典型硫化矿捕收剂的生物降解性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫化矿捕收剂是矿物浮选中应用最广泛的浮选药剂。然而这些捕收剂残留在浮选废水中带来了严重的环境问题,即使水体中含有微量的捕收剂都会对水生生物产生严重的毒害,并进一步影响水体的循环再利用。尾矿坝带来的地下水污染也是全世界所面临的环境问题。目前,国内外关于硫化矿捕收剂的生物降解性的研究少有报道,对浮选废水的污染治理主要采用物理和化学方法。然而由于生物修复技术具有实用性广、廉价、运行稳定和环境友好等特点在废水的治理中引起了普遍的关注。因此,研究硫化矿捕收剂的生物降解规律与机理,并进一步探讨生物修复技术处理浮选废水的可行性,可为研制高效、低毒的环境友好型的浮选药剂和浮选废水的有效治理提供一定的理论指导。
     本课题运用BOD5/CODCr比值法、静置烧瓶筛选试验法、振荡培养法(GB/T15818—2006)、改良斯特姆法Modified Sturm Test (OECD301B)等四种方法对乙硫氮、丁胺黑药、丁基黄药和乙硫氨酯等四种典型硫化矿捕收剂进行了生物降解性评价,提出一种适合硫化矿捕收剂的生物降解性测试方法。研究难降解捕收剂在好氧条件下、兼氧—好氧条件下以及一般厌氧和三种特殊厌氧条件下(Fe(Ⅲ)还原特殊厌氧条件、硫酸盐还原特殊厌氧条件和反硝化条件下)的生物降解特性,比较三种不同供氧条件下它们的生物降解性,找出适合其生物降解的条件,进一步研究含硫化矿捕收剂实际浮选废水在好氧和Fe(Ⅲ)还原特殊厌氧条件下的生物降解性。分析不同有机物结构对其生物降解性能的影响,建立典型硫化矿捕收剂的定量结构—生物降解性能关系(QSBR, Quantitative Structure-Biodegradability Relationship)。最后对两种最具有代表性的硫化矿捕收剂的生物降解机理进行探讨。通过研究可得出如下结论:
     (1)乙硫氮、丁胺黑药、丁基黄药和乙硫氨酯的BOD5/CODCr值分别为0.46、0.32、0.21和0.14,生物降解度D分别为85.49%、45.93%、38.88%、37.91%,生物降解指数IB分别为202.9867、140.5366、99.0013、63.1683。由上述评价方法得出的结论是一致的,即乙硫氮是易生物降解的,丁胺黑药是可生物降解捕收剂,而丁基黄药和乙硫氨酯都属于难生物降解。它们的生物降解速率常数k的大小顺序为:k乙硫氮>k丁胺黑药>k丁基黄药>k乙硫氨酯。
     (2)由振荡培养法可知,乙硫氮、丁胺黑药、丁基黄药和乙硫氨酯第8d的初级生物降解度PBD分别为97.05%、93.70%、81.76%、37.32%。在此试验条件下,乙硫氮、丁胺黑药、丁基黄药和乙硫氨酯的生物降解都符合一级动力学方程,其动力学方程分别为:Ct=29.54e-0.4512t、Ct=29.91e-0.3463t、Ct=27.30e-0.2168t、Ct=28.66e-0.0557t。
     (3)由改良斯特姆法可知乙硫氮、丁胺黑药、丁基黄药这三种捕收剂的抑制时间分别为4、7、12d。而乙硫氨酯的PCD曲线一直位于内源呼吸线的下方,说明乙硫氨酯不但不能被微生物降解,而且还具有一定的毒性,严重抑制了微生物的活性。它们的最终生物降解速率常数kco2分别为0.1817、0.1588、0.1315、0.1205。并且乙硫氮、丁胺黑药、丁基黄药和乙硫氨酯的最终生物降解过程都能很好地遵循Joel Blin和Diederik Schowanek提出的降解动力学模型,其降解动力学模型分别为:BCO2=0.8022(1-e-0.1817(t-4))、BCO2=0.5554(1-e-0.1588(t-4)), BCO2=0.3912(1-e-0.1315(t-4))、BCO2=0.2496(1-e-0.1205(t-8))。
     (4)好氧条件下,接种物浓度和溶解氧量是影响乙硫氨酯生物降解性的两个重要因素。添加铁盐可以显著提高乙硫氨酯的好氧生物降解速率。较低浓度(<10mg/L)的乙硫氨酯能够较快被微生物降解。
     (5)在含乙硫氨酯废水的生物处理过程中,添加少量的共代谢基质,可以大大提高其降解效率,缩短其生物处理周期,共基质代谢是提高乙硫氨酯好氧生物降性的一条有效途径。
     (6)兼氧—好氧条件下乙硫氨酯的生物降解性明显差于好氧条件下的降解性。在兼氧—好氧条件下乙硫氨酯第30d的去除率仅为37.48%,而在好氧共代谢条件下,第15d乙硫氨酯的去除率已高达75.57%。在兼氧—好氧条件下乙硫氨酯的降解过程能很好的遵循Sigmoidal动力学方程,其动力学方程为:
     (7)在厌氧条件下,8042-、NO3-和Fe3+作为最终电子受体都能快速促进乙硫氨酯的降解,但是采用不同的电子受体时,乙硫氨酯的厌氧生物降解速率k差别较大,其影响的大小顺序为:Fe3+>NO3->8O42-。
     (8)厌氧降解乙硫氨酯时,相对于NO3-和SO42-而言,Fe3+是最有效的最终电子受体。不同电子受体条件下,乙硫氨酯的降解和电子受体(NO3-、8042-、Fe3+)的消耗是一个耦合的过程。SO42-和Fe3+作为最终电子受体时,消耗的电子受体S042-、Fe3+和乙硫氨酯之间的实际比值都略低于理论比值。NO3-作为最终电子受体时,消耗的电子受体N03-和乙硫氨酯之间的实际比值为3.577,高于N03-完全矿化成N2的理论比值2.784,而低于N03-全部转化成N02-的理论比值6.959,可见在厌氧降解过程中N03-有部分转化成N02-,而N02-只有部分进一步转化成N2。
