野西瓜极性生物碱A10组分诱导SGC-7901细胞凋亡线粒体通路的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
野西瓜(Capparis spinosa L)为山柑科山柑属植物,又称刺山柑、老鼠瓜、槌果藤等,味辛苦,性温,具有祛风除湿、止瘀消肿、止痛活血之功效。文献报道和前期实验显示,野西瓜具有抗肿瘤作用,且其活性成分为其生物碱类成分。本文对野西瓜生物碱的抗肿瘤活性组分进行了筛选,找出其敏感肿瘤细胞株为人胃癌细胞株SGC-7901,得到具有较强抑制肿瘤细胞增殖的组分——野西瓜极性生物碱A10组分,并应用HPLC法和UV法测定其含量。在此基础上,研究了野西瓜极性生物碱A10组分对SGC-7901细胞的细胞毒作用,通过MTT实验、SRB实验和集落形成率实验发现野西瓜极性生物碱A10组分对SGC-7901具有生长抑制作用;然后利用凋亡形态学方法即荧光显微镜法和投射电镜法对SGC-7901凋亡形态进行定性研究;经PI单染法和AnnexinV-FITC/PI双染法,利用流式细胞仪和激光共聚焦显微镜测定了野西瓜极性生物碱A10组分对SGC-7901细胞凋亡率和周期的影响;然后对野西瓜极性生物碱A10组分所诱导SGC-7901细胞凋亡线粒体通路的关键事件进行研究,包括MPTP孔开放程度、膜电位丧失、Cyt-c释放、Caspase-9及Caspase-3激活;在确定了其凋亡的线粒体途径后,又对线粒体凋亡调控因子如活性氧水平、Ca2+浓度进行检测,判断ROS积聚和钙超载是否参与野西瓜极性生物碱A10组分所诱导线粒体凋亡通路的调控。最后,对线粒体凋亡通路调控基因Bcl-2和Bax在蛋白表达水平和mRNA基因转录水平上分别利用Vestern Blot法、流式细胞术和RT-PCR法进行检测,以期揭示野西瓜极性生物碱A10组分诱导SGC-7901细胞凋亡的线粒体通路。
     1野西瓜生物碱抗肿瘤活性组分的研究
     1.1野西瓜总生物碱含量测定的研究
     目的:测定野西瓜中盐酸水苏碱含量和总生物碱的含量。方法:HPLC方法和UV方法。结果:应用HPLC测定野西瓜中盐酸水苏碱的含量,得到盐酸水苏碱线性回归方程为Y=100.58X-9.3751(r=0.9999),说明其在1.5-30μg范围内呈良好线性关系,测得野西瓜中盐酸水苏碱的含量为8.2257 mg·g-’。同时以雷氏铵盐剩余比色法测定野西瓜中总生物碱(以盐酸水苏碱计)的含量,得到盐酸水苏碱线性回归方程分别为Y=0.621 7X+0.0108(r=0.9986),说明在其0.060-0.301 mg·mL-1范围内线性关系良好,测得野西瓜总生物碱含量(以盐酸水苏碱计)为104.7749 mg·g-1。通过方法学考察证实两个含量测定方法准确可靠。结论:HPLC法测得盐酸水苏碱的含量为8.2257 mg·g-1,雷氏铵盐剩余比色法(以盐酸水苏碱计)测定野西瓜中总生物碱的含量为104.7749 mg·g-1。
     1.2野西瓜生物碱不同极性部位抗肿瘤活性的研究
     目的:寻找野西瓜抗肿瘤的活性部位。方法:采用渗漉法对野西瓜果实进行初提取,然后将渗漉液通过阳离子交换树脂,待树脂床饱和后,对树脂进行碱化,干燥,再进一步对树脂床进行溶剂分级萃取。萃取顺序为氯仿、正丁醇、70%乙醇萃取,得到三个部位氯仿层、正丁醇层和70%乙醇层。采用MTT法对三个部位进行活性筛选。结果:野西瓜生物碱的70%乙醇极性部位有明显的抗肿瘤作用,IC50为33.437μg·mL-1,为野西瓜生物碱抑制SGC-7901细胞的活性部位。野西瓜生物碱的氯仿萃取部位、正丁醇萃取部位对SGC-7901细胞也具有一定的抑制作用,但作用不如70%乙醇极性部位部位明显。因此野西瓜生物碱的70%乙醇极性部位初步确定为野西瓜生物碱抑制SGC-7901细胞的抗肿瘤活性部位。结论:人胃癌SGC-7901细胞是野西瓜总生物碱的敏感细胞株,野西瓜生物碱70%乙醇层是其抗肿瘤的活性部位。
     1.3野西瓜生物碱活性部位不同组分抗肿瘤活性的研究
     目的:对野西瓜生物碱抗肿瘤活性部位——70%乙醇极性部位进行进一步分离,继续采用MTT方法进行活性组分的追踪。方法:柱层析和MTT法。结果:采用硅胶柱对野西瓜生物碱抗肿瘤活性部位——70%乙醇部位进行进一步的分离,用氯仿-甲醇梯度洗脱,TCL跟踪合并,得到A1~A12共12个组分,经改良碘化铋钾显色实验证实A1-A5、A11和A12组分中不含有生物碱成分,而A6~A10组分含有生物碱成分。经MTT实验筛选A6~A10组分的抗肿瘤活性。结果显示,A6~A10组分对SGC-7901细胞增殖均具有一定的抑制作用,其中A10组分的抑制作用最强,IC50为31.529μg·mL-1。称之为野西瓜极性生物碱A10组分。结论:A10组分是野西瓜生物碱抗肿瘤活性组分,称之为野西瓜极性生物碱A10组分。
     目的:测定野西瓜极性生物碱A10组分的含量。方法:HPLC法和UV法。
     结果:应用HPLC测定野西瓜极性生物碱A10组分中盐酸水苏碱含量,得到盐酸水苏碱线性回归方程为Y=1004.2X-5.3806(r=0.9999),结果表明:盐酸水苏碱在3-30μg范围内呈良好线性关系。测得野西瓜极性生物碱A10组分中盐酸水苏碱含量为367.7296 mg·g-1,方法学考察证明该含量测定方法准确可靠。采用本部分实验一所述UV法测得野西瓜极性生物碱A10组分中生物碱含量(以盐酸水苏碱计)为784.2096 mg·g-1。结论:HPLC法测得野西瓜极性生物碱A10组分中盐酸水苏碱含量为367.7296 mg·g-1。UV法测得野西瓜极性生物碱A10组分中生物碱含量(以盐酸水苏碱计)为784.2096 mg·g-1。
     2野西瓜极性生物碱A10组分对SGC-7901细胞的生长抑制和诱导凋亡作用
     2.1野西瓜极性生物碱A10组分对SGC-7901细胞生长的抑制作用
     目的:对野西瓜极性生物碱A10组分对SGC-7901细胞生长的抑制作用进行研究。方法:MTT法、SRB法和肿瘤细胞克隆原形成法。结果:MTT实验得出野西瓜极性生物碱A10组分对SGC-7901细胞IC50为31.529μg·mL-1。从SRB实验结果可以看出,低浓度的野西瓜极性生物碱A10组分通过抑制细胞生长而起到抗肿瘤作用,而高浓度时则主要通过杀死肿瘤细胞起到抗肿瘤作用,经计算GI50为31.785μg·mL-1,LC50为37.210μg·mL-1,TGI为45.864 gg·mL-1。肿瘤细胞克隆原实验结果显示,野西瓜极性生物碱A10组分可以剂量依赖性抑制SGC-7901细胞集落的形成,其IC50为37.47μg·mL-1。结论:三个实验结果基本一致,更加客观的说明野西瓜极性生物碱A10组分对SGC-7901细胞具有生长抑制作用。根据以上结果,选择野西瓜极性生物碱A10组分为后续药理实验的受试药,且低、中、高剂量分别为15、30、60μg·mL-1。
     2.2野西瓜极性生物碱A10组分对SGC-7901细胞凋亡的影响
     目的:观察野西瓜极性生物碱A10组分作用后SGC-7901细胞形态学的改变和细胞凋亡率的测定。方法:荧光显微镜观察法、透射电镜观察法、激光共聚焦显微镜、PI单染法和Annexin V-FITC/PI双染经流式细胞仪进行检测。结果:荧光显微镜下、透射电镜和激光共聚焦显微镜下均可观察到典型的细胞凋亡形态,SGC-7901细胞随着给药剂量的增大,凋亡细胞特征性形态越明显。SGC-7901细胞经不同浓度的野西瓜极性生物碱A10组分作用48 h后,流式细胞仪直方图上出现亚二倍体峰,表明肿瘤细胞发生晚期凋亡。不同质量浓度的野西瓜极性生物碱A10组分作用24 h后,与空白对照组比较,各给药组SGC-7901细胞均发生不同程度的早期凋亡,且出现凋亡的比例逐渐增加。结论:野西瓜极性生物碱A10组分可以诱导SGC-7901细胞发生凋亡。
     3野西瓜极性生物碱A10组分诱导SGC-7901凋亡线粒体通路的研究
     3.1野西瓜极性生物碱A10组分对SGC-7901细胞凋亡线粒体通路关键事件的影响
     目的:研究野西瓜极性生物碱A10组分对SGC-7901细胞凋亡线粒体通路关键事件的影响,判断是否启动了线粒体凋亡通路。方法:Reagent A染色、罗丹明123染色、Western Blot法和酶标仪法。结果:在经过野西瓜极性生物碱A10组分作用后,SGC-7901细胞膜孔道不同程度的开放,膜电位发生了明显下降,并导致Cyt-c由线粒体释放至细胞浆,活化Caspase-9并启动Caspase级联反应,激活下游的Caspase-3从而诱导肿瘤细胞发生凋亡。结论:野西瓜极性生物碱A10组分诱导肿瘤细胞凋亡是由于启动了线粒体凋亡途径。
     3.2野西瓜极性生物碱A10组分对SGC-7901细胞凋亡线粒体通路调控因子的影响
     目的:探讨ROS和钙超载是否参与了野西瓜极性生物碱A10组分诱导的细胞凋亡过程。阐明Bcl-2和Bax基因对野西瓜极性生物碱A10组分所诱导细胞凋亡线粒体通路的调控作用。方法:DCFH-DA染色、Fluo-3/AM探针染色、Western Blot法、流式细胞术和RT-PCR法。结果:SGC-7901细胞内活性氧水平随着野西瓜极性生物碱A10组分质量浓度的升高而升高,细胞内钙离子浓度也相应的增大。给药组Bcl-2蛋白表达水平与对照组相比有所下降,而Bax蛋白表达量随之增加。野西瓜极性生物碱A10组分能够降低Bcl-2基因的mRNA表达,上调Bax基因的mRNA表达,并且具有一定的剂量依赖性。结论:经野西瓜极性生物碱A10组分作用后,活性氧的聚集和钙超载激活了细胞凋亡线粒体机制。野西瓜极性生物碱A10组分通过调节基因的转录水平下调抗凋亡蛋白Bcl-2的表达,上调促凋亡蛋白Bax的表达来调控线粒体凋亡通
     本论文通过HPLC法测得野西瓜中盐酸水苏碱含量为8.2257 mg·g-1,雷氏铵盐剩余比色法(以盐酸水苏碱计)测定野西瓜中总生物碱含量为104.7749mg·g-1。MTT法筛选出人胃癌SGC-7901细胞是野西瓜生物碱的敏感细胞株,野西瓜生物碱70%乙醇层是其抗肿瘤的活性部位,A10组分为野西瓜生物碱抗肿瘤活性组分,称之为野西瓜极性生物碱A10组分。并经HPLC法测得野西瓜极性生物碱A10组分中盐酸水苏碱含量为367.7296 mg·g-1。UV法测得野西瓜极性生物碱A10组分中生物碱含量(以盐酸水苏碱计)为784.2096 mg·g-1。实验发现,野西瓜极性生物碱A10组分对SGC-7901细胞生长增殖具有抑制作用,并通过诱导细胞凋亡的方式发挥其抗肿瘤作用。野西瓜极性生物碱A10组分迫使MPTP孔开放,促使线粒体膜电位的崩溃,并促进Cyt-c的释放,触动Caspase-9,启动Caspase级联反应,并最终激活了凋亡执行分子Caspase-3而诱导SGC-7901细胞凋亡。野西瓜极性生物碱A10组分通过钙稳态失衡,ROS积聚来调控SGC-7901细胞线粒体凋亡。野西瓜极性生物碱A10组分通过调节基因的转录水平下调Bcl-2蛋白表达,上调胞浆内Bax蛋白的表达,降低Bcl-2/Bax比例,进而调控凋亡的线粒体通路。
     本研究的创新点
     1.采用活性跟踪的方法进行野西瓜生物碱抗肿瘤活性组分的筛选
     2.从定性和定量两个方面揭示野西瓜极性生物碱A10组分诱导SGC-7901细胞凋亡。
     3.首次发现野西瓜极性生物碱A10组分通过启动线粒体通路诱导SGC-7901细胞凋亡。
Capparis spinosa L. is the plant of Capparis in Capparidaceae, also known as cishangan, laoshugua, zuiguoteng, and so on. It has the efficacies of hard tasted, warm-natured, dispelling wind and eliminating dampness, stasis swelling, relieving pain and activating blood circulation. Reports in the literatures and preliminary experiments show that Capparis spinosa L. has the anti-tumor effect, and its active ingredient is alkaloid. In this paper, the antitumor activity fractions of Capparis spinosa L. alkaloids are filtrated. As a result, SGC-7901 is the susceptive cell. And the component A10 in Capparis spinosa L. alkaloids is gained with strongest growth inhibition effect. The content of the component A10 is determined by HPLC and UV methods. On this basis, the component A10 in Capparis spinosa L. polar alkaloids has the activity of cytotoxicity in vitro human gastric cancer SGC-7901 tumor cells. The results of MTT test, SRB test and colony formation rate also show that the component A10 in Capparis spinosa L. polar alkaloids has the strongest growth inhibition on the SGC-7901. The qualitative researches on apoptosis morphology of SGC-7901 are