基于排放物分析的电站锅炉燃烧状态评估的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代电站的生产受到越来越苛刻的环保条件限制,特别是自《京都议定书》和GB13223-2003《火电厂大气污染物排放标准》生效以来。本文以电站锅炉的排放物为研究对象,通过对排放物的分析,来判断炉内燃烧过程的状态。论文主要的研究内容分为以下几个方面:
     (1)通过对煤燃烧过程的机理分析和对我国电力用煤的煤质统计分析并结合锅炉燃烧排放物的在线测量,建立一个锅炉的入炉煤质的在线测量模型。建模的原理基于燃烧排放物与燃烧状态和煤质密切相关,通过排放物反推煤质具有科学性;同时,为了使模型可解,通过统计规律补足方程个数。
     (2)通过机理分析和统计规律建立的模型需要丰富的排放物信息,而实际生产过程中由于设备原因或者技术原因,很多排放物并未得到有效的测量和监测。论文中通过机理分析和统计规律,建立了诸如煤的含湿量和燃烧产物中的二氧化碳含量等参数的软测量模型。通过其它已知或易知的量,实现了对模型中未知或者难知量的间接计算。
     (3)通过模型得到在线的煤质后,燃烧的控制问题就归结为一个风煤配比的问题,论文通过对煤质修正后的空气过量系数的优化来提高燃烧过程的经济性。该部分内容没有对经济性进行直接的论述和计算,而是通过煤质修正的空气过量系数这个中间参数实现对锅炉经济燃烧的指导。论文还通过对典型工况的空气过量系数与优化空气过量系数的比较分析,指出了相应工况下存在的问题。
     (4)论文中将电站锅炉的燃烧行为看作一个经济过程去考查,建立了该过程的经济输出和输入比,其中输入中包含了环保收费。通过对输出输入比的标幺化,得到了一个有着传统热效率表现形式的电站广义效率指标,并通过该指标对电站的生产过程的经济环保性进行了分析和考查。典型工况的经济环保性分析也是以该指标为量度的。
     (5)论文以广义效率指标最大化为目标函数,对机组间的负荷优化分配进行了探讨研究。通过以广义效率最大化为目标的优化方案与实际的负荷分配方案以及与传统的煤耗率最低为目标的负荷分配方案的比较,得到了“按照以广义效率为指标的分配方案未必能提高单台机组的经济环保性,但对于整个电站的经济环保生产是大有裨益”的结论。
The operation of modern power plants is limited by more and more strict environmental rules, especially after Effectiveness of Kyoto Agreement and GB13223-2003 emission standard of air pollutants for thermal power plants took effect. My thesis researched into emissions of utility boilers, which aimed at judging combustion state based on emission analysis. Main content of my thesis can be summarized as follows:
     (1) An on-line monitoring model was built via analyzing mechanism of combustion process, achieving statistic laws of elements component of coal which was for power generation , and on-line measuring emissions. The methodology is based on the fact that emissions are products of coal combustion and combustion state, so calculation of coal information according to emissions is logical, meanwhile, statistic laws making the model usable.
     (2) The model, which bases on mechanism and statistic laws, needs much emissions information, however, part of information is unattainable because of equipment reason or technical reason in practical terms. In my thesis, soft-sensor models, such as water in coal, CO2 content in flue gas and so on, were built by indirect computation of measurable or easy-securable parameters.
     (3) After coal elements component can be attained on-line, the key point to control is the ratio of air and coal. Thesis tried to improve combustion economic performance via the excess air ratio, which had been amended via coal elements component. Thesis did not illustrate and calculate the economic index directly, and had the amended excess air ratio to supervise combustion. Thesis applied the amended excess air ratio to analyze representative operation states to point out their deficiency.
     (4) Combustion was taken as an economic process to build its ratio of output and input, while environmental charges were included in input. After standardizing, an efficiency index in general, which had a similar appearance to conventional thermal efficiency, was built. The efficiency index in general was used as measurement of representative operation states.
