超细煤粉再燃和深度空气分级技术的试验研究与数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮氧化物(NO_x)是电站燃煤锅炉排放的主要污染物之一,为了满足国家日益严格的排放标准,如何有效降低我国大批燃煤锅炉的氮氧化物排放是当前能源环保领域关注的焦点之一。
     超细煤粉再燃和空气分级是两种典型的炉内燃烧脱硝技术,具有脱硝率较高,经济性较好的特点。其中超细煤粉再燃技术可以取得50%以上的脱硝效率,而且可以避免飞灰含碳量的升高;而燃用烟煤的超临界和超超临界锅炉在使用深度空气分级技术时可以将NO_x排放降低到350mg/Nm~3以下。本文的研究工作主要就是围绕这两种脱硝技术来展开。
     本文结合国家863子课题“利用超细煤粉再燃降低煤粉炉NO_x排放”,在一台200MW四角切圆燃烧煤粉锅炉上进行了超细煤粉再燃的工程示范。针对该机组采用中储式制粉系统的特点,采用三次风中的超细煤粉来实施再燃,并引入再循环烟气来降低三次风的含氧量。通过现场变工况调试试验,研究了各种主要因素对NO_x排放和锅炉运行的影响,主要包括燃尽风风速、制粉系统投运方式、是否投用烟气再循环、炉内整体氧量、入炉煤粉整体细度和三次风带粉量等。现场的长期运行试验结果表明,本文中的超细煤粉再燃系统在最佳运行条件下可以获得约40%的稳定脱硝效果,真正实现连续运行过程中的低NO_x排放,同时保证锅炉的安全经济运行。现场未能达到预期50%以上的脱硝率水平,主要是由于受现场实际条件的限制,三次风带粉率偏低且再燃区的停留时间不足。
     现场试验获得的数据十分有限,对炉内的燃烧和污染物生成情况缺乏全面的了解。本文借助数值模拟技术并结合现场试验数据对三次风再燃技术进行了较为详细的研究。通过对不同三次风带粉率工况下炉内流动、燃烧和污染物生成过程的综合数值模拟,分析了三次风带粉率对炉内燃烧的影响,主要包括炉内气相温度场和煤粉颗粒燃尽情况的变化,并预测了三次风带粉率增大后可以获得的脱硝效果。此外还通过数值模拟预测了OFA喷口高度提高以后的脱硝率和炉内燃烧状况,数值模拟结果表明,通过提高OFA喷口高度将再燃区停留时间增加到0.5s以后,在20%的三次风带粉率下,本文的三次风再燃系统可以达到56%的脱硝率。
     采用LNCFS燃烧系统的百万千瓦单炉膛双切圆燃烧锅炉是目前比较先进的一种锅炉技术。该型锅炉在炉内组织双切圆燃烧方式,并通过紧凑燃尽风(CCOFA)和分离燃尽风(SOFA)以及偏置二次风(CFS)来实现炉内纵向和水平方向的深度空气分级。本文通过冷态模化试验研究了其内部独特的空气动力场结构。试验过程中发现,在各角配风均匀的情况下,炉内形成了明显的双切圆流场,且左右侧炉膛内的气流切圆不会相互干扰,并各自体现出LNCFS燃烧系统的空气动力场特点;而如果某一侧炉膛的四角燃烧器出现配风不均匀的现象,两侧的切圆都将发生偏移,这不仅不利于炉内的稳定燃烧,还将影响到低NO_x燃烧的效果;通过SOFA风反切可以有效降低炉膛上部的扭转残余,但也容易引起炉内气流的反向旋转,在实际运行过程中,需要选择合理的反切层数和反切角度以获得更合适的反向旋转动量。
     本文提出了将燃尽风分级送入炉内的设想,其目的就是避免大量空气一次性进入炉内引起氧浓度过高,防止焦炭氮的集中氧化。本文以采用低NO_x同轴燃烧系统(LNCFS)的百万千瓦单炉膛双切圆燃烧锅炉为研究对象,设计了几种多级SOFA风方案,并通过数值模拟技术分析了其可行性。根据模拟结果得出,将SOFA风分成多级送入炉内可以避免SOFA风集中送入时焦炭氮的大量氧化,从而较为明显的降低第一级SOFA风加入后NO_x浓度的反弹幅度,而炉膛出口处最终的NO_x浓度还决定于后续几级燃尽风加入后NO_x浓度的上升情况;为了在炉膛出口获得更低的NO_x排放,要让尽可能多的焦炭氮在氧量相对较低的第一、二级燃尽区内析出并完成转化过程。多级SOFA风方案只是一种设想,而本文的这一部分工作可以认为是对这种方案的初步探索,若要将其投入实际运用,必须在有效性和可行性方面进行更为严格的论证。
Nitrogen oxides (NO_x) are one of the major gaseous pollutants emitted from the coal-fired boilers. With the increasingly strict emission standards, the NO_x reduction for utility coal-fired boilers has been an important research topic.
     Micronized coal reburning and air staging are two kinds of typical in-furnace NO_x reduction technologies with advantages of high NO_x reduction efficiency and cost effective feature. Micronized coal reburning is capable of providing more than 50% NO_x reduction without increase in the fly ash carbon content. And the NO_x emissions can be reduced to 350mg/Nm~3 with the use of deep air staging in the supercritical and ultra-supercritical boiler firing bituminous coal. This work was involved in the study on these two NO_x reduction technologies for the utility coal-fired boilers.
     Based on 863 Programme, micronized coal reburning was demonstrated at a 200MW tangentially coal-fired boiler equipped with the ball type pulverizer system. Micronized coal contained in the tertiary air was used as the reburning fuel and the oxygen level of the tertiary air was reduced with the use of flue gas recirculation. During the performance tests, the effects of the operating variables on the NO_x emissions and boiler performance were investigated, including OFA velocity, pulverizing system operating mode, FGR, overall excess air, overall coal fineness and micronized coal content in the tertiary air. The results of the long-term tests show that NO_x emissions can be reduced by approximately 40% under the optimal operating condition, with no significant impact on boiler performance. The object of 50% NO_x reduction was not achieved mainly because of the insufficient reburning coal fraction and the short reburn zone residence time.
     In this work, the detailed numerical simulation on tertiary air reburning was carried out. During the simulation, the gas temperature profile in the furnace, flyash carbon content and NO_x emissions were predicted in different conditions of micronized coal content in the tertiary air and OFA nozzles elevation. The results indicate that NO_x reduction rate of 56% can be obtained without adverse impact on boiler performance with satisfying the following conditions: the OFA nozzles are shifted upward in a proper range, each zone in the furnace is operated at reasonable stoichiometry, and the micronized coal content in the tertiary air is increased to 20%.
     The 1000MW dual circle tangential firing boiler equipped with the low NO_x concentric firing system (LNCFS) is an advanced boiler-manufactured technology. Deep air staging was carried out with the use of CCOFA, SOFA and CFS jets. In this work, a physical isothermal flow model study was conducted to investigate the fluid mechanic performance. During the tests the following phenomena was observed. When the air flow was evenly distributed among all of the nozzles, dual tangential circles were established in the single furnace without mutual disturbance. Both circles will offset if the air distribution was nonuniform in half part of the furnace. The residual rotation at upper furnace can be eliminated by using the counter-tangential SOFA air, which is possible to cause the reverse air rotation in the upper furnace. So the levels and angles of counter-tangential SOFA nozzles should be chosen appropriately as to achieve the reasonable counter-tangential moment.
     In order to reduce the conversion of char-N to NO_x, a new idea was put forward in which the Over Fire Air was divided into several stages and entered the furnace at different elevations. Several multistage SOFA schemes were designed for the 1000MW dual circle tangential firing boiler equipped with the LNCFS system, and the numerical simulation technology was applied to evaluate the feasibility. The simulation results show that multistage SOFA schemes can reduce the rebound extent of NO_x concentration obviously when the first-stage OFA was injected into the furnace. The NO_x emissions at the furnace exit are determined by the NO_x formation quantity in the latter stages of burnout zone. In order to achieve lower NO_x emissions at the furnace exit, char-N should be promoted to release as much as possible in the first and/or second stage of burnout zone where the oxygen content was lower relatively. The effectiveness and feasibility of multistage SOFA schemes should be demonstrated more strictly before practical application.
引文
1. 世界新能源-生物质能网.http://www.86ne.com/Biomass/200707/Biomass_98999.html
    