studied by fluorescence microscopy and transmission electron microscopy. Through PI staining and Annexin V-FITC/PI double staining, the influence on the apoptosis rate of SGC-7901 cells induced by the component A10 in Capparis spinosa L. polar alkaloids is determined via flow cytometry and confocal laser microscopy. Then the key things of mitochondrial apoptotic pathway induced by the component A10 in Capparis spinosa L. polar alkaloids are studied, including MPTP hole opening, membrane potential losing, cytochrome C releasing, Caspase-9 and Caspase-3 activating. After determination of mitochondrial apoptotic pathway, the level of reactive oxygen species and Ca2+ concentration are detected to explore weather ROS accumulation and Ca2+ overload play roles in regulation on mitochondrial pathway of apoptosis induced by the component A10 in Capparis spinosa L. polar alkaloids. After that, the level of protein expression and gene transcription of the apoptosis related genes:Bcl-2 and Bax were detected respectively by Western Blot, immunofluorescence and RT-PCR in order to reveal the mitochondrion pathway of SGC-7901 apoptosis induced by the component A10 in Capparis spinosa L. polar alkaloids.
     1. Studies on anti-tumor active alkaloids from Capparis spinosa L.
     1.1 Studies on content determination of Capparis spinosa L. total alkaloids
     OBJECTIVE:To determine the contents of Stachydrine hydrochloride and total alkaloids in Capparis spinosa L.. METHODS:HPLC and UV methods. RESULTS:The content of Stachydrine hydrochloride in Capparis spinosa L. was determined by HPLC. The regression equation of Stachydrine hydrochloride was Y=100.58X-9.3751 (r=0.9999), showing fine linear relationship in 1.5-30μg. The content of Stachydrine hydrochloride in Capparis spinosa L. was 8.2257 mg·g-1. Also the concent of total alkaloids in Capparis spinosa L. was determined by the method of ammonium tetrathiocyanodiaminochromate remaining colorimetric technique (in terms of Stachydrine hydrochloride), and the regression equations was Y=0.621 7X+0.0108 (r=0.998 6), showing fine linear relationship in 0.060-0.301 mg·mL-1. The content of total alkaloids in Capparis spinosa L. was 104.7749 mg·g-1. The methods were exact and credible through methodology evaluation. CONCLUSION:From HPLC method, the content of Stachydrine hydrochloride in Capparis spinosa L. was 8.2257 mg·g-1. From the ammonium tetrathiocyanodiaminochromate remaining colorimetric technique (in terms of Stachydrine hydrochloride), the content of total alkaloids in Capparis spinosa L. was 104.7749 mg·g-1
     1.2 Study on antitumor activities of different polar fractions of Capparis
     spinosa L. alkaloids
     OBJECTIVE:To find the anti-tumor activity fraction from Capparis spinosa L..
     METHODS:The percolation method was used for the early extract from Capparis spinosa L, and then the percolation liquid was passed through acid cation exchange resin. Until the resin bed was saturated, it was alkalified, dried, and then further extracted by different polar solvents, which were chloroform extraction, butanol and 70% ethanol extraction, After three fractions were obtained, such as chloroform layer, n-butanol layer and 70% ethanol layer, MTT method was used to screen out their activities. RESULTS:70% alcohol fraction of Capparis spinosa L. alkaloids had the significant anti-tumor effect, which was the active fraction of Capparis spinosa L. alkaloids, and its IC50 was 33.437μg·mL-1. Chloroform and n-butanol extraction fractions in Capparis spinosa L. also had some inhibitory effects on SGC-7901 cells, but not as the fraction of 70% ethanol significantly. Therefore,70% alcohol fraction of Capparis spinosa L. alkaloids was identified initially as anti-tumor part on SGC-7901 cells. CONCLUSION:Human gastric cancer SGC-7901 cells are the sensitive cell line of Capparis spinosa L. alkaloids, while 70% alcohol fraction is the anti-tumor part.
     1.3 Study on anti-tumor activities of different components in active fraction of Capparis spinosa L. alkaloids
     OBJECTIVE:The anti-tumor fraction of Capparis spinosa L. alkaloids——70% ethanol fraction was further separated with tracking active component by MTT method. METHODS: The column chromatography and MTT method. RESULTS:The 70% ethanol part was separated by Silica column with chloroform-methanol gradient elution and TCL tracking mergers. As a result,12 components named A1~A12 were obtained. The improved Potassium Heptaiodobismuthate stain test indicated that A1~A5, A11 and A12 components did not contain alkaloids and A6~A10 components had the alkaloids. The results of MTT test showed that A6~A10 components had inhibition on SGC-7901 cells growth. The component A10 had the strongest inhibited activity, and its IC50 was 31.529μg·mL-1, which was named the component A10 in Capparis spinosa L. polar alkaloids. CONCLUSION:The component A10 is the anti-tumor component, which is known as the component A10 in Capparis spinosa L.polar alkaloids.
     1.4 Studies on content determination of Capparis spinosa L. polar alkaloids
     OBJECTIVE:To determine the content of component A10 in Capparis spinosa L. polar alkaloids. METHODS:HPLC and UV method. RESULTS:The content of Stachydrine hydrochloride in component A10 in Capparis spinosa L. polar alkaloids was determinated by HPLC, and the regression equation was Y=1004.2X-5.380 6 (r=0.999 9), showing fine linear relationship in 3~3Oμg. From HPLC method, the content of Stachydrine hydrochloride in component A10 in Capparis spinosa L. polar alkaloids was 367.7296 mg·g-1. The method was exact and credible through methodology evaluation. From UV method described as test one in this chapter, the content of alkloids in component A10 in Capparis spinosa L. polar alkaloids was 784.2096 mg·g-1.CONCLUSION:From HPLC test, the content of Stachydrine hydrochloride in component A10 in Capparis spinosa L. polar alkaloids is 367.7296 mg·g-1 The content of alkloids in component A10 in Capparis spinosa L. polar alkaloids was 784.2096 mg·g-1 through UV method.