     (5) Optimization load distribution was studied, whose aim was maximizing the efficiency index in general. Comparison among distribution according to the efficiency index in general, practical load distribution and distribution according to coal consumption was made to achieve the conclusion that efficiency in general of single unit is unnecessarily improved after optimization load distribution according to the efficiency index in general, but efficiency in general of the whole power plant must be improved.
引文
[1]刘吉臻.现代电站自动化技术进展[J].现代电力,2005,22(1):1~6.
    [2]谭恢曾.一组电力统计数据[J].湖南电力,2002,22(4):62.
    [3]宋红东.双文丘利测风装置的多风道风量测量技术改造[J].中国电力,1997,30(7):65~67.
    [4]郝卫东,王家新.双文丘里风量装置在电站锅炉上的应用[J].中国电力,2000,33(7):35~37.
    [5]赵政庆,孙鉴,孙一心,王绍基.带整流格栅的翼型风量测量装置的应用[J].华东电力,2001,29(1):48~49.
    [6]毛新业.矩形大管道的风量测量[J].自动化仪表,2000,21(3):11~13.
    [7]蒋啸,张启璆.风量测量用整流器的试验研究[J].中国电机工程学报,2006,26(14):104~108.
    [8]杨桦.火电厂短直管段大型风道风量测量方法的研究[J].华东电力,2006,34(9):33~35.
    [9]刘吉臻,赵征,刘锦康,曾德良.利用数据融合方法实现通风机流量软测量[J].华北电力大学学报,2005,32(3):61~65.
    [10]赵征,曾德良,田亮,刘吉臻.基于数据融合的氧量软测量研究[J].中国电机工程学报,2005,25(7):7~12.
    [11]潘卫国,曹绛敏,万闻炜,张南放.锅炉风粉流动参数在线监测系统[J].仪表技术与传感器,2001,(2):18~20.
    [12]金林、沈炯.乏气送粉锅炉煤粉浓度软测量技术及仿真研究[J].热能动力工程,2001,16(92):175~178.
    [13]尹静、杨兴森.电站锅炉一次风煤粉浓度测量方法的研究与应用[J].仪器仪表学报,2003,24 (4):27~28.
    [14]杨兴森、尹静、白玉、王家新、郝卫东、丁立新.乏气送粉锅炉一次风煤粉浓度的测量方法与应用[J].中国电力,2003,36(4):53~55.
    [15]尹静、杨兴森.能量分析与一次风煤粉浓度测量[J].热能动力工程,2003,18 (5):523~525.
    [16]潘卫国,曹绛敏.电站锅炉风粉流动参数在线测量技术[J].中国电机工程学报,2004,24(10):193~195.
    [17]于达仁,范轶,徐志强.基于分布信息融合的直流锅炉燃料量信号重构[J].中国电机工程学报,2004,24(2):191~195.
    [18]还博文.锅炉燃烧理论与应用[M].上海:上海交通大学出版社,1999.
    [19]朱全利.锅炉设备及系统[M].北京:中国电力出版社,2006.
    [20]田子平.大型锅炉装置及其原理[M].上海:上海交通大学出版社,1997.
    [21]姚文达.锅炉燃烧设备[M].北京:中国电力出版社,2000.
    [22]丁崇功,夏喜英.工业锅炉设备[M].北京:机械工业出版社,2005.
    [23]方文沐,杜惠敏,李天荣.燃料分析技术问答[M].北京:中国电力出版社,2005.
    [24]张宏亮,林木松.煤质快速分析仪器应用现状[J].热力发电,2002,(4):7~9.
    [25]宋兆龙,金键.煤质成分在线检测技术的最新进展[J].热能动力工程,2002,17(5):458~461.
    [26]李凤瑞,唐玉国,肖宝兰.近红外光谱分析技术预测煤质挥发分含量模型的研究[J].热能动力工程,2003,18(6):582~584.
    [27]苏桂秋,崔畅林,郝志金.热重-红外联用方法在煤质分析中的应用[J].仪器仪表学报,2003,24(4)增刊:62~63.