    2. 朱法华,王圣,郑有飞.我国燃煤电厂NOx排放现状与前景预测.中国电力,2004, 37(4):2-7.
    
    3. L. D. Smoot. Fundamentals of coal combustion for clean and efficient use.Amsterdam-London-New York-Tokyo: Elsevier press, 1993.
    
    4. 岑可法,姚强,骆仲泱.燃烧理论与污染控制.北京:机械工业出版社,2004.
    
    5. 新井纪男.燃烧生产物的发生与抑制技术.北京:科学出版社,2001.
    
    6. 赵惠富.污荣气体NOx的形成和控制.北京:科学出版社.1993.
    
    7. 毛健雄,毛健全,赵树民.煤的清洁燃烧.北京:科学出版社,1998.
    
    8. D. W. Pershing, J. O. L. Wendt. Relative contributions of volatile nitrogen and char nitrogen to NOx emissions from pulverized coal flames Ind. Engng. Chem. Process Des. Dev., 1979, 18(1): 60-67.
    
    9. G. J. Haussmann, C. H. Kruger. Evolution and reaction of coal fuel nitrogen during rapid oxidative pyrolysis and combustion. Symposium (International) on Combustion, 1991, 23(1): 1265-1271.
    
    10. D. W. Blair, J. O. L. Wendt, W. Bartok. Evolution of nitrogen and other species during controlled pyrolysis of coal. Symposium (International) on Combustion, 1977, 16(1): 475-489.
    
    11. H. Zhang, T. H. Fletcher. Nitrogen Transformations during Secondary Coal Pyrolysis. Energy Fuels, 2001, 15(6): 1512-1522.
    
    12. J. O. L. Wendt, D. W. Pershing. Physical Mechanisms Governing the Oxidation of Volatile Fuel Nitrogen in Pulverized Coal Flames. Combustion Science and Technology, 1977, 16(3): 111 - 121.
    
    13. R. P. van der Lans, P. Glarborg, K. Dam-Johansen. Influence of process parameters on nitrogen oxide formation in pulverized coal burners. Progress in Energy and Combustion Science, 1997, 23(4): 349-377.
    
    14. J. P. H(?)m(?)l(?)inen, M. J. Aho. Conversion of fuel nitrogen through HCN and NH3 to nitrogen oxides at elevated pressure. Fuel, 1996, 75(12): 1377-1386.
    