     2 Inhibited growth and induced apoptosis of SGC-7901 component A10 in Capparis spinosa L. polar alkaloids
     2.1 Inhibited growth of SGC-7901 by component A10 in Capparis spinosa L. polar alkaloids
     OBJECTIVE:To study the inhibited effect of component A10 in Capparis spinosa L. polar alkaloids on SGC-7901 tumor cell growth. METHODS:MTT test, SRB test and Formation of clonolgenic tumor cell test. RESULTS:From MTT test,IC50 of component A10 in Capparis spinosa L. polar alkaloids on SGC-7901 was 31.529μg-mL-1. From SRB test, low dosage component A10 in Capparis spinosa L. polar alkaloids had the anti-tumor effect by inhibiting growth of SGC-7901 cells, while high dosage by killing tumor cells. GI50 was 31.785μg·mL-1. LC50was 37.210μg·mL-1. TGI was 45.864μg·mL-1. The colony formation of SGC-7901 cell could be inhibited significantly by component A10 in Capparis spinosa L. polar alkaloids in dose-dependent manner. The IC50 value was 37.47μg·mL-1. CONCLUSION: All results of three tests are consistent. The inhibited effect of component A10 in Capparis spinosa L. polar alkaloids on SGC-7901 tumor cell growth is approved impersonality. The component A10 in Capparis spinosa L. polar alkaloids is selected as the tested drug, and the dosages are 15,30 and 60μg·mL-1 respectively. 2.2 Effect of component A10 in Capparis spinosa L. polar alkaloids on
     SGC-7901 apoptosis
     OBJECTIVE:The purpose was to study apoptotic morphology and apoptotic rate induced by component A10 in Capparis spinosa L. polar alkaloids. METHODS:Fluorescence microscope, Transmission electron microscope, confocal microscopy, PI single-staining method and Annexin V-FITC/PI double staining with flow cytometry. RESULTS:Typical apoptotic morphology was observed under fluorescence microscope, ransmission electron microscope and confocal microscopy. Hypodiploid peak appeared in flow cytometry histogram of SGC-7901 after treated with component A10 in Capparis spinosa L. polar alkaloids for 48 h, which showed late apoptosis was happened in a dose-dependent relationship. Compared with control group, different concentrations of component A10 in Capparis spinosa L. polar alkaloids could induce different degrees of early apoptosis in SGC-7901. The increased ratio of early apoptosis (D4 area) could be tested in flow cytometry with a dose-dependent relationship. As the concentration of component A10 in Capparis spinosa L. polar alkaloids was increased, the proportion of SGC-7901 cells undergoing early apoptosis was gradually increasing. CONCLUSION:Characteristic apoptosis can be caused by component A10 in Capparis spinosa L. polar alkaloids.
     3 Study on of mitochondrial apoptosis pathway in SGC-7901 induced by component A10 in Capparis spinosa L. polar alkaloids
     3.1 Effect of component A10 in Capparis spinosa L. polar alkaloids on key things of mitochondrial pathway
     OBJECTIVE:The purpose was to detect the key things of mitochondrial pathway and judge whether the pathway of mitochondrial apoptosis in SGC-7901 was started. METHODS: Reagent A staining, Rhodamine 123 staining, Western Blot and Enzyme-labeling instrument.
     RESULTS:After treated by component A10 in Capparis spinosa L. polar alkaloids, cell membrane channels in SGC-7901 were opened and membrane potential was decreased sharply. Then, Cyt-c was released from mitochondria to cytoplasm. The component A10 in Capparis spinosa L. polar alkaloids can active Caspase-9, and then activate the Caspase cascade reaction. In the end, Caspase-3 in the downstream is activated to induce SGC-7901 cell apoptosis. CONCLUSION:Apoptosis induced by component A10 in Capparis spinosa L. polar alkaloids is caused by activating mitochondrial apoptosis pathway.
     3.2 Effect of component A10 in Capparis spinosa L. polar alkaloids on regulating factors of mitochondrial pathway
     OBJECTIVE:To explore whether ROS and Ca2+ overload were involved in apoptosis process induced by component A10 in Capparis spinosa L. polar alkaloids and to detect the regulation effects of Bcl-2 and Bax protein on the mitochondrial pathway of apoptosis induced by component A10 in Capparis spinosa L. polar alkaloids. METHODS:DCFH-DA staining, Fluo-3/AM probes staining, Western Blot, immunofluorescence method and RT-PCR. RESULTS:ROS levels were enhanced as concentration of polar alkaloids increased, while [Ca2+] was increased with a dose-dependent relationship. Bcl-2 expression level of drug groups were decreased compared with the control group. The protein expression of Bax in SGC-7901 was increased with the increase of the drug concentration, following a certain dose-dependent relationship. The component A10 in Capparis spinosa L. polar alkaloids reduced the gene mRNA expressions of Bcl-2, and up-regulated gene mRNA expression of Bax in a dose-dependent relationship. CONCLUSION:Accumulation of ROS and Ca2+ overload activate SGC-7901 apoptosis after treated by component A10 in Capparis spinosa L. polar alkaloids. The component A10 in Capparis spinosa L. polar alkaloids down-regulates anti-apoptotic protein Bcl-2 expression and up-regulates pro-apoptotic protein Bax expression by regulation of gene transcription to regulate the mitochondria apoptosis pathway. CONCLUSIONS
     The content of Stachydrine hydrochloride in Capparis spinosa L. was 8.2257 mg·g-1 determined by HPLC. Through the ammonium tetrathiocyanodiaminochromate remaining colorimetric technique (use Stachydrine hydrochloride count), the content of total alkaloids in Capparis spinosa L. was 104.7749 mg·g-1. Human gastric cancer SGC-7901 cells are sensitive to Capparis spinosa L. total alkaloids. The 70% ethanol extraction of Capparis spinosa L. alkaloids is the anti-tumor active fraction, and the component A10, named the component A10 in Capparis spinosa L. polar alkloids, is the anti-tumor active one. In addition, the content of Stachydrine hydrochloride in component A10 in Capparis spinosa L. polar alkaloids is 367.7296 mg·g-1 by HPLC method, while the content of alkloids in component A10 is 784.2096 mg·g-1through UV method. The component A10 in Capparis spinosa L. polar alkaloids has an inhibition effects on the growth of SGC-7901 cells proliferation and express its anti-tumor effects by the way of apoptosis induction. The component A10 in Capparis spinosa L. polar alkaloids promotes the opening of mitochondrial MPTP pore and decreases mitochondrial membrane permeability, which will induce Cyt-c release from mitochondria directly. Caspase-9 is activated and Caspase reaction is started. Then the downstream Caspase-3 is activated, while SGC-7901 cells apoptosis are caused. The component A10 in Capparis spinosa L. polar alkaloids regulates SGC-7901 cells mitochondria apoptosis via ROS excess and Ca2+ overload. The component A10 in Capparis spinosa L. polar alkaloids may down-regulate anti-apoptosis Bcl-2 protein express and up-regulate protein content of pro-apoptosis Bax via regulation of gene transcription to regulate the mitochondria apoptosis pathway. In the end, Bcl-2 and Bax gene co-regulate the mitochondrial apoptosis pathway induced by component A10 in Capparis spinosa L. polar alkaloids.
     INNOVATIONS OF THE RESEARCH
     1. Using the method of activity tracking to isolate the anti-tumor active component from Capparis spinosa L. alkaloids.
     2. To reveal from both qualitative and quantitative hand on SGC-7901 cells apoptosis induced by component A10 in Capparis spinosa L. polar alkaloids.
     3. It is found for the first time that component A10 in Capparis spinosa L. polar alkaloids induces SGC-7901 cells apoptosis via mitochondrial pathway.
引文
[1]朱江丽.荨麻、老鼠瓜治风湿[J].中国民族民间医药杂志,1996,20:24-25.
    [2]罗俊,谢阳.维药刺山柑果治疗痛风风湿病15例[J].中国民族医药杂志,1999,5(2):3.
    [3]任解莉.老鼠瓜单味外用治疗肩周炎121例[J].新疆中医药,2002,20(4):13.
    [4]单文俊,丁玉庆,谢举锋.外用野西瓜致接触性皮炎1例[J].实用医学杂志,2005,21(9):982.
    [5]柴荔,赵巧荣.野西瓜致接触性皮炎2例[J].皮肤病治疗,2002,31(7):437.
    [6]蒋业甲.瑶医药治疗疟疾180例临床报告[J].中国民族医药杂志,1999,5(4):17
    [7]M.Ozcan, C.Aydln. Physico-mechanical properties and chemicalanalysis of raw and brined Caperberries [J]. Biosystems Engineering,2004,89(4):521-524.
    [8]Rodrigo M, Lazaro M J, Alvarruiz A, et al. Composition of capers(Capparis spinosa L.): influence of cultivar, size and harvest date [J]. J Food Sci,1992,57:1152-1154.
    [9]Mohamedsharaf, Mohameda, El-ansari. Flavonoids of Four Cleome and Three Capparis Species [J]. Biochemical Systematics and Ecology,1997,25(2):161-166.
    [10]M.Sharaf, M.A. Quercetin triglycoside from Capparis spinosa[J]. Fitoterapia,2000,71: 46-49.
    [11]Barotto NN, Lopez CB, Eyard AR, et al. Quercetin enhances pretumourous lesions in the NMU model of rat pancreatic carcinogenesis[J]. Cancer Lett,1998,129:1-6.
    [12]白红进,赵小亮,刘文杰.刺山柑果实挥发油化学成分的研究[J].安徽农业科学.2007,35(9):2517-2518.
    [13]张静姝.共轭亚油酸抗肿瘤机制的研究进展[J].卫生毒理学杂志,2004,18(4):262-264.
    [14]谢丽琼,马东建,薛树媛,等.维药刺山柑果实挥发油和脂肪酸成分的GC-MS研究[J].食品科学,2007,28(5):262-264.
    [15]L. Tesoriere, D.Butera, C.Gentile. Bioactive Components of Caper(Capparis spinosa L.) from Sicily and Antioxidant Effects in a Red Meat Simulated Gastric Digestion [J]. Agricultural and Food Chemistry,2007,55(21):8465-8471.
    [16]Sharaf M, El-Ansari M A, Saleh N A M. Flavonoids of four Cleomeand three Capparisspecies [J]. Biochem Syst Ecol,1997,25:161.
    [17]Sharaf M, E1-Ansari M A, Saleh N A M. Quercetin triglycoside from Capparis spinosa L. [J]. Fitoterapia,2000,71:46-49.
    [18]Brevard H, Brambilla M, Chaintreau A, Marison JP. Occurrence of elements sulphur in capers (Capparis spinosa L.) and first investigation of the flavour profile [J]. Flavour Fragrance Journal,1992,7:313-321.
    [19]A. Arena, G. Bisignano, B. Pavone. Antiviral and Immunomodulatory Effect of a Lyophilized Extract of Capparis spinosa L. Buds [J]. Phytotherapy Research,2008, (22): 313-317.
    [20]William FHM, Gerald B, Kenneth J. Quaternary Ammonium Compounds in the Capparaceae [J]. Biochemical Systenatics and Ecology,1996,24(5):427-434.
    [21]Khanafar M A, Sabri S S, Zarga M H. The chemical constituents of Caparis spinosa L. of Jordanian origin [J]. Nat Prod Res,2003,17(1):9-14.
    [22]美丽万·阿不都热依木,张晓玲.正交设计法优选维药老鼠瓜生物碱提取工艺的研究[J].时珍国医国药,2007,18(2):344-345.
    [23]Ihsan C, Ayse K, Peter R, et al. 1-H-indole-3-acetonitrile glycosides from Capparis spinosa L. fruits [J]. Phytochemistry,1999,50 (7):1205-1208.