     (9)S042-、N03-和Fe3+作为电子受体时,乙硫氨酯的生物降解都遵循一级衰减动力学模型Ct=A×exp(-t/D)+B0,其动力学衰减强度指数A满足如下顺序:AFe3+>ANO3->ASO42-。
     (10)微生物在好氧条件下和Fe(Ⅲ)还原特殊厌氧条件下处理实际浮选废水能够取得良好的处理效果,并且Fe(Ⅲ)还原特殊厌氧条件下的处理效果明显优于好氧条件下的处理效果。可见,Fe(Ⅲ)还原特殊厌氧生物法是一种高效处理含乙硫氨酯实际浮选废水的方法。
     (11)硫化矿捕收剂的生物降解性主要受ELUMO、μ、TE、(ELUMO-EHOMO)、(ELUMO+EHOMO)和(ELUMO-EHOMO)2等电性参数的影响,空间参数和疏水性参数对其生物降解性的影响较小。
     (12)通过多元线性回归,得到关于硫化矿捕收剂的定量结构—初级生物降解性能关系(QSBR)pri模型为:logKb=0.3242ELUMO-O.0.08653μ+7.228×104TE+316.1784×(ELUMO-EHOMO)一20.7715×(ELUMO-EHOMO)2-1210.496(R2=0.970,P<0.0001,n=7)。定量结构—最终生物降解性能关系(QSBRult)模型为:PCD=0.3211μ-5.4717×104TE-1416.2314-(ELUMO-EHOMO)-1.7989×(ELUMO+EHOMO)+94.4990×(ELUMO-EHOMO)2+5288.1325(R2=0.998, P<0.0001,n=7).
     (13)(QSBR)pri、(QSBR)ult两种模型可以准确用于其它硫化矿捕收剂生物降解性的预测,其预测得到硫化矿捕收剂生物降解性的残差都小于4.56×10-。
     (14)乙硫氮在生物降解过程中首先断裂的是C-N键,生成了三乙胺,三乙胺部分脱甲基生成三甲胺,三甲胺进一步脱甲基氧化分解并矿化为C02和H2O。同时乙硫氮的生物降解过程中,还生成了乙醇,部分乙醇进一步氧化生成乙醛和乙酸,乙酸最后氧化分解并矿化为CO2和H2O。此外,降解过程中还伴随着小分子的CS2生成。乙硫氨酯在生物降解过程中首先断裂的是C-N键,生成了硫羰基异丙基醚和乙胺。乙胺在微生物的作用下进一步氧化成乙醇,乙醇进一步氧化生成了乙醛和乙酸,乙酸最后氧化分解并矿化为CO2和H2O。而硫羰基异丙基醚进一步降解时,有两种途径。一种是硫羰基异丙基醚在微生物的作用下氧化成甲硫醇和丙酮,另一种途径是硫羰基异丙基醚进一步降解为丙烷和羰基硫,然后再进一步氧化分解并矿化为CO2和H2O。
Sulfide mineral flotation collectors are the most widely used reagents in mineral flotation. The residual sulfide mineral flotation collectors in flotation wastewater have brought more and more serious environmental problems. It is known that even small concentration of these reagents in flotation wastewater is toxic to water life, besides their deleterious influence on the end stream processes during recycling. Groundwater pollution due to tailing dams is a worldwide problem. At present, studies of the biodegradability of sulfide mineral flotation collectors have seldom been reported at home and abroad. The flotation wastewater pollution is controlled mainly by physical and chemical methods. Bioremediation techniques have brought attention internationally as they are found to be versatile, inexpensive, stable and environmentally benign techniques in wastewater treatment. Therefore, studies on biodegradation law and mechanism of sulfide mineral flotation collectors in flotation wastewater and investigation on the feasibility of bioremediation technology treatment of flotation wastewater will provide some theoretical guidance for developing effective, low toxicity and environment-friendly flotation collectors and effective treatment of flotation wastewater.