    15. J. Friebel, R. F. W. K(?)psel. The fate of nitrogen during pyrolysis of German low rank coals - a parameter study. Fuel, 1999, 78(8): 923-932.
    
    16. S. L. Chen, M. P. Heap, D. W. Pershing, et al. Fate of coal nitrogen during combustion.??Fuel, 1982, 61(12): 1218-1224.
    
    17. J. A. Miller, C. T. Bowman. Mechanism and modeling of nitrogen chemistry in combustion. Progress in Energy and Combustion Science, 1989,15(4): 287-338.
    
    18. P. J. Ashman, B. S. Haynes, A. N. Buckley, et al. The Fate of Char-Nitrogen in Low-Temperature Oxidation. In Twenty-Seventh Symposium (International) on Combustion, 1998, The Combustion Institute, p. 3069.
    
    19. J. R. Pels, M. A. Wojtowicz, J. A. Moulijn. The fate of nitrogen functionalities in coal during pyrolysis and combustion. Fuel, 1993,72(5): 695-695.
    
    20. F. Winter, C. Warth, G Loffler, et al. Mechanisms of N_2O Formation from Char Combustion. in Twenty-sixth Symposium (International) on Combustion. 1996: The Combustion Institute.
    
    21. W. X. Wang, S. D. Brown, C. J. Hindmarsh, et al. NOx release and reactivity of chars from a wide range of coals during combustion. Fuel, 1994,73(9): 1381-1388.
    
    22. K. M. Thomas. The release of nitrogen oxides during char combustion. Fuel, 1997, 76(6): 457-473.
    
    23. A. Molina, E. G Eddings, D. W. Pershing, et al. Char nitrogen conversion: implications to emissions from coal-fired utility boilers. Progress in Energy and Combustion Science, 2000,26:507-531.
    
    24. Y. Ninomiya, K. Yokoi, N. Arai, et al. Characteristics of emission of char NO during the combustion of a single particle of coal char. Int Chem Engng, 1989, 29: 512-516.
    
    25. H. Miettinen, M. Paulsson, D. Stromberg. Laboratory Study of N_2O Formation from Burning Char Particles at FBC Conditions. Energy and Fuels, 1995,9: 10-19.
    
    26. L. S. Jensen, H. E. Jannerup, P. Glarborg, et al. Experimental investigation of NO from pulverized char combustion in Proceedings of the Combustion Institute. 2000.
    
    27. T. Aihara, K. Matsuoka, T. Kyotani, et al. Mechanism of N_2 formation during coal char oxidation. Symposium (International) on Combustion, 2000,28(2): 2189-2195.
    
    28. C. J. Tullin, S. Goel, A. Morihara. NO and N_2O formation for coal combustion in a fluidized bed: effect of carbon conversion and bed temperature. Energy and Fuels, 1993, 7: 796-802.
    
    29. G. F. Krammer, A. F. Sarofim. Reaction of char nitrogen during fluidized bed coal combustion--Influence of nitric oxide and oxygen on nitrous oxide. Combustion and Flame, 1994,97(1): 118-124.
    
    30. T. Suzuki, T. Kyotani, A. Tomita. Study on the carbon-nitric oxide reaction in the??presence of oxygen. Ind. Engng. Chem. Process Des. Dev., 1994,33:2840-2845.
    
    31. S. Goel, B. Zhang, A. F. Sarofim. NO and N_2O formation during Char combustion: Is it HCN or surface attached nitrogen? Combustion and Flame, 1996, 104(1-2): 213-217.
    
    32. I. Aarna, E. M. Suuberg, Changes in reactive surface and porosity during char oxidation, in Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute. 1998.
    
    33. M. J. Ulan-Gomez, A. Linares-Solano, L. R. Radovic, et al., No reduction by activated carbons. some mechanistic aspects of uncatalyzed and catalyzed reaction, in Coal Science and Technology. 1995, Elsevier. p. 1799-1802.
    
    34. P. Chambrion, T. Kyotani, A. Tomita. Role of N-Containing Surface Species on NO Reduction by Carbon. Energy Fuels, 1998, 12(2): 416-421.
    
    35. A. I. G d. Andres, K. M. Thomas. The influence of mineral matter and carbonization conditions on nitrogen release during coal combustion. Fuel, 1994,73(5): 635-641.
    
    36. W. X. Wang, K. M. Thomas, H. Y. Cai, et al. NO Release and Reactivity of Chars during Combustion: The Effect of Devolatilization Temperature and Heating Rate. Energy Fuels, 1996,10(2): 409-416.
    
    37. I. Aarna, E. M. Suuberg. A review of the kinetics of the nitric oxide-carbon reaction. Fuel, 1997, 76(6): 475-491.
    
    38. M. J. Wan-Gomez, S. Brandan, C. S.-M. d. Lecea., et al. Improvements in NO_x reduction by carbon using bimetallic catalysts. Fuel, 2001, 80(14): 2001-2005.
    
    39. A. Garcia-García, M. J. Illán-Gomez, A. Linares-Solano, et al. Potassium-containing briquetted coal for the reduction of NO. Fuel, 1997,76(6): 499-505.
    
    40. A.Bueno-Lopez, A. García-García. Potassium-containing coal-pellets for NO_x reduction under gas mixtures of different composition. Carbon, 2004, 42(8-9): 1565-1574.
    