    [24]X. P. Fu, H. A. Aisa, M. Abdurahim, et al. Chemical composition of Capparis spinosa L. fruit [J]. Chemistry of Natural Compounds,2007,43(2):181-183.
    [25]Xiao Pu Fu, Tao Wu, Miriban Abdurahim, et al. New spermidine alkaloids from Capparis spinosa L. roots [J]. Phytochemistry Letters,2008:59-62.
    [26]Gaind KN, Gandhi KS, Juneja TR, et al.4,5,6,7-Tetra-hydroxydecyl isothiocyanate derived from a glucosinolate in Cappris grandis [J]. Phytochemistry,1975,14 (6):1415-1418.
    [27]Matthaus B, Ozcan M. Glucosinolate composition of Young shoots and flower buds of Capers (Capparisspecies) growing wild in Turkey [J]. J Agric Food Chem,2002,50: 7323-7325.
    [28]姜丽娟,美丽万·阿不都热依木,阿吉艾克拜尔·艾萨.维药老鼠瓜中主要硫苷的提取及抗风湿作用[J].中国医药导报,2008,5(6):34-35.
    [29]Vincenza R, Marisa Z, Daniele G, et al. Flavour profile of Capers (Capparis spinosa L.) from the Eolian Archipelago by HS-SPME/GC-MS [J]. Food Chemistry,2007,101 (3): 1272-1278.
    [30]IhsanCalis, AyseKuruuzum-Uz, et al. (6s)-Hydroxy-3-oxo-a-ionol glucosides from Capparis spinos a fruits [J]. Phytochemistry,2001,59:451-457.
    [31]MA Khanfar, SS Sabri, MH Zarga, et al. The chemical constituents of Capparis spinosa of Jordanianorigin [J]. Nat Prod Res,2003,17(1):9-14.
    [32]肖皖,李宁,李铣.野西瓜果皮中有机酸类化学成分的分离与鉴定[J].沈阳药科大学学报,2008,25(10):790-792.
    [33]Matthaus B, OzcanM. Glucosinolates and fatty acid, sterol and tocopherol composition of seed oils from Capparis spinosavar.spinosa and Capparis ovata Des.fvar.canescens (Coss.) Heywood [J]. J Agri Food Chem,2005,53:7136.
    [34]KhanfarM A, SabriS S, ZargaM H, et al. The chemical constituents of Capparis spinosa of jordanian origin [J]. Nat Prod Res,2003,17(1):9-14.
    [35]白红进,赵小亮,蒋卉.新疆刺山柑多糖的提取及含量测定[J].食品研究与开发,2007,28(3):120-121.
    [36]季宇彬,郭守东,汲晨峰.野西瓜成熟果实中多糖的含量测定及毛细管电泳分析[J].中国药学杂志,2006,41(15):1186-1189.
    [37]M.canis, T.violaceum. Antifungal activity of plant extracts against dermato phytes [J]. Mycoses,1999,42(11-12):665-672.
    [38]MahasnehAM, El-OqlahAA. Antimicrobial activity of extracts of herbal plants used in the traditional medicine of Bahrain [J]. Phytother Res,1996,10:251-253.
    [39]MahasnehAM, E1-OqlahAA. Antimicrobial activity of extracts of herbal plants used in the traditional medicine of Jordan [J]. J Ethnopharm,1999,64:271-276.
    [40]AdelM Mahasneh. Screening of Some In digenous Qatari Medicinal Plants for Antimicrobial Activity [J]. Phytother Res,2002,16:751-753.
    [41]A.Arena, G.Bisignano, B.Pavone, et al. Antiviral and immunomodulatory effect of a lyophilized extract of Capparis spinosa L. buds[J]. Phytother,2008,20:313-317.
    [42]SAAly, HFAly, NSaba-el-Rigal, et al. Induced changes in bio-chemical parameters of the molluscan tissues non-infected using two potent plant smolluscicides [J]. J Egypt Soc Parasitol,2004,34(2):527-542.
    [43]YSchlein, RL Jacobson. Mortality of Leishmani a major in Phlebotomu spapatasicaused by plant feeding of thesandflies [J]. Am J TropMedHyg,1994,50(1):20-27.
    [44]RLJacobson, YSchlein. Phleboto muspapatasi and Leishmani a major parasites expressal pha-amy laseand alpha-glucosidase [J]. ActaTrop,2001,78(1):41-49.
    [45]耿东升,邬建杰,梁敬军.刺山柑的化学成分和药理研究[J].解放军药学学报,2007,23(5):369-371
    [46]Aghel N, Rashidi I, Mombeini A. Hepatoprotective activity of Capparis spinosa root bark against CC14 induced hepatic damage in mice [J]. Iranian Journal of Pharmaceutical Research, 2007,6(4):285-290.
    [47]MSal-Said, EAAbdelsattar. Isolation and identification of ananti-inflammatory principle from Capparis spinosa [J]. Pharmazie,1988,43(9):640-641.
    [48]Am Panico, V Cardile. Protective effect of Capparis spinosa on chondrocytes [J]. Life Sci, 2005,6:7.
    [49]高莹莹,敖明章,万军梅.维药刺山柑醇提物抗炎镇痛作用的实验研究[J].中药材,2007,30(6):702-704.
    [50]D'Angelo, SCatania. Evaluation of extracts and isolated fraction from Capparis spinosaL. buds asan antioxidant source [J]. J Agric Food Chem,2002,50(5):1168-1671.
    [51]F Bonina. Invitroantioxidant and invivopho to protective effects of alyophilized extract of Capparis spinosa L. buds [J]. Cosmet Sci,2002,11.53(6):321-335.
    [52]吴翠云,周忠波,邓小勤.刺山柑提取物对DPPH自由基的清除作用[J].西北农学报,2009,18(1):230-233.
    [53]Yue-lan cao, Xin Li, Min Zheng. Capparis spinosa L. protects against oxidative stress in systemic [J]. Arch Dermatol Res,2009.
    [54]ZYaniv, ADafni. Plants used for the treatment of diabetes of diabetes in Israel [J]. Ethnopharmacol,1987,19(2):145-151.
    [55]M. Eddouks, A. Lemhadri.. Caraway and caper:potential anti-hyper glycaemicpl antsindiabeticrats [J]. Journal of Ethnopharmacology,2004,94:143-148.
    [56]M. Eddouks, A. Lemhadri, J.-B. Michel. Hypolipiddemic activity of aqueous extract of Capparis spinosa L. innormal and diabetic rats [J]. Journal of Ethnopharmacology,2005 (98): 345-350.
    [57]D Trombetta, F Occhiuto. Antiallergic and antihistaminic effect of two extracts of Capparis spinosa L. flowering buds [J]. Phytother Res,2005,19(1):29-33.
    [58]Jiu-Hong Wu, Fang-Rong Chang, Ken-ichiro Hayashi, et al. Antitumor Agents. Part218: Cappamensin A, a new in vitro anticancer principle, from Capparis sikkimensis [J]. Bioorganic & MedicinalChemistry Letters,2003,13:2223-2225.
    [59]Sze-Kwan Lam A, Tzi-Bun Ng. A protein with antiproliferative, antifungal and HIV-1 reverse transcriptase inhibitory activities from caper(Capparis spinosa L.) seeds [J]. Phytomedicine, 2009,16:444-450.
    [60]王崴,于蕾,崔荣田,等.野西瓜挥发油诱导SGC-7901凋亡的初步研究[J].哈尔滨商业大学学报,2008,24(4):396-399.
    [61]季宇彬,于蕾,王崴,等.野西瓜挥发油对HepG-2细胞线粒体膜电位和Ca2+浓度的影响[J].中国天然药物,2008,6(6):474-478.
    [62]于蕾,莫科,王崴,等.野西瓜总生物碱诱导HepG2细胞凋亡与[Ca2+]i变化的相关性[J].中草药,2009,40(2):255-258.
    [63]Kyoko Matsuyama, Myra o.Villareal, Abdelfatteh El Omri. Effect of Tunisian Capparis spinosa L.extract on melanogenesis in B16 murine melanoma cells [J]. The Japanese Society of Pharmacognosy and Springer,2009:305-8572.
    [64]K.Kitada, M.Ishikawa, K.Shibuya, et al. Enhancing oral moisture using an extract of Capparis masaikai Levl [J]. Journal of Ethnopharmacology,2008,115:57-60.
    [65]Katsuhiro Kitada, Koji Shibuya, Masao Ishikawa, et al. Enhancement of oral moisture using tablets containing extract of Capparis masaikai Levl. [J]. Joutnal of Rthnopharmacology,2009, 122:363-366.
    [66]罗俊,谢阳.维药刺山柑果治疗痛风风湿病15例[J].中国民族医药杂志,1999,5(2):3.
    [67]李凡,周虎,任灏远.应用槌果藤提取物治疗瘢痕疙瘩[J].中国美容医学,2004,13(5):531.
    [68]李凡,阿曼古力,阿不里克木江,等.维吾尔药槌果藤治疗硬皮病6例[J].中华皮肤科杂志,1997,30(1):53.
    [69]李凡,周虎,唐冬生,等.迪银片配合维吾尔草药槌果藤治疗银屑病[J].中华医学研究与实践,2004,2(3):65.
    [70]李凡,周虎,唐冬生,等.维吾尔药槌果藤治疗银屑病的实验动物和临床观察[J].皮肤病与性病,2005,27(3):4.
    [71]任解莉.老鼠瓜单味外用治疗肩周炎121例[J].新疆中医药,2002,20(4):13.
    [72]柴荔,赵巧荣,葛平.野西瓜致接触性皮炎2例[J].临床皮肤科杂志,2002,31(7):437.
    [73]单文俊,丁玉庆,谢举锋.外用野西瓜致接触性皮炎1例[J].实用医学杂志,2005,21(9):982.
    [1]李研研.生物碱抗肿瘤研究进展[J].中成药,2008,30(6):907-909.
    [2]张小敏,于蕾,贺春鹏等.抗肿瘤生物碱的构效关系[J].中草药,2009,40(S1):58-60.
    [3]Zhao Z, Liu J, Li S, et al. Prostate stem cell antigen mRNA expression in preoperatively negative biopsy specimens predicts subsequent cancer after transurethral resection of the prostate for benign prostatic hyperplasia [J]. Prostate,2009,69(12):1292-302.
    [4]史焱,等.苦参碱诱导小鼠S180肉瘤细胞凋亡的研究[J].实用中医内科杂志,2007,21(1):37-38.
    [5]侯武卫,徐玉生,苗金红,等.苦参碱诱导胰腺癌细胞凋亡的实验研究[J].医药论坛杂志,2007,28(5):20-21.