    [28]李凤瑞,唐玉国,肖宝兰.应用近红外光谱分析技术测定煤质发热量[J].电站系统工程,2004,20(3):19~20.
    [29]L.Bartonova, Z.Klika,D.A.Spears. Characterization of unburned carbon from ash after bituminous coal and lignite combustion in CFBs[J].Fuel,2007,86(3):455~463.
    [30]C.K. Man,J.R.Gibbins,J.G.Witkamp,J.Zhang. Coal characteri- sation for NOx prediction in air-staged combustion of pulverised coals[J].Fuel,2005,84(17): 2190~2195.
    [31]Daniela Romano , Antonella Bernetti , Riccardo De Lauretis. Different methodologies to quantify uncertainties of air emissions[J].Environment International,2004,30(8):1099~1107.
    [32]Katarzyna Styszko-Grochowiak, Janusz Goas, Henryk Jankowski and Stanisaw Kozinski. Characterization of the coal fly ash for the purpose of improvement of industrial on-line measurement of unburned carbon content[J].Fuel, 2004,83(13): 1847~1853.
    [33]A.Bjorkman. Projects on coal characterization[J].Fuel, 2001, 80(2): 155~166.
    [34]Jun Zhang, Jian-Wei Yuan, Chang-Dong Sheng, Yi-Qian Xu. Characterization of coals utilized in power stations of China[J].Fuel,2000,79(1):95~102.
    [35]G.O'Brien, B.Jenkins, J.Esterle, H.Beath. Coal characterization by automated coal petrography[J].Fuel,2003,82(9):1067~1073.
    [36]R.P.Gupta , T.F.Wall , I.Kajigaya , S.Miyamae , Y.Tsumita . Computer- Controlled Scanning Electronic Microscopy of minerals in coal-implications for ash deposition[J].Progress in Energyand Combustion Science,1998,24(6):523~543.
    [37]Robert A. Creelman, Colin R. Ward. A scanning electron microscope method for automated, quantitative analysis of mineral matter in coal[J].International Journal of Coal Geology,1996,30(3):249~269.
    [38]T.F.Wall, Robert A.Creelman, R.P.Gupta, S.K.Gupta , C.Coin, A.Lowe. Coal ash fusion temperature-new characterization techniques and implications for slagging and fouling[J].Progress in Energy and Combustion Science,1998,24(4):345~353.
    [39]L.Yan, R.P.Gupta, T.F.Wall. The implication of mineral coalescence behaviour on ash formation and ash deposition during pulverized coal combustion [J].Fuel,2001,80(9):1333~1340.
    [40]刘福国.电站锅炉入炉煤元素分析和发热量的软测量实时监测技术[J].中国电机工程学报,2005,25(6):139~145.
    [41]刘福国,郝卫东,韩小岗等.基于烟气成分分析的电站锅炉入炉煤质监测模型[J].燃烧科学与技术,2002,8(5):441~445.
    [42]国家环境保护总局,国家质量监督检验检疫总局.GB13223-2003火电厂大气污染物排放标准[S].北京:中国环境科学出版社,2003.
    [43]姜锡伦,屈卫东.锅炉设备及运行[M].北京:中国电力出版社,2006.
    [44]胡震岗,黄信义.燃料与燃烧概论[M].北京:清华大学出版社,1995.
    [45]丁崇功,寇广孝.工业锅炉设备[M].北京:机械工业出版社,2005.
    [46]陈学俊,陈听宽.锅炉原理[M].北京:机械工业出版社,1990.
    [47]苏德矿,张继昌.概率论与数理统计[M].北京:高等教育出版社,2006.
    [48]张润楚.多元统计分析[M].北京:科学出版社,2006.
    [49]李建刚,杨宏民,杨义波、郭朝令,杨小琨.电站锅炉实际运行状态下过量空气系数的研究[J].锅炉技术,1999,30(5):16~18.