    41. Y. W. Lee, H. J. Kim, J. W. Park, et al. Adsorption and reaction behavior for the simultaneous adsorption of NO-NO_2 and SO_2 on activated carbon impregnated with KOH. Carbon, 2003,41(10): 1881-1888.
    
    42. 赵宗彬,李文,李保庆.半焦制备条件对其还原NO反应性的影响.煤炭学报, 2002(02):179-183.
    
    43. 赵宗彬,李文,李保庆.矿物质对煤焦燃烧过程中NO释放规律的影响.化工学报, 2003(01):100-106.
    
    44. 赵宗彬,李文,李保庆.等.钠.钙、铁对模垄亿合物热解及燃烧过程中氮逸出规律 的影响.燃料化学学报,2002(04):294-299.
    
    45. 钟北京,张怀山.催化剂对贫煤焦还原NO动力学参数的影响.燃烧科学与技术, 2003(02):97-99.
    
    46. 钟北京,施卫伟,傅维标.煤焦再燃过程中催化剂对NO还原的影响.热能动力工程, 2001(03):6-8.
    
    47. 钟北京,施卫伟,傅维标.烟煤焦催化还原NO_x实验研究.燃烧科学与技术,2001(01): 44-47.
    
    48. L. D. Smoot, S. C. Hill, H. Xu. NO_x control through reburning. Progress in Energy and Combustion Science, 1998,24(5): 385-408.
    
    49. J. O. L. Wendt. Mechanisms governing the formation and destruction fo NO and other nitrogenous species in low NO coal combustion systems. Combustion Science and Technology, 1995,108: 323-344.
    
    50. S. L. Chen, J. C. Kramlich, W. R. Seeker, et al. Optimization of reburning for advanced NO_x control on coal-fired boilers. JAPCA, 1989, 39: 1375-1379.
    
    51. 李绍辉.氮氧化物排放控制的探讨.华北电力技术,2007(S2):1-4.
    
    52. 孙国超,鄢晓忠,陈冬林.电站燃煤锅炉NO_x控制技术的现状及发展.电站系统工程, 2008(02):1-4.
    
    53. 闫志勇,张慧娟,邱广明.锅炉分级燃烧降低NO_x排放的技术改造及分析.动力工程, 2000(04):764-769.
    
    54. 钱斌.燃煤锅炉氮氧化物的污染及控制技术综述.有色冶金设计与研究,2000(02): 41-46.
    
    55. 邱广明,张慧娟,阎志勇.燃煤锅炉低NO_x燃烧技术研究.环境保护,2000(04): 10-12.
    
    56. L. J. Muzio, G C. Quartucy. Implementing NO_x control:research to application. Progress in Energy and Combustion Science, 1997,23: 233-266.
    
    57. 毕玉森.低氮氧化物燃烧技术的发展状况.热力发电,2000(2):2-9.
    
    58. 张清峰,陈德强.煤粉锅炉运行中的氧量问题.华北电力技术,2002,49(9):1-2.
    
    59. 周俊虎,赵玉晓,刘建忠.低NO_x煤粉燃烧器技术的研究进展与前景展望.热力发电, 2005(08).
    
    60. 赵果然,石艳君.低NO_x燃烧技术综述.锅炉制造,2003(03):15-17.
    
    61. 童艳,孙博.低NO_x旋流燃烧器的研究进展.节能,2005(08):11-15.
    
    62. 唐家毅,卢啸风,刘汉周.国外低NO_x煤粉燃烧器的研究进展及发展趋势.热力发电, 2008(02):13-18.
    
    63. 李金平,吕俊复,张海.旋流煤粉燃烧器低NO_x排放技术.锅炉技术,2005,36(04):??1-7.
    
    64. H. Teng,T. S. Huang. Control of NO_x emissions through combustion modifications for reheating furnaces in steel plants. Fuel, 1996,75(2): 149-156.
    
    65. 朱彤,饶文涛.低NO_x高温空气燃烧技术.热能动力工程,2001,16(3):328-330.
    
    66. H. Spliethoff, U. Greul. Basic effects on NO_x emissions in air staging and reburning at a bench-scale test facility. Fuel, 1996,75(5): 560-564.
    
    67. H. Spliethoff, K. R. G Hein. Effect of co-combustion of biomass on emissions in pulverized fuel furnaces. Fuel Processing Technology, 1998,54(1-3): 189-205.
    
    68. B. Staiger, S. Unterberger, R. Berger, et al. Development of an air staging technology to reduce NOx emissions in grate fired boilers. Energy, 2005,30(8): 1429-1438.
    
    69. J. O. Chae, Y. N. Chun. Effect of two-stage combustion on NOx emissions in pulverized coal combustion. Fuel, 1991,70(6): 703-707.
    
    70. J. Xiang, M. Li, S. Lushi, et al. Comparison of nitrogen oxide emissions from boilers for a wide range of coal qualities. International Journal of Thermal Sciences, 2000, 39(8): 833-841.
    
    71. J. Xiang, X. Sun, S. Hu, et al. An experimental research on boiler combustion performance. Fuel Processing Technology, 2000,68(2): 139-151.
    
    72. 黄伟,曾汉才.分级燃烧对NO_x排放的试验研究.电站系统工程.电站系统工程,2005, 21(4):8-10.
    