    [6]季宇彬,等.复方中药药理与应用[M].北京:中国医药科技出版社,2005:110.
    [7]吴江,袁志敏,等.顺铂时辰给药合并羟基喜树碱治疗晚期非小细胞肺癌的临床观察[J].肿瘤防治研究,2007,34(11):877-880.
    [8]林玺,李迅,刘建平.槲寄生在肿瘤治疗中的应用[J].中西医结合学报,2008,6(6):560-561.
    [9]慕岩峰,等.苦皮藤植物活性成分的分离与结构鉴定[J].安徽农业科学,2009,37(23):10843.
    [10]黄鸣清,蒋东旭,等.昆明山海棠抗肿瘤活性部位筛选研究[J].中国中药杂志,2009,34(20):2633-2635.
    [11]张彦,陈燕忠.生物碱类抗肿瘤药物及其新剂型的研究进展[J].药品评价,2006,3(4):264-266
    [12]谢宝芬,潘柏良.紫杉醇的药理与临床研究进展[J].中国药业,2008,17(15):76-78.
    [13]丁亚芳,包永明,安利佳.长春碱类抗肿瘤药物的研究进展[J].中国医药工业杂志,2005,36(7):424-428.
    [14]张爱红,仲伯华.长春花生物碱类衍生物及靶向前药研究进展[J].中国新药杂志,2009,18(18):1739-1744.
    [15]Xu FL, Rbaibi Y, Kiselyov K, et al. Mitotic slippage in non-cancer cells induced by a microtubule disruptor, disorazole C1 [J]. BMC Chem Biol.,2010,11:10-11.
    [16]曹东旭,元英进.槐果碱对人红白血病K562细胞的增殖抑制和诱导凋亡作用[J].天津科技大学学报,2006,21(4):33-36.
    [17]钱劫靖,金洁,等.干扰素-α联合高三尖杉酯碱下调K562细胞端粒酶逆转录酶及端粒酶活性诱导细胞凋亡[J].中国病理生理杂志,2006,22(9):1747-1750.
    [18]金霞,等.中药细胞凋亡诱导剂逆转肿瘤多药耐药的研究进展[J].中国现代中药,2006,8(4):24-25.
    [19]李春炎,杨兵,曲洪浩,等.氧化苦参碱对K562肿瘤细胞增殖的影响[J].现代生物医学进展,2009,9(4):645-647.
    [20]金艳书,吴雪敏,娄金丽,等.苦参碱对人肝癌细胞增殖、细胞周期及细胞凋亡的影响[J].中国临床康复,2006,10(3):107-108.
    [21]Steed DL. Clinical evaluation of recombinant human platelet-derived growth factor for the treatment of lower extremity ulcers [J]. Plast Reconstr Surg.,2006,117(S1):143-151.
    [22]胡彦武,孙罡.苦参碱类成分抗肝纤维化作用机制的研究进展[J].食品与药品,2006,8(7):14-16.
    [23]赵斌,葛金芳,李俊.喜树碱抗肿瘤作用机制研究进展[J].安徽医药,2006,10(1):2-5.
    [24]Ji YB, Zhou JH, Zuo MX, et al. Effects of CPUY013, a novel Topo I inhibitor, on human gastric adenocarcinoma BGC823 cells in vitro and in vivo. Yao Xue Xue Bao.2008,43(8): 811-818.
    [25]金光虎,陈爽,杨丽,等.羟基喜树碱对人前列腺癌PC-3m细胞凋亡的影响[J].中国实验诊断学,2010,14(1):12-13.
    [26]Chang JY, Chang CY, Kuo CC, et al. Salvinal, an ovel microtubule inhibitor isolated from salviamiltiorrhizae Bunge(Dan2shen), with antimitotic activity in multidrug-sensitive and resistant human tumor cells [J]. MolPharmacol,2004,65(1):77-84.
    [27]Baldwin EL, Osheroff N. Etoposide, topoisomerase Ⅱ and cancer [J]. Curr Med Chem Anticancer Agents,2005,5(4):363-372.
    [28]Kobayashi S, Koyama Y. Topological differences in the interaction of human DNA topoisomerase I with DNA-histone complexes modified by cis-and trans-DDP [J]. Chem Pharm Bull (Tokyo).2007,55(4):526-531.
    [29]Scaglioni L, Mazzini S, Mondelli R, et al. Interaction between double helix DNA fragments and a new topopyrone acting as human topoisomerase Ⅰ poison. Bioorg Med Chem. 2009,17(2):484-491.
    [30]Moreno V, Rojas R, Goyeneche D, et al. Leishmania donovani:differential activities of classical topoisomerase inhibitors and antileishmanials against parasite and host cells at the level of DNA topoisomerase I and in cytotoxicity assays [J]. Exp Parasitol.,2006,112(1): 21-30.
    [31]李波,朱维良,陈凯先.小檗碱及其衍生物的研究进展[J].药学学报,2008,43(8):773-787.
    [32]CHENG Lei, ZHOU Xiu-jia. Review on anticancer Mechanism of some plant alkaloids [J]. Traditional Chinese Medicine,2004,35(2):216-221.
    [33]李丹,张蔚,李福敏,等.苦参碱对宫颈癌HeLa细胞的作用[J].武汉大学学报,2008,29(1):28-30.
    [34]Hawser S, Lociuro S, Islam K. Dihydrofolate reductase inhibitors as antibacterial agents [J]. Biochem Pharmacol.,2006,71(7):941-948.
    [35]王中林,蒋平,谭映霞,等.苦参碱对NCI-N87胃癌细胞增殖凋亡及Bcl-2蛋白表达的影响[J].中华医药学刊,2009,27(1):141-144.
    [36]章叶静,单江,项美香,等.苦参碱对压力负荷增高性心肌TGF-β1的作用[J].科技通报,2007,23(1):67-70.
    [37]Stiborova M, Arlt VM, Henderson CJ, et al. Role of hepatic cytochromes P450 in bioactivation of the anticancer drug ellipticine:studies with the hepatic NADPH:cytochrome P450 reductase null mouse [J]. Toxicol Appl Pharmacol.,2008,226(3):318-327.
    [38]凌丹,李力,黎丹戎,等.苦参碱对卵巢癌细胞生长及其尿型纤溶酶原激活因子和抑制因子表达的影响[J].广西医科大学学报,2007,24(4):497-500.
    [39]金艳书,吴学敏.苦参碱对人肝癌细胞增殖、细胞周期及细胞凋亡的影响[J].中国组织工程研究与临床康复,2006,10(3):107-109.
    [40]李雪梅,吴运光,潘达鑫,等.新型抗肿瘤药槐定碱[J].中国新药杂志,2006,15(8):654-657.
    [41]赵晨光,李逐波.苦参碱类生物碱的现代药理研究[J].兽医导刊,2009,10:50-52.
    [42]梁磊,张绪慧,王晓燕,等.槐定碱对人结肠腺癌细胞株SW620增殖和凋亡的影响 [J].中国药理学通报,2008,24(6):782-786.
    [43]Liang Z, Chen H, Zhao Z. An experimental study on four kinds of Chinese herbal medicines containing alkaloids using fluorescence microscope and microspectrometer [J]. Microsc.,2009,233(1):24-34.
    [44]卢燕,冯举,陈道峰.RP-HPLC法评价北豆根药材质量[J].复旦学报,2005,34(5):773-775.
    [45]张广财,等.北豆根总生物碱精制工艺的研究[J].辽宁中医药大学学报,2006,8(4):122-123.
    [46]Mantena SK, Sharma SD, Katiyar SK. Berberine, an atural product, induces G1-phase cell cycle arrest and caspase-3-dependent apoptosis in human prostate carcinoma cells [J]. Mol Cancer Ther,2006,5(2):296.
    [47]Letasiova S, Jantova S, Miko M, et al. Effect of berberine on proliferation, biosynthesis of macromolecules, cell cycle and induction of intercalation with DNA, dsDNA damage and apoptosis in Ehrlichascites carcinoma cells [J]. J Pharm Pharmacol,2006,58(2):263.
    [48]Lin JP, Yang JS, Lee JH, et al. Berberine induces cell cycle arrest and apoptosis in human gastric carcinoma SNU-5 cell line [J]. World J Gastroenterol,2006,12(1):21.
    [49]姚保泰,吴敏,王博.盐酸小檗碱抑制实验性大鼠胃癌前病变细胞Bcl-2表达作用研究[J].中华中医药杂志,2005,20(3):186.
    [50]Letasiova S, Jantova S, Miko M, et al. Effect of berberine on proliferation, biosynthesis of macromolecules, cell cycle and induction of intercalation with DNA, dsDNA damage and apoptosis in Ehrlichascites carcinoma cells [J]. J Pharm Pharmacol,2006,58(2):263.
    [51]Lin JP, Yang JS, Lee JH, et al. Berberine induces cell cycle arrest and apoptosis in human gastric carcinoma SNU-5 cell line [J]. World J Gastroenterol,2006,12(1):211.
    [52]Ma BL, Ma YM, Shi R, etal. Identification of the toxic constituents in Rhizoma Coptidis [J]. Ethnopharmacol.,2010,128(2):357-364.
    [53]Park HJ, Kim YJ, Leem K, et al. Coptis japonica root extract induces apoptosis through caspase-3 activation in SNU-668 human gastric cancer cells [J]. Phytother Res.,2005,19(3): 189-192.
    [54]Harada K, Ferdous T, Itashiki Y, et al. Cepharanthine inhibits angiogenesis and tumorigenicity of human oral squamous cell carcinoma cells by suppressing expression of vascular endothelial growth factor and interleukin-8 [J]. Int J Oncol.,2009,35(5):1025-1035.
    [55]裴晓华;樊英怡.三氧化二砷与粉防己碱联合作用对MCF-7细胞的影响[J].南京中医药大学学报,2009,2:46-50.
    [56]施莹,钱宝华,郭峰,等.长春新碱载体红细胞对小鼠S180肿瘤生长的抑制作用[J].第二军医大学学报,2007,28(3):339-340.
    [57]李长龙,刘建文,萨晓婴,等.长春新碱耐药结肠癌细胞株HCT-8/VCR的建立及其耐药机制的初步研究[J].肿瘤,2009,29(1):31-32.
    [58]陈伟文,王志刚,邱庆南,等.长春瑞宾联合顺铂治疗晚期非小细胞肺癌的临床观察 [J].临床肺科杂志,2008,13(5):588-589.
    [59]王汉卿,孙震晓.抑癌基因Pdcd4的表达对羟基喜树碱细胞毒活性的影响[J].世界华人消化杂志,2009,17(7):647-651.