     The biodegradability of four kinds of typical sulfide mineral flotation collectors such as sodium diethyldithiocarbamate, ammonium butyl-dithiophosphate, n-butyl xanthate and ethylthionocarbamate has been evaluated by BOD5/CODcr, static flask screening tests, oscillating culture method and Modified Sturm Test (OECD301B), aiming to propose a new appropriate evaluation method for evaluating the biodegradability of sulfide mineral flotation collectors. The biodegradation behaviors of difficultly biodegradable collector ethylthionocarbamate under the aerobic, facultative aerobe-aerobic, conventional anaerobic and nitrate, sulfate and ferric reduction conditions have been studied. Additionally, the biodegradation behaviors of ethylthionocarbamate under three different oxygen conditions were compared, and the optimal biodegradation conditions of ethylthionocarbamate were also obtained. Furthermore, the biodegradation behaviors of plant flotation wastewater containing ethylthionocarbamate under aerobic and ferric reductive conditions were discussed. Meanwhile, the influence of molecular structures on biodegradability was investigated, and the quantitative structure-biodegradability relationship (QSBR) model of typical sulfide mineral flotation collectors was established. Finally, the biodegradation mechanisms of the two most representative collectors were explored. From the present investigation, the main conclusions are as follows:
     (1) The BOD5/CODcr of sodium diethyldithiocarbamate, ammonium butyl-dithiophosphate, n-butyl xanthate and ethylthionocarbamate is0.46,0.32,0.21and0.14, respectively. And the biodegradation extent (D) can reach85.49%,45.93%,38.88%and37.91%, respectively. The index of biodegradability (IB) can reach202.9867,140.5366,99.0013and63.1683, respectively. Coincident conclusions have been obtained through those methods, indicating that sodium diethyldithiocarbamate is a readily biodegradable collector whereas ammonium butyl-dithiophophate is partially biodegradable. However, n-butyl xanthate and ethylthionocarbamate are poorly biodegradable collectors. Besides, the magnitudes of the biodegradation rate constants (k) are in the following order:Ksodium diethyldithiocarbamate>Kammonium butyl-dithiophophate>-butyl xanthate> Kethylthionocarbamate-
     (2) The primary biodegradation extent (PBD) of sodium diethyldithiocarbamate, ammonium butyl-dithiophosphate, n-butyl xanthate and ethylthionocarbamate can reach97.05%,93.70%,81.76%and37.32%, respectively in8d. And their biodegradation follows the first order reaction kinetics equation as follows: Ct=29.54e-0.4512t, Ct=29.91e-0.3463t, Ct=27.30e-0.2168t and Ct=28.66e-0.0557t, respectively.
     (3) The Modified Sturm Test (OECD301B) indicated that the suppressed time of sodium diethyldithiocarbamate, ammonium butyl-dithiophosphate and n-butyl xanthate attained4,7,12d, respectively. However, the PCD curve of ethylthionocarbamate is consistently located below the PCD curve of endogenous respiration, indicating that ethylthionocarbamate is refractory and toxic to the growth of microorganisms. Besides, their ultimate biodegradation rate constants (KCO2) are0.1817,0.1588,0.1315and0.1205, respectively. And their ultimate biodegradation follows the biodegradation kinetics equation proposed by Joel Blin and Diederik Schowanek as follows:BCO2=0.8022(1-e-0.1817(t-4)), BCO2=0.5554(1-e-0.1588(t-4)), BCO2=0.3912(1-e-0.1315(t-4)) and BCO2=0.2496(1-e-0.1205(t-8)),respectively.
     (4) The inoculum and dissolved oxygen concentration are two important factors that influence the biodegradability of ethylthionocarbamate under the aerobic condition. The biodegradation rate of ethylthionocarbamate can be significantly improved when ferric salt added. Therefore, low concentration (less than10mg/L) of ethylthionocarbamate could be rapidly degraded by the microbe.
     (5) When adding a small amount of glucose as co-metabolism substrate during the treatment of flotation wastewater containing ethylthionocarbamate, it can greatly enhance the biodegradation efficiency of ethylthionocarbamate, and greatly shorten the biological treatment period. The results showed that co-substrate metabolism is one of the most effective ways to enhance aerobic biodegradability of ethylthionocarbamate.
     (6) The biodegradability of ethylthionocarbamate under facultative aerobe-aerobic condition was significantly inferior to aerobic conditions. The biodegradation rate of ethylthionocarbamate was only37.48%in30d under facultative aerobe-aerobic condition, but the biodegradation rate was up to75.57%in15d under co-metabolism conditions. The biodegradation of ethylthionocarbamate under facultative aerobe-aerobic conditions can be accurately described by Sigmoidal kinetics. The corresponding kinetics equation is as follows:
     (7) Under anaerobic conditions, the enriched mixed bacteria could accelerate the biodegradation of ethylthionocarbamate when nitrate, sulfate and ferric were the terminal electron acceptors. It can be seen that with different electron acceptors, the biodegradation rates are comparatively different. Under these electron acceptor conditions, the order of the biodegradation rate of ethylthionocarbamate was:ferric> nitrate> sulfate.