    73. 彭玲,王恩禄,罗永浩.分级燃烧降低燃煤锅炉NO_x排放的机理及影响因素分析.锅 炉技术,2004,35(3):27-30.
    
    74. 唐志国,朱全利,唐必光.空气分级燃烧降低NO_x排放的实验研究.电站系统工程, 2003,19(3):7-9.
    
    75. 杨震,庄恩如,曹子栋.600MW超临界直流锅炉的燃烧调整试验.动力工程, 2007(04):502-506.
    
    76. 陆莹,王达峰.600MW机组超临界锅炉燃烧调整试验.热力发电,2007(07):29-31.
    
    77. 邓文俭,辛洪昌,陈亮.670 MW超临界机组锅炉的特点及启动试运.电力建设, 2008(03):72-75.
    
    78. 张维侠,张建文.LNCFS燃烧系统在600MW超临界机组中的应用.锅炉技术, 2007(06):42-45.
    
    79. 郭琴琴,杨震.燃用神华煤的600MW超临界锅炉NO_x排放特性的试验研究.锅炉技 术,2007(05):1-5.
    
    80. 梁建超.420t/h锅炉采用SOFA技术降低NO_x排放可行性分析及改造方案.电力设备,??2008(05).
    
    81. 王红.分级燃烧降低锅炉NO_x排放的控制技术.环境技术,2002(05).
    
    82. 张大勇.高速燃烬风系统在姚孟电厂4号锅炉上的应用.陕西电如,2008(04).
    
    83. 李瑞扬,董利.空气分级燃烧技术在六角切圆燃烧锅炉中的应用研究.洁净煤技术, 2005(02).
    
    84. 庞永梅,王晋权,郭建.空气分级燃烧降低锅炉NO_x排放控制技术.电力科学与工程, 2007(04).
    
    85. 张惠娟,宋洪鹏,惠世恩.四角切圆空气分级燃烧技术应用.热能动力工程,2003, 18(3):224-228.
    
    86. 贾宏禄.350MW机组锅炉低氮燃烧改造分析.中国电力,2006,39(11):1-5.
    
    87. 林正春,代茂林,熊兴才.常规大容量煤粉锅炉炉内通过燃烧控制降低NO_x的主要 措施探讨.发电设备,2005(2):81-84.
    
    88. 于明金,解海龙,樊睿源.燃煤电站锅炉低NO_x燃烧技术初探..电站系统工程,2006, 22(2):9-10.
    
    89. 张海,徐秀清,曾瑞良.我国100 MWe-200 MWe等级机组锅炉低NO_x改造的探讨. 锅炉技术,2005,36(5):55-60.
    
    90. P. M. Maly, V. M. Zamansky, L. Ho, et al. Alternative fuel reburning. Fuel, 1999, 78(3): 327-334.
    
    91. N. S. Harding, B. R. Adams. Biomass as a reburning fuel: a specialized cofiring application. Biomass and Bioenergy, 2000, 19(6): 429-445.
    
    92. R. Zarnitz, S. V. Pisupati. Evaluation of the use of coal volatiles as reburning fuel for NOx reduction. Fuel, 2007, 86(4): 554-559.
    
    93. W. Nimmo, S. Singh, B. M. Gibbs, et al. The evaluation of waste tyre pulverised fuel for NOx reduction by reburning. Fuel, 2008, 87(13-14): 2893-2900.
    
    94. J. Ballester, R. Ichaso, A. Pina, et al. Experimental evaluation and detailed characterisation of biomass reburning. Biomass and Bioenergy, 2008, 32(10): 959-970.
    
    95. C. Casaca, M. Costa. NO_x control through reburning using biomass in a laboratory furnace: Effect of particle size. Proceedings of the Combustion Institute, In Press, Corrected Proof.
    
    96. B. R. Adams, N. S. Harding. Reburning using biomass for NO_x control. Fuel Processing Technology, 1998, 54(1-3): 249-263.
    
    97. T. Hardy, W. Kordylewski. Effectiveness of Polish lignites as reburn fuels. Fuel, 2002, 81(6): 837-840.
    
    98. A. Rebola, M. Costa. Simultaneous reduction of NO_x and paniculate emissionsfrom heavy fuel oil-fired furnaces. Proceedings of the Combustion Institute, 2002,29(2): 2243-2250.
    
    99. K. T. Wu, H. T. Lee, C. I. Juch, et al. Study of syngas co-firing and reburning in a coal fired boiler. Fuel, 2004, 83(14-15): 1991-2000.
    
    100. W. A. Nazeer, R. E. Jackson, J. A. Peart, et al. Detailed measurements in a pulverized coal flame with natural gas reburning. Fuel, 1999, 78(6): 689-699.
    
    101. H. K. Chagger, P. R. Goddard, P. Murdoch, et al. Effect of SO_2 on the reduction of NO_x by reburning with methane. Fuel, 1991, 70(10): 1137-1142.
    
    102. P. Dagaut, J. Luche,M. Cathonnet. Experimental and kinetic modeling of the reduction of NO bypropene at 1 atm. Combustion and Flame, 2000,121(4): 651-661.
    
    103. B. Shen, Q. Yao,X. Xu. Kinetic model for natural gas reburning. Fuel Processing Technology, 2004, 85(11): 1301-1315.
    