    [60]冯勤梅,王颖,葛海良,等.紫杉醇联合顺铂诱导的凋亡卵巢癌细胞的免疫原性[J].中国肿瘤生物治疗杂志,2009,16(2):130-135.
    [6]]赵燕燕,崔承彬,孙启时.洋紫荆中菲醌化合物bauhinione对K562细胞的增殖抑制作用[J].沈阳药科大学学报,2007,24(2):109-112.
    [62]孔德晓,陈春燕,王涓冬,等.高三尖杉酯碱联合IFNα-2b可促进白血病源性树突状细胞成熟[J].中国病理生理杂志,2009,25(8):1517-1521.
    [63]Armstead WM, Christine AJ, Higazi AA. Urokinase plasminogen activator impairs SNP and PGE2 cerebrovasodilation after brain injury through activation of LRP and ERK MAPK [J].J Neurotrauma.,2008,25(11):1375-1381.
    [64]熊小春,安春妹.苦参碱抗肿瘤研究概况[J].中国医药导报,2009,6(33):10-12.
    [65]殷飞,等.苦参碱对SMMC-7721细胞MAPK、JAK-STAT信号通路的影响[J].肿瘤防治研究,2008,35(2):84-87.
    [66]郑艳敏,李轩,赵红艳,等.苦参碱和氧化苦参碱对SMMC-7721细胞增殖及Stat3,Stat5基因表达的影响[J].中国中药杂志,2008,33(19):2234-2237.
    [67]许成山,周克元.小檗碱抗肿瘤作用研究进展[J].现代肿瘤医学,2009,17(1):147-149.
    [68]Lin JN, Lin HL, Huang CK, et al. Endometriosis presenting as bloody ascites and shock [J]. J Emerg Med.,2010,38(1):30-32.
    [69]Lin HL, Lin SY, Lin YK, et al. Release characteristics and in vitro-in vivo correlation of pulsatile pattern for a pulsatile drug delivery system activated by membrane rupture via osmotic pressure and swelling [J]. Eur J Pharm Biopharm.,2008,70(1):289-301.
    [70]Wang TX, Yang XH. Reversal effect of isotetrandrine, an isoquinoline alkaloid extracted from Caulis Mahoniae, on P-glycoprotein-mediated doxorubicin-resistance in human breast cancer (MCF-7/DOX) cells [J]. Yao Xue Xue Bao,2008,43(5):461-466.
    [71]Yang C, Guo L, Liu X, et al. Determination of tetrandrine and fangchinoline in plasma samples using hollow fiber liquid-phase microextraction combined with high-performance liquid chromatography [J]. Chromatogr A.,2007,1164(1-2):56-64.
    [72]王妍,张莲芬,冯磊,等.人乳腺癌细胞系MCF-7/W和MCF-7/ADM细胞中阿霉素结合蛋白的分析[J].中国药理学通报,2007,23(9):1188-1192.
    [73]吕旭晶,许文林,罗文娟,等.汉防己甲素干预K563/A02细胞mdr1基因表达的研究[J].中华血液学杂志,2008,29(7):468-471.
    [74]高文韬,王壮,王新波,等.乌头的研究进展[J].北华大学学报,2009,10(2):144-148.
    [75]孙萍,孙志刚,等.苦参的有效成分及蒙医复方制剂药理作用研究现状[J].内蒙古民族大学学报,2008,23(1):97-100.
    [76]毛俐,刘丽敏,刘延成,等.苦参碱Fe(Ⅲ)化合物的合成和抗肿瘤活性[J].广西师范 大学学报,2008,26(2):60-62.
    [77]方新胜,屠庆年,陆付耳,等.小檗碱对NIT-1细胞肝细胞核因子-4a表达的影响[J].世界华人消化杂志,2009,17(2):130-134.
    [78]张淑杰,王新华,成秉林,等.苦参碱诱导胶质瘤C6细胞凋亡及其可能的基因机制[J].中国肿瘤生物治疗杂志,2008,15(5):451-455.
    [79]吴智慧,黄绳武,胡锡波,等.苦参生物碱的药理研究进展[J].中南药学,2006,4(5):380-381.
    [80]王国征,孙明,郭坤元,等.苦参碱对白血病KGla细胞增殖及凋亡的影响[J].山东医药,2008,48(37):25-27.
    [81]朱晓伟,宝金荣,布仁.苦参碱和氧化苦参碱抗肿瘤作用机制研究进展[J].化学试剂,2010,32(1):32-36.
    [82]刘益均,郑军,肖文波,等.氧化苦参碱对人胃癌SGC-7901细胞增殖及血管内皮生长因子表达的影响[J].中国癌症杂志,2010,20(1):22-26.
    [83]陈明锴,黄佳,罗和,等..小檗碱对结肠癌细胞HT-29增殖、凋亡及细胞膜钾通道的作用[J].中华实验外科杂志,2009,26(11):1476-1477.
    [84]台卫平,田耕,黄业斌,等.盐酸小檗碱抑制结肠癌细胞环氧化酶-2/钙离子途径[J].中国药理学通报,2005,21(8):950.
    [85]Yadav RC, Kumar GS, Bhadra K, et al. Berberine, a strong polyriboadenylic acid binding plant alkaloid:spectroscopic, viscometric, and thermodynamic study [J]. Bioorg Med Chem., 2005,13(1):165-174.
    [86]Watanabe-Fukuda Y, Yamamoto M, Miura N, et al. Orengedokuto and berberine improve indomethacin-induced small intestinal injury via adenosine [J]. Gastroenterol.,2009,44(5): 380-389.
    [87]吕晓霞,蒋丽佳,范静,等.苦参碱抑制慢性粒细胞白血病K562细胞生长和诱导凋亡作用研究[J].中国中西医结合杂志,2010,19(2):147-150.
    [88]杨菁,林菁,等.小檗碱抗肿瘤作用机制的研究进展等[J].中国中药杂志,2007,32(10):881·883.
    [89]危晓莉,王媚,潘佩蕾.小檗碱对DC-CIK增殖和杀瘤活性影响的初步研究[J].中国免疫学杂志,2010,26(1):57-58.
    [90]郭艳杰,周立社,等.槲寄生药理作用研究进展[J].包头医学院学报,2008,24(1):106-108.
    [91]董坤,丰平,江瑛,等.槲寄生碱和多糖对肝癌细胞增生和凋亡的影响[J].首都医科大学学报,2009,30(1):80-84.
    [92]刘雪强.鸟头碱逆转耐药性人口腔上皮鳞状癌细胞分子机制研究[J].中国中医药信息杂志,2004,11(2):103-105.
    [93]刘欣阳,王艳苹,刘静华.苦参素抗肿瘤的研究进展[J].国际中医药杂志,2007,29(5):289-290.
    [94]陈旭芳.苦参素预防肿瘤化疗后白细胞减少及感染的临床研究[J].中国现代药物应用, 2009,3(6):31-32.
    [1]唐朝晖,钟德玝.紫杉醇抗肿瘤的分子机制.中国临床康复,2006,10(27):125-127.
    [2]孟繁浩,巩丽颖,佟馨.抗癌药物——喜树碱类衍生物研究进展[J].生命的化学,2002,22(3):265-267.
    [3]CHENG Lei, ZHOU Xiu-ia. Review on anticancer mechanism of some plant alkaloids [J]. 中草药,2004,35(2):216-211.
    [4]卢大用,曹静懿,胥彬.三尖杉酯和高三尖杉酯碱的生物活性及临床应用[J].天然产物研究与开发,1999,12(5):702-731
    [5]敖明章,高莹莹,余龙江.刺山柑化学成分及其药理活性研究进展.中草药,2007,38(3):463-467
    [6]SOPHIARHIZOPOULOU and GEORGEK.PSARAS. Development and Structure of Drought-toler antLeaves of the Mediterrane an Shrub Capparis spinosa L. [J]. Annals of Botany,2003,92:377-383.
    [7]Jiu-Hong Wu, Fang-Rong Chang, Ken-ichiro Hayashi, etal. Antitumor Agents. Part 218: Cappamensin A, a New In Vitro Anticancer Principle, from Capparis sikkimensisy. Bioorganic & MedicinalChemistry Letters,2003, (13):2223-2225.
    [8]Bai Hong-jin, Zhou Zong-bo, Zhao Xiao-liang. Study on activity of anti-H22 of xinjiang province plant Capparis spinosa L. [J]. Heilongjiang animal science and veterinary medicine,2007, (12):100-101
    [9]Sze-Kwan Lam, Tzi-BunNg. A protein with antiproliferative, antifungal and HIV-1 reverse transcriptase inhibitory activities from caper (Capparis spinosa) seeds [J]. phytomedicine,2008,9.
    [1]邵璟,狄留庆,刘产明,等.中药有效部位新药研发中关键问题分析[J].中国新药 研究,2010,19(2):98-101.
    [2]于洋.野西瓜化学成分研究.沈阳药科大学硕士学位论文[D],2007.
    [3]张璐,李红玉,魏玉辉.HPLC、TLC检测砂生槐种子中的生物碱[J].药物分析杂志,2005,25(7):1071-1074.
    [4]姜舜尧.益母草药材中水苏碱成分的高效液相色谱法分析[J].药物分析杂志,2001,21(4):243-247.
    [5]黄松,陈吉航,陶艳,等.RP-HPLC法测定妇科栓剂中氧化苦参碱、苦参碱和小檗碱含量[J].药物分析杂志,2010,30(1):110-113.
    [6]中国药典[S].一部.2005.北京:化学工业出版社
    [1]Paterson and E.A. Anderson, The renaissance of natural products as drug candidates [J]. Science,2005,310:451-453.
    [2]Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine DL, Abbott BJ, Mayo JG, Shoemaker RH, Boyd MR.Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay [J].Cancer Res.1988,48(3): 589-601.
    [3]杨秀伟,冉福香,吴军,等.马钱子生物碱成分的体外抗肿瘤活性筛选[J].2006,8(9):11-13.
    [4]黄鸣清,蒋东旭,罗明俐,等.昆明山海棠抗肿瘤活性部位筛选研究[J].中国中药杂志,2009,34(20):2633-2636.
    [5]Mosmann T. Rapid colorimetric assay for cellular growth and survival:application to proliferation and cytotoxicity assays [J]. J Immunol Method,1983,65:55-63.
    [6]Li GH, Qian W, Song GQ, et al. Effect of vasoactive intestinal peptide on gastric adenocarcinoma [J]. J Gastroenterol Hepatol,2007,22(8):1328-1335.
    [7]李亨东,李英伦,范巧佳,等.四川宝兴虎耳草活性部位筛选[J].中草药,200940(s1):187-189.