     (8) Ferric was the most favorable electron acceptor compared to nitrate and sulfate under anaerobic conditions. Under different electron acceptor conditions, ethylthionocarbamate degradation was coupled to nitrate, sulfate and ferric reduction, respectively.Under sulfate reducing and ferric reducing conditions, the measured mass ratios between terminal electron acceptor and ethylthionocarbamate consumption were slightly lower than the theoretical ratios. When nitrate was a terminal electron acceptor, and the measured value between nitrate and ethylthionocarbamate consumption was3.557, which was higher than the theoretical mass ratio of2.784that was expected assuming the complete reduction of nitrate to nitrogen with ethylthionocarbamate complete mineralization, but was lower than the theoretical ratio of6.959that was calculated according to the assumption that nitrate was only reduced to nitrite. So we can conclude that nitrate was reduced to nitrite, but only part of the nitrite was further transferred to nitrogen.
     (9) When nitrate, sulfate and ferric were the terminal electron acceptors, the anaerobic biodegradation of ethylthionocarbamate can be accurately described by first order exponential decay kinetics. The order of the decay intensity constants (A) of ethylthionocarbamate is as follows:AFe3+>ANO3->ASO42-·
     (10) Satisfactory results were obtained for biological treatment of plant flotation wastewater containing ethylthionocarbamate under the conditions of aerobic and ferric reducing. The results demonstrated that anaerobic treatment of ethylthionocarbamate wastewater under ferric reducing condition is a new efficient wastewater treatment technology.
     (11) The electrical parameters such as ELUMO、μ、TE、(ELUMO-EHOMO)、(ELUMO+EHOMO) and (ELUMO-EHOMO)2were the dominant factors affecting the biodegradability of sulfide mineral flotation collectors. However, the steric parameters and hydrophobic parameters had a little impact on biodegradability of the collectors.
     (12) The (QSBR)pri model of sulfide mineral flotation collectors was established for primary biodegradability prediction by multiple linear regression as follows: logKb=0.3242ELUMO-0.08653μ+7.228×10-4TE+316.1784×(ELUMO-EHOMO)-20.7715×(ELUMO-EHOMO)2-1210.496(R2=0.970, P<0.0001, n=7). Meanwhile, the (QSBR)ult for ultimate biodegradability prediction was also obtained as follows:PCD=0.3211μ- 5.4717×10-4TE-1416.2314×(ELUMO-EHOMO)-1.7989x (ELUMO+EHOMO)+94.4990×(ELUMO-EHOMO)2+5288.1325(R2=0.998, P<0.0001, n=7).
     (13) The (QSBR)pri and (QSBR)ult models showed that the calculated values fit well with the experimental data, the error between the experimental and predicted values of sulfide mineral flotation collectors is less than4.56×10-2, proving that the QSBR models have favorable predicting ability and can serve as a general predictor for unknown flotation collectors.
     (14) The biodegradation pathway of sodium diethyldithiocarbamate shows that the cleavage of C-N bond takes place firstly resulting in the formation of triethylamine, and then demethylation, trimethylamine are thus formed. Trimethylamine demethylation and further oxidation occur to form small molecules CO2and H2O. Meanwhile, ethanol is also produced, which is gradually oxidized to form ethanal and acetic acid. And acetic acid could be further oxidized to CO2and H2O. Finally, carbon disulphide as intermediate is also generated in biodegradation process of diethyldithiocarbamate. The biodegradation pathway of ethylthionocarbamate shows that the cleavage of C-N bond takes place firstly, with the formation of thiocarbonyl isopropyl ether and ethylamine. Ethylamine is gradually oxidized to form ethanol, which is further oxidized to form ethanal and acetic acid. Finally, acetic acid is oxidized to CO2and H2O. There are two pathways for biodegradation of thiocarbonyl isopropyl ether. One is thiocarbonyl isopropyl ether oxidize to methanthiol and acetone, another is thiocarbonyl isopropyl ether oxidize to dimethylmethane and carbonyl sulfide, and then further oxidized to CO2and H2O.
