profiling for Machining of Worms. Journal of Materials Processing Teehnolog,2007,185(1-3):191-197.
    [85]Thiele J D, Melkote S N. Effect of cutting edge geometry and work-piece hardness on surface generation in the finish hard turning of AISI 52100 steel[J]. Materials process technology, 1999,94:216-226.
    [86]Singh D, Rao P V. A surface roughness prediction model for hard turning process[J] Advanced Manufacturing Technology, 2007,32(5):1115-1124.
    [87]倪寿勇,李迎,邓顺贤.精密外螺纹内旋铣的机理研究与刀具廓形设计[J],机械工程学报,2012(7):193-198.
    [88]李晋年,付建军,袁哲俊.CBN刀具磨损机理的研究[J].哈尔滨工业大学学报,1989(01):80-85+79.
    [89]Shiau T.N.,Chen E.C.,Huang K.H., et al. Dynamic response of a spinning Timoshenko beam with general boundary conditions under a moving skew force using global assumed mode method[J], JSME international Journal,Series C,2006,49(2):401-410.
    [90]T.N. Shiau, K.H. Huang, F.C. Wang, et al. Dynamic response of a rotating multi-span shaft with general boundary conditions subjected to a moving load[J],Journal of Sound and Vibration,2009,323(3-5):1045-1060.
    [91]T.N. Shiau, K.H. Huang, F.C. Wang,et al, Dynamic response of a rotating ball screw subjected to a moving regenerative force in grinding[J].Applied Mathematical Modeling,2010,34(7):1721-1731.
    [92]孟辉.高速切削温度动态有限元建模与数值模拟[D].山东大学硕士学位论文,2005.
    [93]Herbert Schulz, Eberhard Abele,何宁.高速加工理论与应用[M].北京:科学出版社,2010.
    [94]GUTOWSKI T, DAHMUS J, THIRIEZ A. Electrical energy requirements for manufacturing processes[C]//13th CIRP International Conference on Life Cycle Engineering, May31-June 2,2006, Leuven, Belgium.
    [95]E.g. Ng, D.k. Aspinwall, D. Brazil, et al. Modelling of temperature and forces when orthogonally machining hardened steel[J]. International Journal of Machine Tools & Manufactu,1999, 39:885-903.
    [96]Ismail Lazoglu, Yusuf Altintas. Prediction of tool and chip temperature in continuous and interrupted machining[J]. International Journal of Machine Tools & Manufactu, 2002,42: 1011-1022.
    [97]T. Kitagawa, A. Kubo, K. Maekawa. Temperature and wear of cutting tool in high-speed machining of Inconel 718 and Ti-6AI-6V-2Sn.Wear 202(1997).PP.142-148.
    [98]N. Narutaki. High-speed machining of titanium alloy.2000 High-speed Machining.Nanjing.2000,pp.158-161.
    [99]王宇.PCBN刀具高速精密硬态切削机理与应用技术[[D].哈尔滨理工大学博士学位论文,2008.
    [100]Klamecki B. E. Incipient Chip Formation in Metal Cutting-a Three Dimension Finite Analysis[D]. Urbana:University of Illinois at Urbana-Chanpaign (Doctoral Dissertation),1973:1-5.
    [101]Strenkowski J. S. A Finite Element Model of Orthogonal Metal Cutting[J]. Journal of Engineering for Industry, 1985,107;349-354.
    [102]Sasahara H,Obikawa T. FEM Analysis of cutting Sequence Effect on Mechanical Characteristics in Machined Layer [J] Journal of Materials Processing Technology, 1996,62:448-453.
    [103]Kishawy H E A. Chip Formation and Surface Integrity in High-speed Machining of Hardened Steel[D]. McMaster: McMaster University(Doctoral Dissertation), 1998:25-28.
    [104]Zhang L C. On the Separation Criteria in the Simulation of Orthogonal Metal Cutting Using the Finite Element Method[J]. Journal of Materials Processing Technology,1999, 89:273-278.
    [105]Ceretti, Lazzaroni E C.Turning Simulations Using a Three Dimensional FEM code[J]. Journal of Materials Processing Technology,2000,98(1):99-103.
    [106]Guo Y B. Finite Element Analysis of Superfinish Hard Turning[D]. Purdue: Purdue University (Doctoral Dissertation),2000:15-20.
    [107]Mamalis A G, Branis A S. Modeling of Precision Hard Cutting Using Implicit Finite Element Methods[J] Journal of Materials Processing Technology,2002,123:464-475.
    [108]Ramesh, A. Prediction of Process-induced Microstructural Changes and Residual Stresses in Orthogonal Hard Machining[D]. Georgia: Georgia Institute of Technology (Doctoral Dissertation),2002:3-6.