    [8]陈扬,李艳春,马恩龙,等.了哥王抗肿瘤活性部位筛选[J].中华中医药学刊,2008,26(11):2520-2522.
    [9]孙立新,任靖,王敏伟,等.白英抗肿瘤活性部位筛选[J].沈阳药科大学学报,2005,22(3):210-212.
    [10]王慧,李傲,董小萍,等.蒲葵子抗肿瘤活性部位筛选及抗血管生成作用[J].中药材,2008,31(5):718-722.
    [11]辛海量,侯银环,岳小强,等.马齿苋抗缺氧活性部位筛选及其化学成分研究[J].中草药,2009,40(s1):114-116.
    [1]Alley MC, Scudiero DA, Monks A, et al.Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay [J].Cancer Res.1988, 48(3):589-601.
    [2]Engin Ulukaya, Ferda Ozdikicioglu, Arzu Yilmaztepe Oral, et al. The MTT assay yields a relatively lower result of growth inhibition than the ATP assay depending on the chemotherapeutic drugs tested [J]. Toxicology in Vitro,2008,22(1):232-239.
    [3]R. Nakamur, Y. Saikaw, T. Kubot, et al. Role of the MTT chemosensitivity test in the prognosis of gastric cancer patients after postoperative adjuvant chemotherapy [J]. Anticancer Res.2006,26:1433-1437.
    [4]J. Weyermann, D. Lochmann and A.A. Zimme. Practical note on the use of cytotoxicity assays [J]. Int. J. Pharm.,2005,28:369-376.
    [5]Lixia Hou, Yonghui Shi, Pei Zhai, et al. Antibacterial activity and in vitro anti-tumor activity of the extract of the larvae of the housefly (Musca domestica) [J]. Journal of Ethnopharmacology,2007,111(2):227-231
    [1]张韵,黄瑞红,何桂区.HPLC法测定安坤益母草片中盐酸水苏碱的含量[J].广东药学院学报,2008,24(1):16-17.
    [2]严优芍,李卫民,高英,等.HPLC法测定益母草不同制剂中水苏碱[J].中草药,2006,37(1):70-72.
    [3]}虞和永,何翱,陈灿.鲜益母草胶囊中水苏碱的含量测定[J].中国中药杂志,2002,27(2):113.
    [4]中国药典2005版.一部[S].北京:化学工业出版社,2005:280.
    [1]Thompson C B. Apoptosis in the pathogenesis and treatment of disease [J]. Science,1995, 267(5203):1456-1462.
    [2]彭黎明,王曾礼.细胞凋亡的基础与临床[M].北京:人民卫生出版社,2000
    [3]Plumb JA.Cell sensitivity assays:clonogenic assay. In:Langdon SP, editor. Cancer Cell Culture:Methods and Protocols [M]. Humana Press, Totowa, New Jersey.2004: 159-164.
    [4]J.W.-H. Li, J.C. Vederas. Drug discovery and natural products:end of an era or an endless frontier? [J]. Science,2009,325:161-165.
    [5]Olsen SC, Waters WR, Stoffregen WS. An aerosolized Brucella spp challenge model for laboratory animals [J]. Zoonoses and Public Health,2007,54(8):281-285.
    [6]Rubinstein LV, Shoemaker RH, Paull KD, Simon RM, Tosini S, Skehan P,Scudiero DA, Monks A, Boyd MR. Comparison of in vitro anticancer-drug-screening data generated with a tetrazolium assay versus a protein assay against a diverse panel of human tumor cell lines [J]. J Natl Cancer Inst.1990,82(13):1113-1118.
    [7]V.B. Konkimalla, T. Efferth. Evidence-based Chinese medicine for cancer therapy [J]. Journal of Ethnopharmacology,2008,116:207-210.
    [8]G. Fouche, G.M. Cragg, P. Pillay, et al. In vitro anticancer screening of South African plants [J]. Journal of Ethnopharmacology,2008,119:455-461.
    [9]G. Chen, J. Xue, S.X. Xu, et al. Chemical constituents of the leaves of Diospyros kaki and their cytotoxic effects [J]. Journal of Asian Natural Products Research,2007,9: 347-353.
    [10]Jerry R. Williams Sc.D., Yonggang Zhang M.D., Haoming Zhou, et al. Overview of Radiosensitivity of Human Tumor Cells to Low-Dose-Rate Irradiation [J]. International Journal of Radiation Oncology Biology Physics,2008,72(3):909-917.
    [11]Natalia Guzman Ramirez, Antoinette Wetterwald, Ludwig Wilkens, et al. Molecular characterization and expansion in vitro of clonogenic human prostate cancer cells [J].The Journal of Urology,2008,179(4):105.
    [12]Raffi Karshafian, Sanya Samac, Peter D. Bevan, et al. Microbubble mediated sonoporation of cells in suspension:Clonogenic viability and influence of molecular size on uptake [J]. Ultrasonics,2010, in press.
    [1]Francesca Doonan, Thomas G. Cotter. Morphological assessment of apoptosis [J]. Methods,2008,44(3):200-204.
    [2]Kerr JF, Wyllie AH, Currie AR. A basic biological phenomenon with wide-ranging implications in tissue kinetics [J]. Br J Cancer,1972,26:239-257
    [3]付洪兰.实用电子显微镜技术[M].北京:高等教育出版社,2004.
    [4]Jun Yeoung Jeon, Sang Youn Hwang, Seung Hun Cho, et al. Effect of cholesterol content on affinity and stability of factor VIII and annexin V binding to a liposomal bilayer membrane [J]. Chemistry and Physics of Lipids,2010.2:1-6
    [5]Vermes I, Hannen C, Steffens Nakken H, et al.A novel assay for apoptosis flowcytometric detection of phasphatidylserine expression on early apoptotic cells using fluoresce labeled Annexin V [J]. J Immunol Methods,1995,184(1):39-51.
    [6]Kylarova D, Prochazkova J, Madarova J, et al. Comparison of the TUNEL, lamin B and annexinVmethods for the detection ofapoptosis by flow cytometry [J]. ActaHistochemica, 2002,104(4):367-370.
    [7]T. Raposa, A. T. Natarajan. Fluorescence Banding Pattern of Human and Mouse hromosomes with a Benzimidazol Derivative (Hoechst 33258) [J]. Humangenetik 1974, 21,221-226.
    [8]B.A. Stander, S. Marais, C.J.J. Vorster, et al. In vitro effects of 2-methoxyestradiol on morphology, cell cycle progression, cell death and gene expression changes in the tumorigenic MCF-7 breast epithelial cell line [J]. The Journal of Steroid Biochemistry and Molecular Biology,2010,119(3):149-160.
    [9]Georg Hacker. The morphology of apoptosis [J]. Cell and Tissue Research,2000,301 (1): 110.
    [10]V. Delaye, F. Andrieu, F. Aussenac, et al. In-line transmission electron microscopy for micro and nanotechnologies research and development [J]. Microelectronic Engineering, 2008,85(5):1157-1161.
    [11]Vermes I, Hannen C, Steffens Nakken H, et al. A novel assay for apoptosis flowcytometric detection of phasphatidylserine expression on early apoptotic cells using fluoresce labeled Annexin V [J]. J Immunol Methods,1995,184(1):39-51.
    [12]Jun Yeoung Jeon, Sang Youn Hwang, Seung Hun Cho, et al. Effect of cholesterol content on affinity and stability of factor VIII and annexin V binding to a liposomal bilayer membrane [J]. Chemistry and Physics of Lipids,2010,2:1-6.
    [13]Gong J, Traganos F, Darzynkiewicz Z. A selective procedure for DNA extraction from apoptotic cells applicable for gel electrophoresis and flow cytometry. Anal Biochem. 1994,218(2):314-319.
    [14]Nicoletti, I., Migliorati, G., Pagliacci, M.C., Grignani, F., Richardi, C.. A rapid simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry [J]. Journal of Immunological Methods,1991,139:271-279.
    [15]Andre Stander, Sumari Marais, Voula Stivaktas, et al. In vitro effects of Sutherlandia frutescens water extracts on cell numbers, morphology, cell cycle progression and cell death in a tumorigenic and a non-tumorigenic epithelial breast cell line [J]. Journal of Ethnopharmacology,2009,124(1):45-60.
    [16]Dmitri V. Krysko, Tom Vanden Berghe, Katharina D'Herde, et al. Apoptosis and necrosis: Detection, discrimination and phagocytosis [J]. Methods,2008,44(3):205-221.
    [17]Niklaas J. Buurma, Ihtshamul Haq. Calorimetric and Spectroscopic Studies of Hoechst 33258:Self-association and Binding to Non-cognate DNA [J]. Journal of Molecular Biology,2008,381(3):607-621.
    [18]W. Van den Broek, S. Van Aert, D. Van Dyck. A model based reconstruction technique for depth sectioning with scanning transmission electron microscopy [J]. Ultramicroscopy,2010, in Press.
    [19]Dong Su, Yimei Zhu. Scanning moire fringe imaging by scanning transmission electron microscopy [J]. Ultramicroscopy,2010,110(3):229-233.
    [20]A. Amir Mhawi. Interaction of doxorubicin with the subcellular structures of the sensitive and Bcl-xL-overexpressing MCF-7 cell line:Confocal and low-energy-loss transmission electron microscopy [J]. Micron,2009,40(7):702-712.
    [21]Anna-Clare Milazzo, Grigore Moldovan, Jason Lanman, et al. Characterization of a direct detection device imaging camera for transmission electron microscopy [J]. Ultramicroscopy,2010, in Press.
    [22]Alexandra V. Agronskaia, Jack A. Valentijnb, et al. Integrated fluorescence and transmission electron microscopy [J]. Journal of Structural Biology,2008,164(12): 183-189.
    [23]Michael Buehrlen, Ulrich A. Harreus, Fernando Gamarra, et al. Cumulative genotoxic and apoptotic effects of xenobiotics in a mini organ culture model of human nasal mucosa as detected by the alkaline single cell microgel electrophoresis assay and the annexin V-affinity assay [J]. Toxicology Letters,2007,169(8):152-161.
    [24]Christiaan F. Hoogendijk Ph.D., Theunis F. Kruger M.D., Patric J.D. Bouic Ph.D., et al. A novel approach for the selection of human sperm using annexin V-binding and flow cytometry [J]. Fertility and Sterility,2009,91(4):1285-1292
    [25]M. Verheij, M. Kartachova, R. Haas, et al. In Vivo Imaging of Apoptosis by Annexin V Scintigraphy:Predictive Value for Treatment Outcome [J]. International Journal of Radiation Oncology Biology Physics,2007,69(3):S62.