    104. D. Han, M. G Mungal, V. M. Zamansky, et al. Prediction of NO_x control by basic and advanced gas reburning using the Two-Stage Lagrangian model. Combustion and Flame, 1999,119(4): 483-493.
    
    105. C. A. Bertran, C. S. T. Marques, R. V. Filho. Reburning and burnout simulations of natural gas for heavy oil combustion. Fuel, 2004, 83(1): 109-121.
    
    106. W. Y. Chen, L. Ma. Effect of heterogeneous mechanism during reburning of nitrogen oxide. AIChE Journal, 1996,42(7): 1968-1975.
    
    107. J. P. Smart, D. J. Morgen. The effectiveness of multi-fuel reburning in an internally fuel-staged burner for Nox reduction. Fuel, 1994,73(9): 1437-1442.
    
    108. A. Kicherer, H. Splieechoff. The effect of different reburning fuels on NO_x reduction. Fuel, 1994, 73(9): 1443-1446.
    
    109. 金会心,王华,郭森魁.褐煤热解煤气的性质.金属学报,2000,36(4):441-444.
    
    110. 陈贵峰,史明志,程达,等.低阶煤热煤气性质研究.洁净煤技术,1997,3(1): 28-31.
    
    111. P. Glarborg, J. A. Miller, M. U. Alzueta, et al. Kinetic modeling of hydroearbon/nitric oxide interaetions in a flow reaetor. Combustion and Flame, 1998, 115: 1-27.
    
    112. K. J. Hughes, A. S. Tmolin, E. Hampartsmuoian, et al. An investigation of important gas-phase reactions of nitrogenous species from the simulation of experimental measurements in combustion system. Combustion and Flame, 124: 573-589.
    
    113. 钟北京,杨净,傅维标.煤的挥发份组分对NO_x和SO_x排放的影响.燃烧科学与技术, 1998,4(4):363-368.
    
    114. 钟北京,傅维标.气体燃料再燃对NO_x还原的影响.热能动力工程,1999,14(84): 419-423.
    
    115. 钟北京,徐旭常.燃烧系统中燃烧和NO_x形成过程的计算机模拟.燃烧科学与技术, 1995,11(2):1-9.
    
    116. 潘维.超细煤粉再燃机理及改造方案的数值模拟研究[博士学位论文].杭州:浙江大 学,2005.
    
    117. H. Liu, E. Hampartsoumian, B. M. Gibbs. Evaluation of the optimal fuel characteristics for efficient NO reduction by coal reburning. Fuel, 1997,76( 11): 985-993.
    
    118. W. Y. Chen, L. Tang. Variables.kinetics and mechansims of heterogeneous rebunrnig. AlChE Journal, 2001,47(12): 2781-2797.
    
    119. A. Kicherer, H. Spliethoff, H. Maier, et al. The effect of different reburning fuels on NO_x-reduction. Fuel, 1994,73(9): 1443-1446.
    
    120. 张强.煤岩组分再燃还原NO_x的试验及应用研究.1999,西安交通大学:西安.
    
    121. 周昊,邱坤赞,王智化.煤种及煤粉细度对炉内再嫩过程脱硝何燃尽特性的影响.燃 料化学学报,2004,32(2):146-150.
    
    122. 刘忠,阎维平,高正阳.煤种对超细煤粉再燃还原NO效率的影响.中国电机工程学 报,2004,24(12):273-276.
    
    123. 钟北京,施卫伟,傅维标.煤粉再燃过程中NO_x异相还原机理的重要性.燃烧科学与 技术,2002(01).
    
    124. 钟北京,施卫伟,傅维标.煤再燃过程中燃料特性对NO_x还原的影响.燃烧科学与技 术,2001(02).
    
    125. M. Antonio, M. David, H. P. Steven, Demonstration project for the abatement of nitrogen oxides emissions using reburn technology for cogeneration plants in Taiwan. 2003, USA, GE Energy and Environmental Research Corporation.
    
    126. B. M. JAMAL, Micronized coal reburn demonstration project for NO_x control at the New York State Electric & Gas tangentially-fired Milliken Unit 1. 1999, USA, CONSOL Inc. Research & Development.
    
    127. 白旭东,王阳,赵炎钧.超细化煤粉的投入量对再燃效果影响的实验研究.热能动力 工程,2005(06):596-598.
    
    128. 金晶,李瑞阳,张忠孝.超细煤粉还原NO_x的试验研究.热能动力工程,2004(06): 582-585.
    
    129. 钟海卿,金晶,樊俊杰.超细煤粉再燃技术降低NO_x排放试验.上海理工大学学报, 2005(01):46-50.
    
    130. 徐璋,邓涛,李戈.超细煤粉再燃降低NO_x排放的试验研究.热力发电,2004(02): 34-37.
    
    131. 方江涛,斯东波.利用超细煤粉再燃降低NO_x排放技术.电站系统工程,2007(03): 18-24.
    
    132. 邱朋华,刘辉,吴少华.煤粉再燃对600MW锅炉NO_x排放的影响.工程热物理学报, 2007(S2).
    
    133. G J. Hesselmann. Optimization of combustion by fuel testing in a NO_x reduction test facility. Fuel, 1997,76(13): 1269-1275.
    
    134. Z. H. Wang, J. H. Zhou, H. Zhou, et al., Research for NO_x emission with reburning and ammonia injection, in 28~(th) International Technical Conference on Coal Utilization&Fuel Systems. 2003: Florida,USA.
    