引文
[1]见百熙.浮选药剂[M].北京:冶金工业出版社,1981
    [2]师伟.烃基黄药浮选捕收剂光化学降解性能研究[D].武汉:武汉理工大学,2007:3-4
    [3]杨运琼.硫化矿捕收剂的降解性能及机理研究[D].长沙:中南大学,2003:6-7
    [4]夏洋.脂肪胺浮选捕收剂光化学降解性能的研究[D].武汉:武汉理工大学,2007:3-4
    [5]Deo N., Natarajan K.A. Biological removal of some flotation collector reagents from aqueous solutions and mineral surfaces[J]. Minerals Engineering,1998,11(8):717-738
    [6]翁建浩.选矿废水中残余黄药降解规律的试验研究[J].化工矿物与加工,2001(5):18-21
    [7]张萍,孙水裕,徐劲.一株有机浮选药剂——黄原酸盐降解菌的特性研究[J].环境污染治理技术与设备,2006,7(2):53-55
    [8]赵永红,谢明辉,罗仙平.去除水中黄药的试验研究[J].金属矿山,2006,1(6):75-77
    [9]徐劲.有机浮选药剂物化净化特性研究[D].广州:广东工业大学,2006:4-5
    [10]李刚.典型选冶药剂环境影响及测试方法研究[D].桂林:桂林理工大学,2009:6-7
    [11]顾泽平.含苯胺黑药废水的物化净化特性研究[D].广州:广东工业大学,2006:6-8
    [12]翟平.硫化矿浮选废水净化与回用的新工艺研究[D].广州:广东工业大学,2004:8-10
    [13]夏洋.脂肪胺类浮选捕收剂光化学降解性能的研究[D].武汉:武汉理工大学,2007:3-4
    [14]段海霞,刘炯天,郎成明等.国内处理黄药废水的研究进展[J].矿冶,2009,18(4):80-82
    [15]董丽芳.浅谈金属矿山选矿尾矿及废水处理[J].云南冶金,2001,30(2):61-64
    [16]徐劲,孙水裕,张萍等Fenton试剂降解选矿废水中残余黄药[J].化工环保,2005,25(2):125-126
    [17]顾泽平,孙水裕,肖华花Fenton试剂处理选矿废水的试验研究[J].水资源保护,2006,22(4):82-83
    [18]付保军,陈建华.TOi2光催化降解黄药试验研究[J].矿产保护与利用,2005(2):43-46
    [19]李佩悦Si-Al-Ca-C结构光催化材料制备及降解羟肟酸类捕收剂研究[D].武汉:武汉理工大学,2009:1-3
    [20]赵玉娥.黄药、黑药、二号油在水体中的降解试验研究[J].黄金,1995,16(7):47-49
    [21]朱潜力.黄药废水治理的新工艺研究[J].有色矿冶,1997,13(1):53-54
    [22]徐劲,孙水裕,白书立等.黄药的净化特性研究[J].广东工业大学学报,2005,22(4):8-9
    [23]曾艳,唐琳,张明青.选矿废水中残留黄药处理技术及机理研究进展[J].工业水处理,2010,30(7):8-11
    [24]舒生辉.黄原酸盐高效降解菌的紫外诱变选育及其降解特性的研究[D].广州:广东工业大学,2007:25-26
    [25]肖华花.二苯胺基二硫代磷酸生物降解特性研究[D].广州:广东工业大学,2006:30-32
    [26]舒生辉,杨永峰,张志.选矿废水中黄药的处理方法及研究进展[J].矿产综合利用,2009(4):35-37
    [27]程伟,张覃,马文强.活性炭对浮选废水中黄药的吸附特性研究[J].矿物学报,2010,30(2):262-266
    [28]陈绍华.烃基黄药类捕收剂的生物降解性研究[D].武汉:武汉理工大学,2009:12-13
    [29]Raymond J.W., Rogers T.N., Shonnard D.R., et al. A review of structure-based biodegradation estimation methods[J]. Journal of Hazardous Materials,2001,84 (2-3): 189-215
    [30]胡兴刚,孙继,靳晓霞等.水处理剂生物降解性能评价方法研究[J].工业水处理,2007,27(1):65-67
    [31]孙立新,蒋展鹏.ATP法测定有机物好氧生物降解性的研究[J].环境科学,1996,17(1):1-4
    [32]Cripe C.R. A Shake-Flask Test for Estimation of Biodegradability of Toxic Organic Substances in the Aquatic Environment[J].Ecotoxicology Environmental Safety,1987,14(3): 239-251
    [33]王润欢.采用密闭瓶二氧化碳法对有机污染物的好氧生物降解性研究[D].乌鲁木齐:新疆农业大学,2008:5-6
    [34]Sturm R.N. Biodegradability of Nonionic Surfactants:Screening test for predicting rate and ultimate biodegradation[J]. Journal of the American Oil Chemists' Society,1973, 50(5):158-167
    [35]蒋展鹏,杨宏伟,孙立新等.有机物好氧生物降解性的综合测试评价方法[J].环境科学,1999,11(06):10-13
    [36]汤改风.废水中硝基酚好氧生物降解性及降解动力学研究[D].青岛:中国海洋大学,2006:6-7
    [37]Bunch R.L., Chambers C.W. A Biodegradability Test for Organic Compounds[J]. Water Pollution Control Federation,1967,39(2):181-182
    [38]蒋展鹏,杨宏伟,师绍琪.有机化合物厌氧生物降解性的测定[J].给水排水,1999,25(6):1-6
    [39]唐文斌.天然气净化废水厌氧可生化性实验研究[D].成都:西南交通大学,2006:13-14
    [40]王学川,任永强,强涛涛等.加脂剂生物降解性评价方法[J].皮革与化工,2009,26(5):15-18
    [41]沈德中.污染环境的生物修复[M].北京:化学工业出版社,2002:102-108
    [42]马文漪,杨柳燕.环境微生物工程[M].南京:南京大学出版社,1998:78-86
    [43]史敬华.不同基质共代谢降解地下水中四氯乙烯的研究[D].北京:中国地质大学(北京),2006:34-35
    [44]陈波水,黄伟九,方建华等.含氨基酸的润滑油生物降解性及降解速率方程模拟[J].生态环境学报,2009,18(5):1757-1760