    [109]Yang X P, Liu C R. A New Stress-based Model of Friction Behavior in Machining and its Significant Impact on Residual Stresses Computed by Finite Element Method[J]. International Journal of Mechanical Sciences,2002,44:703-723.
    [110]Pavel R. Tool Wear, Surface Quality, and Chip Formation in Continuous and Interrupted Hard Turning[D]. Toledo:The University of Toledo (Doctoral Dissertation),2003:21-27.
    [111]Yen Y C, Sohner J, Weule H, Schmidt J, Altan T. Estimation of tool wear of carbide tool in orthogonal cutting using FEM simulation[J]. Proceedings of the 5th CIRP International Workshop on Modeling of Machining Operations, West Lafayette, USA,2002:149-160.
    [112]Altan T. Process Modeling of High Speed Cutting Using 2D-FEM[C].Proceedings of the NIST-Machining Conference,Washington,2007,599-602.
    [113]Yen Y C, Jain A, Altan T. A finite element analysis of orthogonal machining using different tool edge geometries[J]. Journal of materials processing technology, 2004,145:72-81.
    [114]Ceretti E, Lucchi M, Altan T. FEM simulation of orthogonal cutting: serrated chip formation[J]. Journal of materials processing technology, 1999,95:17-26.
    [115]Merchant M E. Mechanics of the metal cutting process[J].Apl Phys,1945,16(5)267-275.
    [116]Lee E H,Shaffer B W. The theory of plasticity applied to a problem of machining[J].Appl Mech, 1951,73:405-413.
    [117]Shaw M C,Cook N H,Finnie I.The shera angle relationship in metal cutting.Trans ASME,1953,75(2):273-283.
    [118]Oxley P L B,Welsh M J M.An explanation of the apparent Bridgman effect in Merchant's orthogonal cutting results.Trans ASME,1987,89(2):103-111.
    [119]Usui E., Shirakashi T. Mechanics of Machining-from Descriptive to Predictive Theory[J].On the Art of Cutting Metals-75 Years Later a Tribute to F W Taylor, ASME PED.1982, (7):13-30.
    [120]Iwata K., Osakada K.,Terasala T. Process modeling of orthogonal cutting by the rigid-plastic finite element method[J]. Journal of Manufacturing Science and Engineering, 1984(106):132-138.
    [121]Obikawa T, Usui E. Computational machining of titanium ally-finite element modeling and a few results[J]. Journal of Manufacturing Science and Engineering, 1996,118: 208-215.
    [122]Umbrello D, Rizzuti S, Outeiro J C, etal. Hardness-based flow stress for numerical simulation of hard machining AISI H13 tool steel[J]. Journal of materials processing technology,2008,199:64-73.
    [123]T. Ozel, T. Altan. Determination of workpiece flow stress and friction at the chip-tool contact for high-speed cutting. International Journal of Machine Tools & Manufacture, 2000,40:133-152.
    [124]何振威,全燕鸣,乐有树.基于有限元模拟的高速切削中切削热的研究[J].工具技术,2006,40(3):60-63.
    [125]杨世铭,陶文铨.传热学[M].第3版.北京:高等教育出版社,2006:343-346.
    [126]李培生,杨克冲,陈卓宁,等.丝杠磨削过程热变形的研究[J].华中理工大学学报(增刊),1991,19(8):75-81.
    [127]宋现春,张承瑞.精密丝杠热变形误差的计算模型及其简化计算[J].山东工业大学学报,2000,30(2):160-163,168.
    [128]何泽军.高精度滚珠丝杠磨削加工误差分析[J].重庆科技学院学报(自然科学版),2009,11(3):83-86.
    [129]刘艳香,李军英.滚珠丝杠磨削过程中热变形规律的研究[J].机械制造与自动化,2007,36(3):4445,48.
    [130]亓四华,费业泰.应用人工神经网络预测加工尺寸误差的动态分布[J].工具技术,2000(06):28-30.
    [131]龚立雄,万勇,侯智,等.基于双隐层L-M算法的BP神经网络机械加工误差预测控制模型[J].现代制造工程,2013(03):73-77.
    [132]许东,吴铮.基于MATLAB6.X的系统分析与设计——神经网络[M].第二版.西安:西安电子科技大学出版社,2002.
    [133]张清良,李先明.一种确定神经网络隐层节点数的新方法[J].吉首大学学报(自然科学版),2002(01):89-91.
    [134]金鑫,韩军,冯虎田,等.丝杠磨削热误差补偿在840D数控系统中的实现[J].机械制造与自动化,2011(01):74-75+113