    135. 刘忠,阎维平,高正阳.超细煤粉的细度对再燃还原NO的影响.中国电机工程学报, 2003(10):204-208.
    
    136. 刘忠,阎维平,高正阳.停留时间对微细煤粉再燃还原NO效率的影响.燃烧科学与技 术,2004(04):334-358.
    
    137. 吴少华,刘辉,姜秀民.采用超细煤粉再燃技术降低氮氧化物排放.中国电力,2003, 36(2):1-4.
    
    138. 曾汉才,朱全利,聂明局.大型锅炉高效低NO_x燃烧技术的研究.电站系统工程, 1997,13(6):40-49,62.
    
    139. 王智化.燃煤多种污染物一体化协同脱除机理及反应射流直接数值模拟DNS的研究 [博士学位论文].杭州:浙江大学,2005.
    
    140. Z. H. Wang, J. H. Zhou, Y. W. Zhang, et al. Experiment and mechanism investigation on advanced reburning for NO_x reduction:influence of CO and temperature. Journal of Zhejiang University Science, 2005,6B(3): 187-194.
    
    141. 池作和,徐璋,潘维.三次风中超细煤粉再燃降低NO_x排放的几个关键问题分析.浙 江电力,2003(1):1-5.
    
    142. 陈占军,金晶,钟海卿.超细化煤粉气流着火特性的试验研究.热力发电,2004, 4(45):45-47.
    
    143. 姜秀民,李巨斌,邱健荣.超细化煤粉燃烧特性研究.中国电机工程学报,2000, 20(6):71-74.
    
    144. 姜秀民,杨海平,闫澈.超细化煤粉表面形态分形特征.中国电机工程学报,2003, 23(12):165-169.
    
    145. 张超群,于立军,崔志刚.超细与常规煤粉燃烧动力学特性及计算分析.化工学报,??2005,56(11):2189-2194.
    
    146. 斯东波,池作和,黄郁明.200MW煤粉锅炉实施超细煤粉再燃的试验研究.中国电机 工程学报,2007(26):1-6.
    
    147.王阳,史建军.国产600MW机组锅炉超细化煤粉再燃低NO_x燃烧技术应用.电力设 备,2007(02):7-11.
    
    148. 齐军,齐春松,王月明.细煤粉再燃技术在我国燃媒锅炉上的首次工程应用.热力发 电,2004(08).
    
    149. 刘文莹.低NO_x排放控制新技术.国际电力,2001(1):59-62.
    
    150. 黄少鹗.意大利治理火电厂氮氧化物排放的技术措施.能源技术,2002,23(6): 259-262.
    
    151. T. Le Bris, F. Cadavid, S. Caillat, et al. Coal combustion modelling of large power plant, forNOx abatement. Fuel, 2007, 86(14): 2213-2220.
    
    152. E. Korytnyi, R. Saveliev, M. Perelman, et al. Computational fluid dynamic simulations of coal-fired utility boilers: An engineering tool. Fuel, 2009,88(1): 9-18.
    
    153. H.-P. Wan, C.-S. Yang, B. R. Adams, et al. Controlling LOI from coal reburning in a coal-fired boiler. Fuel, 2008, 87(3): 290-296.
    
    154. J. Pallar, 1. Arauzo.E. Teruel. Development of an engineering system for unburned carbon prediction. Fuel, 2009, 88(1): 187-194.
    
    155. E. Knudsen, H. Pitsch. A dynamic model for the turbulent burning velocity for large eddy simulation of premixed combustion. Combustion and Flame, 2008, 154(4): 740-760.
    
    156. G Boudier, L. Y. M. Gicquel,T. J. Poinsot. Effects of mesh resolution on large eddy simulation of reacting flows in complex geometry combustors. Combustion and Flame, 2008, 155(1-2): 196-214.
    
    157. L. X. Zhou, L. Y. Hu, F. Wang. Large-eddy simulation of turbulent combustion using different combustion models. Fuel, 2008, 87(13-14): 3123-3131.
    
    158. S. Su, J. Xiang, L. Sun, et al. Numerical simulation of nitric oxide destruction by gaseous fuel reburning in a single-burner furnace. Proceedings of the Combustion Institute, 2007, 31(2): 2795-2803.
    
    159. M. Ihme, H. Pitsch. Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model: 1. A priori study and presumed PDF closure. Combustion and Flame, 2008, 155(1-2): 70-89.
    
    160. T. Asotani, T. Yamashita, H. Tominaga, et al. Prediction of ignition behavior in a tangentially fired pulverized coal boiler using CFD. Fuel, 2008, 87(4-5): 482-490.
    
    161. Q. Shang, J. Zhang. Simulation of gas-particle turbulent combustion in a pulverized coal-fired swirl combustor. Fuel, 2009, 88(1): 31-39.
    
    162. H. P. Wan, C. S. Yang, B. R. Adams, et al. Controlling LOI from coal reburning in a coal-fired boiler. Fuel, 2008, 87: 290-296.
    
    163. J. S. Philip. Recent applications of CFD modelling in the power generation and combustion industries. Applied Mathematical Modelling, 2002,26: 351-374.
    
    164. M. Kumar, S. G Sahu. Study on the effect of the operating condition on a pulverized coal-fired furnace using computational fluid dynamics commercial code. Energy and Fuels.
    