    [45]孙伟.污染物的微生物降解动力学及定量结构性质关系预测的新概念、新算法研究[D].长沙:湖南大学,2004:2-3
    [46]王雪莲.三氯乙烯的好氧共代谢与挥发模型研究[D].北京:中国地质大学,2006:10-11
    [47]谯建军.三苯甲烷类染料废水微生物降解研究[D].西安:西安理工大学,2005:11-14
    [48]Alvarez C.L., Mccarty P.L. Cometabolic biotransformation model for halogenated aliphatie compounds exhibiting product toxicity[J]. Environmental Science and Technology, 1991,25(8):1381-1387
    [49]Criddle C.S. The kinetics of cometabolism[J]. Biotechnology and Bioengineering,1993, 41(11):1048-1056
    [50]Alvarez C.L., Gerald E.S.J. Kinetics of aerobic cometabolism of chlorinated solvents [J]. Biodegradation,2001,12(2):105-126
    [51]Hao O. J., Kim M.H., Seagren E.A., et al. Kinetics of phenol and chlorophenol utilization by Acinetobacter species[J]. Chemosphere,2002,46(6):797-807
    [52]Chang H.L., Alvarez C.L. Model for the cometabolic biodegradation of chlorinated organics[J].Environmental Science and Technology,1999,29(9):2357-2367
    [53]GB/T 7488-1987,水质—五日生化需氧量(BOD5)的测定非稀释法和稀释接种法[S].
    [54]GB/T 7489-1987,水质—溶解氧的测定碘量法[S].
    [55]国家环境保护总局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002
    [56]HJ/T342-2007,水质—硫酸盐的测定铬酸钡分光光度法(试行)[S].
    [57]HJ/T 345-2007,水质—铁的测定邻菲哕啉分光光度法[S].
    [58]Jing C., Ping Z., Mahmood Q. Influence of various nitrogenous electron acceptors on the anaerobic sulfide oxidation[J]. Bioresource Technology,2010,101 (9):2931-2937
    [59]Levine L.H., Kagie H.R., Garland J.L. Biodegradation pathway of an anionic surfactant (Igepon TC-42) during recycling waste water through plant hydroponics for advanced life support during long-duration space missions [J].Advances in Space Research,2003,31(1): 249-253
    [60]Carvalho M.C., Pereira C., Goncalves I.C., et al. Assessment of the biodegradability of a monosulfonated azo dye and aromatic amines[J]. International Biodeterioration and Biodegradation,2008,62(2):96-103
    [61]Haus F., Boissel O., Junter G.A. Primary and ultimate biodegradabilities of mineral base oils and their relationships with oil viscosity[J]. International Biodeterioration and Biodegradation,2004,54 (2-3):189-192
    [62]沈延.直接染料的可生化性研究[D].上海:东华大学,2006:20-21
    [63]吴杰,刘正芹,奚旦立.两种基本方法测定阳离子染料可生化性[J].河南师范大学学报(自然科学版),2003,31(1):74-75
    [64]GB/T15818-2006,表面活性剂的生物降解度试验方法[S].
    [65]秦勇,张高勇,赵郁梅等.油溶性表面活性剂生物降解度的测定[J].日用化学工业,2006,36(6):351-354
    [66]Chen S.H., Gong W.Q., Mei G.J., et al. Primary biodegradation of sulfide mineral flotation collectors[J]. Minerals Engineering,2011,8 (24):953-955
    [67]Qin Y., Zhang G.Y., Kang B.A., et al. Primary aerobic biodegradation of cationic and amphoteric surfactants[J].Journal of Surfactants and Detergents,2005,8(1):55-58
    [68]Qin Y., Zhang G.Y., Zhang J., et al. Primary Aerobic Biodegradation of Linearand Oxo Alcohol Alkylpolyglucosides (APG) [J]. Journal of Surfactants and Detergents,2006,9(3): 227-230
    [69]余慧.氟苯胺的好氧生物降解性能研究[D].上海:同济大学,2006:28-29
    [70]辛青THPS绿色性能的评价[D].武汉:武汉大学,2005:72-30
    [71]Junker T., Paatzsch C., Knacker T. A water-sediment screening tool for measuring biodegradation of organic chemicals[J]. Science of the Total Environment,2010,408(18): 3803-3810.
    [72]GB/T20778-2006,水处理剂可生物降解性能评价方法CO2生成量法[S].