    [50]房靖华,赵玉兰,曾涛方.燃煤锅炉的CO2排放计算和讨论[J].煤炭转化,1999,22(1):63~66.
    [51]梅国栋,韩瑞国.锅炉二氧化碳排放量的计算及其减少途径[J]城市环境与城市生态,2000,13(4):52~54.
    [52]李震宇,程军,刘建忠,刘雪松,宋玉彩,曹欣玉,岑可法.工业锅炉洁净燃烧烟气分析的动态监测分析[J].电站系统工程,2002,18(4):1~4.
    [53]岑可法,程军,曹欣玉,周俊虎,刘建忠.高温燃烧两段脱硫技术的试验研究[J].动力工程,2000,10(6):911~915.
    [54]刘汉涛,王永征,李英杰,路章美,韩奎华,杨冬,刘志超.一维火焰燃烧NOx、SOx排放规律试验研究[J].锅炉技术,2005,36(1):75~80.
    [55]Mircea Cardu,Malvina Baica. Regarding the relation between the NOx content and CO content in thermo power plants flue gases[J].Energy Conversion and Management,2005,46(1):47~59.
    [56]王智微,孙宝洪.一氧化碳在循环流化床锅炉中的燃烧分析[J].动力工程,2001,21(5):1596~1599.
    [57]周昊,朱洪波,曾庭华,廖宏楷,岑可法.基于人工神经网络的大型电厂锅炉飞灰含碳量建模[J].中国电机工程学报,2002,22(6):96~100.
    [58]方湘涛,叶念渝.基于BP神经网络的电厂锅炉飞灰含碳量预测[J].华中科技大学学报(自然科学版),2003,31(12):75~77.
    [59]王海群,张素贞,刘军.人工神经网络在燃煤锅炉含碳量测量中的应用[J].锅炉技术,2004,35(2):35~38.
    [60]陈强,王培红,李琳,冯泽磊.电站锅炉飞灰含碳量在线软测量模型算法[J].电力系统自动化,2005,29(2):45~49.
    [61]赵新木,王承亮,吕俊复,岳光溪.基于BP神经网络的煤粉锅炉飞灰含碳量研究[J].热能动力工程,2005,20(2):158~162.
    [62]陈彪,丁艳军,吴占松.670t/h煤粉炉飞灰含碳量的神经网络预测建模[J].电站系统工程,2005,21(6):17~22.
    [63]陈敏生,刘定平.基于遗传神经网络和群体复合形法的配风方式对锅炉飞灰含碳量影响研究[J]锅炉技术,2006,37(3):9~14.
    [64]王春林,周昊,周樟华,凌忠钱,李国能,岑可法.基于支持向量机的大型锅炉飞灰含碳量建模[J].中国电机工程学报,2005,25(20):72~76.
    [65]陈敏生,刘定平.基于核主元分析和支持向量机的电站锅炉飞灰含碳量软测量建模[J].华北电力大学学报,2006,33(1):72~75.
    [66]蔡杰进,马晓茜.基于SVM的燃煤电站锅炉飞灰含碳量预测[J].燃烧科学与技术,2006,12(4):312~317.
    [67]刘福国.基于统计分析的电站锅炉性能建模与优化[J].动力工程,2002,24(4):477~480.
    [68]Anthony R.Eicher. Calculation of combustion gas flow rate and residence time based on stack gas data[J].Waste Management, 2000,20(5),403~407.
    [69]吕俊复,冯俊凯.煤粉炉中燃烧产物停留时间及其对飞灰含碳量的影响[J].锅炉技术,2005,36(6):21~24.
    [70]朱林忠,周昊,岑可法.引入等效相对热值的锅炉燃料控制系统[J].中国电机工程学报,2002,22(12):156~160.
    [71]汪淑奇.一种燃烧控制的新参数[J].动力工程,2000,20(1):535~538.
    [72]潘维加.热量信号构成方案的分析与研究[J].锅炉技术,2000,31(7):9~11.