    [1]Sun SY, Hail N Jr, Lotan R. Apoptosis as a novel target for cancer chemoprevention [J]. JNatl Cancer Inst,2004,96(9):662-672.
    [2]Douglas RG, John CR. Mitochondria and apoptosis [J]. Science,1998,281:1309.
    [3]Lin Qiwei. The mitochondrion and apoptosis [J].Biochemistry and biophysics newspaper, 1999,31(2):116-118.
    [4]Ricci JE. Mitochondrial functions during cell death, a complex (Ⅰ-Ⅴ) dilemma [J]. CellDeathDiffer,2003,10:488-492.
    [5]Yusuke Shibui, Xi Jun He, Kazuyuki Uchida, et al. MPTP-induced neuroblast apoptosis in the subventricular zone is not regulated by dopamine or other monoamine transporters [J]. NeuroToxicology,2009,30(6):1036-1044.
    [6]Gores GJ, Miyoshi H, Bolta R, et al. Induction of the mitochondrial permeability transition as a mechanism of liver injury during cholestasis:a potential role for mitochondrial protease [J]. Biochim BiophysActa,1998,1366 (122):167-175.
    [7]Reed JC. Cytochrome c:can't live with it-can't live without it [J]. Cell,1997,91(5): 559-562.
    [8]Lamkanfi M, Festjens N, Declercq W, et al.Caspases in cellsurvival, proliferation and differentiation[J].Cell Death Differ,2007,14 (1):44-45.
    [9]Riedl SJ, Renatus M, Schwarzenbacher R, et al. Structural basis for the inhibition of Caspase-3 by XIAP [J]. Cell,2001,104(5):791-800.
    [10]沈方,沈倩,夏强.细胞凋亡与线粒体通透性转变孔的研究进展[J].浙江大学学报(医学版),2005,34(2):191-196.
    [11]Gao F, Yi J, Shi GY, et al. The sensitivity of the digestive tract tumor cells to arsenic trioxide is associated with the inherent cellular level of reactive oxygen species [J]. World J Gastroenterol,2002,8(1):36-39.
    [12]J.萨姆布鲁克,E.F.弗里奇,T.曼尼阿蒂斯著.分子克隆实验指南[M].北京:科学出版社 (第二版),1992.
    [13]Ceruti, S, Beltrami, E, Matarrese, P, et al. A key role for Caspase-2 and Caspase-3 in the apoptosis induced by 2-chloro-2-deoxy-adenosine and 2-chloro-adenosine in human astrocytoma cells [J]. Mol Pharmacol.2003,63:1437-1447.
    [14]T.S. Chen, X.P. Wang, Z.P. Wang, et al. Fluorescence emission analysis of Caspase-3 activation induced by Xiao-Ai-Ping (XAP) inside living human lung adenocarcinoma cells [J]. Spectrosc. Spectral Anal,2008,28:1327-1331.
    [15]Melanie Paillard, Ludovic Gomez, Lionel Augeul, et al. Postconditioning inhibits MPTP opening independent of oxidative phosphorylation and membrane potential [J]. Journal of Molecular and Cellular Cardiology,2009,46(6):902-909.
    [16]Stephen J. Ralph, Sara Rodriguez-Enriquez, Jiri Neuzil, et al. The causes of cancer revisited:"Mitochondrial malignancy" and ROS-induced oncogenic transformation-Why mitochondria are targets for cancer therapy [J]. Molecular Aspects of Medicine, 2010, in Press.
    [17]Eva Maria Garcia-Martinez, Sara Sanz-Blasco, Andonis Karachitos, et al. Mitochondria and calcium flux as targets of neuroprotection caused by minocycline in cerebellar granule cells [J]. Biochemical Pharmacology,2010,79(2):239-250.
    [18]G. Kadirvel, Satish Kumar, A. Kumaresan, et al. Lipid peroxidation, mitochondrial membrane potential and DNA integrity of spermatozoa in relation to intracellular reactive oxygen species in liquid and frozen-thawed buffalo semen [J]. Animal Reproduction Science,2009,114(1):125-134.
    [19]Peter Racay. Effect of magnesium on calcium-induced depolarisation of mitochondrial transmembrane potential [J]. Cell Biology International,2008,32(1):136-145.
    [20]Bratton D L, Fadok V A, Richter D A, et al. Polyamine regulation of plasma membrane phospholipid flip-flop during apoptosis [J]. J Biol Chem,1999,274(40):28113-28120.
    [21]Andrew P. Halestrap. What is the mitochondrial permeability transition pore? [J]. Journal of Molecular and Cellular Cardiology,2009,46(6):821-831.
    [22]Jens Martin Werner, Hans Jurgen Steinfelder. A microscopic technique to study kinetics and concentration-response of drug-induced Caspase-3 activation on a single cell level [J]. Journal of Pharmacological and Toxicological Methods,2008,57(2):131-137.
    [23]Yosef Levenbrown, Qazi M. Ashraf, Nicoletta Maounis, et al. Phosphorylation of Caspase-9 in the cytosolic fraction of the cerebral cortex of newborn piglets following hypoxia [J]. Neuroscience Letters,2008,447(1):96-99.
    [24]Ayman S, Srinivasa MS, Samir A, et al. Cytochrome C and dATP mediated oligomerization of apaf-1 is a prerequisite for procaspase-9 activation. Journal of Biological Chemistry,1999,274(25):17941.
    [25]T.S. Chen, X.P. Wang, L. Sun, et al. Taxol induces Caspase-independent cytoplasmic vacuolization and cell death through endoplasmic reticulum (ER) swelling in ASTC-a-1 cells [J]. Cancer Lett.,2008,270:164-172.
    [1]Stephen J. Ralph, Sara Rodriguez-Enriquez, Jiri Neuzil, et al. The causes of cancer revisited:"Mitochondrial malignancy" and ROS induced oncogenic transformation Why mitochondria are targets for cancer therapy [J]. Molecular Aspects of Medicine, 2010, in Press.
    [2]Eva Sammels, Jan B. Parys, Ludwig Missiaen, et al. Intracellular Ca2+ storage in health and disease:A dynamic equilibrium [J]. Cell Calcium,2010,47(4):297-314.
    [3]Melinda A. Merrell, Savita Wakchoure, Joanna M. Ilvesaro, et al. Differential effects of Ca2+ on bisphosphonate-induced growth inhibition in breast cancer and mesothelioma cells [J]. European Journal of Pharmacology,2007,559(1):21-31.
    [4]FANG Hong. Bcl-2 gene family in apoptosis and skin carcinoma [J]. Journal of Zhejiang University:Medical Sciences,2000,29(3):141-144.
    [5]Nathan R. Brady1, Anne Hamacher-Bradyl, Roberta A. Gottlieb. Proapoptotic BCL-2 family members and mitochondrial dysfunction during ischemia/reperfusion injury, a study employing cardiac HL-1 cells and GFP biosensors [J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics,2006,1757(5):667-678.
    [6]Isabel Marzo, Javier Naval. Bcl-2 family members as molecular targets in cancer therapy [J]. Biochemical Pharmacology,2008,76(8):939-946.
    [7]Muneo Motomura, Kyung Min Kwon, Seok-Jong Suh, et al. Young Propolis induces cell cycle arrest and apoptosis in human leukemic U937 cells through Bcl-2/Bax regulation [J]. Nevironmental Toxicology and Pharmacology,2008,26(1):61-67.
    [8]Emine Er, Lisa Oliver, Pierre-Francois Cartron, et al. Mitochondria as the target of the pro-apoptotic protein Bax [J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2006,1757(9):1301-1311.
    [9]Jianfei Jiang, Zhentai Huang, Qing Zhao, et al.Interplay between Bax, reactive oxygen species production, and cardiolipin oxidation during apoptosis [J]. Biochemical and Biophysical Research Communications,2008,368(1):145-150.
    [10]J.萨姆布鲁克,E.F.弗里奇,T.曼尼阿蒂斯著.分子克隆实验指南[M].北京:科学出版社 (第二版),1992.
    [11]Wen-jie Guo, Si-si Ye, Ning Cao, et al. ROS-mediated autophagy was involved in cancer cell death induced by novel copper (Ⅱ) complex [J]. Experimental and Toxicologic Pathology,2010, in Press.
    [12]Roxani Angelopoulou, Giagkos Lavranos, Panagiota Manolakou. ROS in the aging male: Model diseases with ROS-related pathophysiology [J]. Reproductive Toxicology,2009, 28(2):167-171.
    [13]Stela M. Florea, Lothar A. Blatter. The effect of oxidative stress on Ca2+ release and capacitative Ca2+ entry in vascular endothelial cells [J]. Cell Calcium,2008,43(4): 405-415.
    [14]Chorng-Chih Huang, He-Hsiung Cheng, Ko-Long Lin, et al. Tamoxifen-induced [Ca2+]i rise and apoptosis in corneal epithelial cells [J]. Toxicology,2009,255(1):58-64.
    [15]Matthieu Flourakis, Natacha Prevarskaya. Insights into Ca2+ homeostasis of advanced prostate cancer cells [J]. Biochimica et Biophysica Acta (BBA)- Molecular Cell Research,2009,1793(6):1105-1109.
    [16]Raha S, Robinson BH. Mitochondria, oxygen free radicals, and apoptosis [J]. Am J Med Genet,2001,106(1):62-70.
    [17]Rojanasakul Y, Wang L, Hoffman AH, et al. Mechanisms of hydroxyl free radical-induced cellular injury and calcium overloading in alveolar macrophages [J]. Am J Respir Cell Mol Biol,1993,8(4):377-383.
    [18]Takayuki Nakashima, Rieko Tanaka, Yoshinori Yamashita, et al. Aranorosin and a novel derivative inhibit the anti-apoptotic functions regulated by Bcl-2 [J]. Biochemical and Biophysical Research Communications,2008,377(4):1085-1090.
    [19]Cheol Park, Cheng-Yun Jin, Hyun Ju Kwon, et al. Induction of apoptosis by esculetin in human leukemia U937 cells:Roles of Bcl-2 and extracellular-regulated kinase signaling [J]. Toxicology in Vitro,2010,24(2):486-494.
    [20]Ghassan M. Saed Ph.D., Zhongliang Jiang M.D., Ph.D., Nicole M. Fletcher B.Sc., et al. Modulation of the BCL-2/BAX ratio by interferon-y and hypoxia in human peritoneal and adhesion fibroblasts [J]. Fertility and Sterility,2008,90(5):1925-1930.
    [21]Mohamad A. Mikati, Michele Zeinieh, Ralph Abi Habib, et al.Changes in sphingomyelinases, ceramide, Bax, Bc12 and Caspase-3 during and after experimental