    [73]OECD 301B, OECD Guidelines for the testing of chemicals[S].
    [74]黄远星,雷中方.聚天门冬氨酸类阻垢剂的生物降解性评定方法[J].复旦学报(子然科学版),2003,42(6):1053-1054
    [75]蒋展鹏,师绍琪,买文宁等.有机物好氧生物降解性二氧化碳生成量测试法的研究[J].环境科学,1996,16(3):11-14
    [76]Jiang Z.P., Yang H.W., Sun L.X., et al. Integrated assessment for aerobic biodegradability of organic substances[J]. Chemosphere,2002,48 (1):133-138
    [77]陈金思,江向洋,胡恩柱.棉籽油制备生物柴油的生物降解性能[J].农业工程学报,2010,26(1):301-304
    [78]王妹婷,蔡磊明.苯胺好氧生物降解性的测试[J].农药,2005,44(6):251-253
    [79]蒋展鹏,师绍琪,买文宁等.有机物好氧生物降解性二氧化碳生成量测试法的研究[J].环境科学,1996,16(3):11-14
    [80]陈勇生,陈丽侠,杨杰等.32种芳香化合物的好氧生物降解性表征[J].环境科学,1997,16(1):43-45
    [81]Blin J., Volle G., Girard P., et al. Biodegradability of biomass pyrolysis oils:Comparison to conventional petroleum fuels and alternatives fuels in current use[J]. Fuel,2007,86 (17) 2679-2686
    [82]Schowanek D., Feijtel T.C., Perkins C.M., et al. Biodegradation of [S,S], [R,R] and mixed stereoisomers of ethylene diamine disuccinic acid (EDDS), a transition metal chelator [J].Chemosphere,1997,34(1):2375-2391
    [83]李萍,刘俊新.废水中难降解性有机污染物的共代谢降解[J].环境污染治理技术与设备,2002,3(11):43-45
    [84]张超杰.氟苯酚好氧生物降解性能及其降解机理的研究[D].上海:同济大学,2003:53-54
    [85]张峰.偏二甲肼污水的好氧生物降解及动力学研究[D].重庆:重庆大学,2007:39-40
    [86]李茵.酸性染料的生物降解性能及其废水的处理工艺研究[D].上海:东华大学,2003:45-46
    [87]李烨.不同厌氧环境中四氯乙烯生物降解研究[D].北京:中国地质大学(北京),2006:15-16
    [88]全向春,王文燕,何孟常等.硝酸盐还原条件下不同碳源对萘生物降解特性的影响[J].环境科学研究,2009,22(3):261-265
    [89]Broholm M.M., Arvin E. Biodegradation of phenols in a sandstone aquifer under aerobic conditions and mixed nitrate and iron reducing conditions[J]. Journal of Contaminant Hydrology,2000,44(3):239-273
    [90]Szykowny D., Keasling J. D. Kinetics of BTEX degradation by a nitrate-reducing mixed culture[J]. Annals of the New York Academy of Sciences,1997,829(11):135-141
    [91]Dou J.F., Liu X., Hu Z.F., et al. Anaerobic BTEX biodegradation linked to nitrate and sulfate reduction[J]. Journal of Hazardous Materials,2008,151(2-3):720-729
    [92]Hu Z.f., Dou J.f., Liu X., et al. Anaerobic biodegradation of benzene series compounds by mixed cultures based on optional electronic acceptors[J]. Journal of Environmental Sciences-China,2007,19(9):1049-1054
    [93]Lu J., Jin Q., He Y.L. Biodegradation of nonylphenol polyethoxylates under Fe(Ⅲ)-reducing conditions[J]. Chemosphere,2007,69(7):1047-1054
    [94]Roychoudhury A. N., Merrett G. L. Redox pathways in a petroleum contaminated shallow sandy aquifer:Iron and sulfate reductions[J]. Science of the Total Environment,2006,366(1): 262-274.