    [73]于达仁,范轶,徐志强.炉膛辐射能信号和热量信号的信息融合方法[J].中国电机工程学报,2003,23(4):158~161.
    [74]张师帅,周怀春,彭敏,刘武林,黄素逸.基于炉膛辐射能信号的电站燃煤机组燃烧控制[J] .中国电机工程学报,2002,22(11):156~160.
    [75]马涛,徐向东,王鑫鑫.基于辐射能检测的智能燃烧进化优化系统研究[J].热能动力工程,2004,19(3):281~284.
    [76]何伯述,陈梅倩,林江,陈昌和.污染物的脱除率队燃煤锅炉生态效率的影响[J].北方交通大学学报,2003,27(1):1~5.
    [77]何伯述,郑显玉,侯清濯,张彬,陈昌和.我国燃煤锅炉的生态效率[J].环境科学学报,2001,21(7):435~438.
    [78]陈梅倩,林江,何伯述,陈广华,范莉娟,刘淑敏.燃煤电站生态效率评价方法的应用研究[J].应用基础与工程科学学报,2004,12(4):392~400.
    [79]王灵梅,张金屯,尚立虎.循环流化床锅炉热电厂的生态效率[J].电站系统工程,2002,18(6):15~16.
    [80]张甫仁.火电站能量系统绿色热经济及优化分析[J].吉首大学学报自然科学版,2006,27(3):62~66.
    [81]任丽军,袁学良.山东省电力发展SEA指标体系的建立[J].东北师大学报自然科学版,2005,37(2):132~136.
    [82]Mircea Cardu,Malvina Baica. Regarding a global methodology to estimate the energy-ecologic efficiency of thermopower plants[J]. Energy Conversion and Management,1999,40(1):71~87.
    [83]Mircea Cardu , Malvina Baica. Regarding the energy ecologic efficiency of desulphurization and denox systems and installations in thermopower plants[J].Energy Conversion and Management,2000,41(11):1155~1164.
    [84]Mircea Cardu,Malvina Baica. Regarding a new variant methodology to estimate globally the ecologic impact of thermopower plants[J].Energy Conversion and Management, 1999, 40( 14) :1569~1575.
    [85]Mircea Cardu,Malvina Baica. Application of the methodology to estimate the energy-ecologic efficiency of fluidized boilers[J].Energy Conversion and Management, 2001, 42( 7) :867~876.
    [86]Vladimir I.Kuprianov , Watcharee Kaewboonsong. Modeling the effects of operating conditions on fuel and environmental coasts for a 310MW boiler firing fuel oil[J].Energy Conversion and Management,2004,45(1):1~14.
    [87]Vladimir I.Kuprianov,Watcharee Kaewboonsong. Optimization ofexcess air for the improvement of environmental performance of a 150MW boiler fired with Thai lignite[J].Applied Energy,2003,74(4):445~453.
    [88]Watcharee Kaewboonsong,Vladimir I.Kuprianov. Minimizing fuel and“external”coats for a variable-load utility boiler firing fuel oil[J].International Journal of Thermal Sciences,2003,42(9):889~895.
    [89]Vladimir I.Kuprianov. Applications of a cost-based method of excess air optimization for the improvement of thermal efficiency and environmental performance of steam boilers[J].Renewable and Sustainable Energy Reviews,2005,9(5):474~498.
    [90]James Lutz,Alex Lekov,Peter Chan,Camilla Dunham Whitehead,Steve Meyers and James McMahon. Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers[J].Energy,2006,31(3):311~329.
    [91]万文军,周克毅,胥建群,徐啸虎.动态系统实现火电厂机组负荷优化分配[J].中国电机工程学报,2005,25(2):125~129.
    [92]李蔚,刘长东,盛德仁,陈坚红,任浩仁,袁镇福,岑可法.基于免疫算法的机组负荷优化分配研究[J].中国电机工程学报,2004,24(7):241~245.
    [93]李学明,窦文龙,李志军,刘吉臻.电厂负荷优化分配的专家系统[J].动力工程,2005,25(1):84~87.