    165. A. Bermudez. The modelling of the generation of volatiles, H_2 and CO,and their simultaneous diffusion controlled oxidation,in pulverized coal furnaces Combustion Theory and Modelling, 2007,11(6): 949-976.
    
    166. L. Huang, Z. Li, R. Sun, et al. Numerical study on the effect of the Over-Fire-Air to the airflow and coal combustion in a 670 t/h wall-fired boiler. Fuel Processing Technology, 2006, 87(4): 363-371.
    
    167. 潘维,池作和,斯东波.200MW四角切圆燃烧锅炉改造工况数值模拟.中国电机工程 学报,2005(08):20-25.
    
    168. 王志刚,张海,陈昌和.煤焦反应动力学参数对电站锅炉燃烧影响的数值研究.中国 电机工程学报,2007(02).
    
    169. R.H. Hurt, J.-K. Sun,M. Lunden. A kinetic model of carbon burnout in pulverized coal combustion. Combustion and Flame, 1998, 113(1-2): 181-197.
    
    170. R. C. Brown, J. Dykstra. Systematic errors in the use of loss-on-ignition to measure unburned carbon in fly ash. Fuel, 1995,74(4): 570-574.
    
    171. H. Lorenz, E. Carrea, M. Tamura. The role of char surface structure development in pulverized fuel combustion. Fuel, 2000,79: 1161-1172.
    
    172. R. H. Hurt, M. M. lunden, E. G. Brehob, Statistical kinetics for pulverized coal combustion, in Twenty-Sixth Symposium (International) on Combustion. 1996, The Combustion Institute, p. 3169-3177.
    
    173. S. Jayanti, K. Maheswaran, V. Saravanan. Assessment of the effect of high ash content in pulverized coal combustion. Applied Mathematical Modelling, 2007, 31: 934-953.
    
    174. R. H. Hurt, R. E. Mitchell. On the combustion kinetics of heterogeneous char particle populations. Symposium (International) on Combustion, 1992,24(1): 1233-1241.
    
    175. R. H. Hurt, J. R. Gibbins. Residual carbon from pulverized coal fired boilers: 1. Size??distribution and combustion reactivity. Fuel, 1995, 74(4): 471-480.
    
    176. J. Pallare's, I. Arauzo, E. Teruel. Development of an engineering system for unburned carbon prediction. Fuel, 2009,88(1): 187-194.
    
    177. N. Choudhury, S. Biswas, P. Sarkar, et al. Influence of rank and macerals on the burnout behaviour of pulverized Indian coal. International Journal of Coal Geology, 2008, 74(2): 145-153.
    
    178. J. Pallare's, I. Arauzo, A. Williams. Integration of CFD codes and advanced combustion models for quantitative burnout determination. Fuel, 2007, 86:2283-2290.
    
    179. K. A. Davis, M. J. Bockelie, P. J. Smith. Optimized fuel injector design for maximum in-furnace NO_x reduction and minimum unburned carbon. in the First Joint Power and Fuel Systems Contractors Conference. 1996. Pittsburgh Energy Technology Center.
    
    180. M. Cloke, T. Wu, R. Barranco. Char characterisation and its application in a coal burnout model. Fuel, 2003,82: 1989-2000.
    
    181. R. H. Hurt. Reactivity distributions and extinction phenomena in coal char combustion. Energy and Fuels, 1993(7): 721-733.
    
    182. P. Stephenson. Computer modelling of the combined effects of plant conditions and coal quality on burnout in utility furnaces. Fuel, 2007, 86:2026-2031.
    
    183. R. J. Price. Modeling three reacting flow systems with modern computational fluid dynamaics, in Department of Chemical Engineering. Doctor,2007, Brigham Young University.
    
    184. 刘向军,徐旭常,范宏丽.用改进的焦炭模型研究煤粉锅炉内的燃烧行为.中国电机 工程学报,2001,21(1):80-84.
    
    185. 曾令可,方海鑫,王慧.FLUENT软件的应用及其污染物生成模型分析.工业炉, 2004,26(3):31-34.
    
    186. 殷健.NO_x生成湍流反应率的二阶矩-PDF数值模拟.燃烧科学与技术,2001,7(1): 67-71.
    
    187. 周力行.NO_x生成湍流反应率数值模拟的进展.力学进展,2000,30(1):77-82.
    
    188. J. L. T. Azevedo, C. F. M. Coimbra, M. G Carvalho. 3-D Numerical model for predicting NOx emissions from an industrial pulverized coal combustor. Fuel, 1994, 73(7): 1128-1134.
    
    189. B. R. Stanmore, S. P. Visona. 3-D Modeling of NOx formation in a 275MW utility boiler. Journal of the Institute of Energy, 1996, 69(6): 68-79.
    
    190. S. C. Hill, L. D. Smoot. Modeling of nitrogen oxides formation and destruction in??combustion systems. Progress in Energy and Combustion Science, 2000,26: 417-458.
    
    191.G G De Soete, E. Croiset, J. R. Richard. Heterogeneous formation of nitrous oxide from char-bound nitrogen. Combustion and Flame, 1999,117(1-2): 140-154.
    
    192. 岑可法.锅炉燃烧试验研究方法及测量技术.北京:水利电力出版社,1987.
    
    193. 池作和.燃用劣质煤电站锅炉低负荷稳燃.防结渣及减轻烟温偏差研究[博士学位论 文].杭州:浙江大学,2001.