    [95]章立勇,林匡飞,徐圣友等.硫酸盐还原条件下三氯乙烯的降解研究[J].环境污染与防治,2009,31(2):1-3
    [96]Jones B. D., Ingle J. D. Evaluation of redox indicators for determining sulfate-reducing and dechlorinating conditions[J]. Water Research,2005,39(18):4343-4354
    [97]Lu J., Jin Q., He Y.L., et al. Biodegradation of nonylphenol polyethoxylates under sulfate-reducing conditions[J]. Science of the Total Environment,2008,399(1-3):121-127
    [98]Jae-Jung Ko, Yoshihisa Shimizu, Kazuhiro Ikeda, et al. Biodegradation of high molecular weight lignin under sulfate reducing conditions:Lignin degradability and degradation by-products [J]. Bioresource Technology,2009,100(4):1622-1627
    [99]Cheung J.K., Lam R.K., Shi M.Y., et al. Environmental fate of endocrine-disrupting dimethyl phthalate esters (DMPE) under sulfate-reducing condition[J]. Science of the Total Environment,2007,381 (1-3):126-133
    [100]吕剑.废水中壬基酚聚氧乙烯醚生物降解行为研究[D].上海:上海交通大学,2008:54-55
    [101]张静云.壬基酚聚氧乙烯醚的生物降解行为研究[D].上海:上海交通大学,2008:17-20
    [102]Chen S.H., Gong W.Q., Mei G.J., et al. Anaerobic biodegradation of ethylthionocarbamate by the mixed bacteria under various electron acceptor conditions [J]. Bioresource Technology,2011,22 (102):10772-10775
    [103]戴树桂,宋文华,庄源益等.有机化合物动态定量结构—生物降解关系(QSBR)模型研 究[J].环境科学进展,1998,6(1):1-9
    [104]陈刚.定量结构与生物降解性能关系的研究及应用[J].武汉理工大学学报(交通科学与工程版),2004,28(3):459-462
    [105]罗坤,高士祥,张爱茜等.酚类化合物的三维—定量结构与生物降解性关系(3D-QSBR)[J]环境化学,2009,28(2):210-211
    [106]陆光华,赵元慧,汤洁.有机化学品的生物降解性及构效关系[J].化学通报,2002(2):113-117
    [107]杨加安,江元生.应用拓扑指数预测化学性质[J].化学通报,1992,41:884-891
    [108]许禄,吴亚平,胡昌玉等.苯胺类化合物结构—毒性定量构效关系研究[J].中国科学,2000,30(1):1-7
    [109]胡守仁.神经网络导论[M].北京:国防科技大学出版社,1993
    [110]郭明,许禄.酚类化合物的QSAR研究[J].环境科学学报,1998,18(21):22-126
    [111]Lyman W. J., Reehl W. F. Handbook of Chemical Property Estimation Methods[M]. New York:MC Graw-Hill Press,1982
    [112]Degner P., Nendza M., Klein W. Predictive QSAR Models for Estimating Biodegradation of Aromatic Compounds[J]. Science of the Total Environment,1991,109(10):253-259
    [113]Howard P. H., Boethling R. S., Stiteler W. Development of a Predictive Model for Biodegradability Based on BIODEG the Evaluated Biodegradation Data Base[J]. Science of the Total Environment,1991,109(10):635-641
    [114]瞿福平,杨义燕,冯旭东等.定量结构—生物降解性能关系(QSBR)研究原理及进展[J].中国环境科学,1999,19(1):18-21
    [115]杨绍贵,陆光华,赵元慧等.取代苯胺及苯酚类化合物定量结构-生物降解相关性(QSBR)研究[J].化学通报,2009(9):586-587
    [116]Chen S.H., Gong W.Q., Mei G.J., et al. Quantitative structure-biodegradability relationship of sulfide mineral flotation collectors[J]. International Journal of Mineral Processing,2011, 4(101):112-115
    [117]Yang D.S., Dai Y.Z., Li J.H., et al. QSBR study on the anaerobic biodegradation of chlorophenols[J]. Chinese Journal of Structural Chemistry,2006,25(10):1183-1188
    [118]Zhou T., Lu X.H., Lim T.T., et al. Degradation of chlorophenols (CPs) in an ultrasound-irradiated Fenton-like system at ambient circumstance:The QSPR(quantitative structure-property relationship) study[J]. Chemical Engineering Journal,2010,156(2): 347-352
    [119]Dai Y.Z., Yang D.S., Zhu F., et al. The QSPR (quantitative structure-property relationship) study about the anaerobic biodegradation of chlorophenols[J]. Chemosphere,2006,65 (11): 2427-2433
    [120]Yang H.W., Jiang Z.P., Shi S.Q. Biodegradability of nitrogenous compounds under anaerobic conditions and its estimation[J]. Ecotoxicology and Environmental Safety,2006, 63 (2):299-305
    [121]Li Y., Xi D.L. Quantitative structure-activity relationship study on the biodegradation of acid dyestuffs[J]. Journal of Environmental Sciences,2007,19(7):800-804
    [122]万金培.酞酸酯好氧最终性生物降解及其动力学研究[D].合肥:合肥工业大学,2004:20-21
    [123]Lu G.H., Wang C., Yuan X., et al. QSBR study of substituted phenols and benzoic acids[J]. Journal of Environmental Sciences (China),2003,15 (1):88-91
    [124]Liu Y., Liu S.S., Cui S.H., et al. A novel quantitative structure-biodegradability relationship (QSBR) of substituted benzenes based on MHDV descriptor[J]. Journal of the Chinese Chemical Society,2003,50 (2):319-324
    [125]J.赖亚.泡沫表面浮选化学[M].北京:冶金工业出版社,1987
    [126]卢涌泉,邓振华.实用红外光谱解析[M].北京:电子工业出版社,1989
    [127]唐恢同.有机化合物的光谱鉴定[M].北京:北京大学出版社,1992
    [128]鄢恒珍.胺类捕收剂的生物降解性研究[D].武汉:武汉理工大学,2010:105-110