藻与苯酚的超临界水气化过程与机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温室效应、对可持续能源高的需求使得环境与能源已经成为二十一世纪最重要的课题之一。从生物质、废水废物中获取能源可减少对石油、天然气等的依赖,有助于持续发展。
     超临界水气化是将生物质、有机废水及废物转化成能源气体的有效方式。其中,优化气化过程、构建动力学模型、分析原理及结焦控制是该领域面临的难题。由于超临界水气化过程为高能耗过程,因此,分析并探索有效降低能耗的工艺手段同样是超临界水气化的重点难题。
     研究首先致力于研究从生物质获取能源的有效手段。由于藻类单位土地的生物质产出率将是一般植物的5~9倍,而使用其他植物供应生物质以获得足量的生物油、燃料气体则要求地球提供30-40%额外土地用于种植植物,但藻仅需要用约5%的区域种植。且藻类可以在海洋、湖泊中生长,不需要与粮食等农作物竞争土地。因此,藻类目前被认为是能供应足量的生物质满足未来能源需求的重要生物。
     研究首先系统分析藻类的超临界水气化过程,建构了生物质超临界水气化的动力学模型,为未来从藻中气化获取能源气体并优化过程提供基础。工艺条件研究表明,在450-550oC时,气化生成的主要气体为H_2,CO_2及CH_4等气体,并有少量的CO,C2H4及C2H6。高温,长停留时间,高水密度及低藻浓度将获得高气体生成率。实验条件中,当藻浓度浓度从15wt%减少到1wt%,H_2产率增加约三倍。水密度从0.02增加到0.13g/cm3时,气化效率增加了近一倍(28%到57%)。原理分析表明,藻气化过程产生两类型中间产物,其由不同的速率气化,产生气体并伴随有结焦过程。动力学模型的结果表明,快速降解的中间产物为最初气体产生的主要来源,而难气化中间产物为后期气体生成的主要供源,且难气化的中间产物为结焦的重要来源。温度的升高将更有利于易气化的中间产物的生成,从而过程提高了气体的生成率,促进了藻的气化。其中,水汽重整反应是H_2产生的重要来源,即生成气体中的部分氢元素,将来自于水中,而生物质的直接分解反应为CO_2及CH_4的重要来源。
     为获得高效超临界水气化藻的有效手段,本研究系统分析报道Nannochloropsis sp.的Ru/C催化气化过程。研究发现,在催化过程中,催化剂量对气化过程的影响最为显著,当催化剂量大约2g/g时(催化剂与干藻生物质量之比),将实现藻中碳元素的完全气化。与非催化过程相似,实验条件中,长停留时间、高水密度及低藻浓度将获得高气体生成率。过程中,藻浓度将影响H_2产率而水密度的增加将增加藻的气化效率。研究意外发现,藻中含有的S(硫)(约0.5wt%),造成催化剂的迅速失活。基于藻的催化气化过程原理,建了了藻催化降解的动力学模型,并证明了在藻的气化过程中,S是造成催化剂失活的最主要原因。因此,不同于陆生植物,藻中自然存在的成分S,将对藻超临界水催化气化工业中的催化剂设计及催化气化工程运行带来新的挑战。
     为寻求结焦控制的有效手段,研究分析了苯酚的超临界水气化过程。苯酚及其衍生物不仅是焦油的重要成分,也是典型工业有机废水的重要组成,同时苯酚是木质素的基础单元产物之一。但400oC时,苯环无法直接气化降解,即焦油能稳定存在。本研究系统分析300-450oC时苯酚的超临界水部分氧化过程,寻求了气化环类化合物的有效手段并构建了部分氧化的首个动力学模型。研究表明,氧是苯酚部分氧化过程中实现苯酚气化的最关键因素。苯酚的气化效率随O/C的增加而增加,在氧/酚比为7.5,723K,24MPa及180s时,苯酚的去除率将达到76%,并有约2.2mol/mol的氢气生成。部分氧化过程中,同时存在超临界水氧化过程及超临界水气化过程。将反应归结为四类反应,即:1) phenol oxidation,2) acid oxidation,3) acid gasification, and4) gaseous productsinterconversion。动力学模型表明,在氧低浓度时,低量的氧使得酸氧化及气体氧化的速率减少,因此,使得部分氧化过程中酸气化及水汽置换反应显著。当O/Phenol比例高时,酸氧化及气体氧化速率增加而使得氧化过程显著。
     基于超临界水气化的成本高,其中,能源的消耗占较大比重,研究寻求了有效降低过程能耗的技术手段。而超临界水气化的自热过程,是降低气化成本的有效手段。研究从理论上探索了自热工艺过程并寻找制约过程的关键因素、实现自热的工艺关键。研究表明,在高供氧率系数ER、高生物质浓度条件下,存在实现气化工艺自热运行的可能。但控制与减少过程的能量损失依然必要,提高热交换器的效率将有利于自热工艺的实现及更经济合理的运行。同时,对于部分生物质,如活性污泥,通常含水量高于85wt%,将难于实现自热。
The environment and energy became the most important issue as the greenhouse effectand the need of renewable energy in this century. The increased use of biomass and wastesas a renewable energy feedstock can help to reduce dependence on fossil fuels and increase
     and diversify our energy supply for sustainable development.Gasification of microalgae in supercritical water (Tc=647K, Pc=22.1MPa) provides apotential way to convert the wet biomass to a fuel-rich gas containing H_2and/or CH_4, inwhich the kinetics, mechanisms and coking control are the problems facing in the field.Gasification of biomass in SCW has shown it to be an expensive process, requiring aconsiderable input of energy. Therefore, reducing the cost of energy consumption is also oneof tough problems.
     We tried to find an efficient way converting biomass for energy gaseous products.Algae cultivation uses land about5~9times more efficiently than terrestrial biomass. Itshould take about30-50%land to cultivate terrestrial biomass for energy supply, meanwhileolny about5%to cultivate algae. It also offers advantages in terms of land requirements andits potential for growing on wastewater, sea. Obviously, to produce energy from algae seemmore reasonable than others biomass.
     The research provided sytermatic research on gasification of alga and its kinetics model.The gaseous products were mainly H_2, CO_2and CH_4, with lesser amounts of CO, C2H4, andC2H6. Higher temperatures, longer reaction times, higher water densities, and lower algaeloadings provided higher gas yields. The algae loading strongly affected the H_2yield, whichmore than tripled when the loading was reduced from15wt%to1wt%. The water densityhad little effect on the gas composition. On the basis of this observation and the completeset of experimental results, we proposed a global reaction network for algae SCWG thatincludes parallel primary pathways to each of these two types of intermediate products. Theintermediate products then produce gases. The model parameters indicate that gas yieldsincrease with temperature because higher temperatures favor production of the more easilygasified intermediate and the production of gas at the expense of char. Sensitivity analysisand reaction rate analysis indicate that steam reforming of intermediates is an importantsource of H_2, whereas direct decomposition of the intermediate species is the main source ofCO, CO_2and CH_4.
     Uncatalyzed SCWG of microalgae leads to a low gasification efficiency unless hightemperatures (~500°C) are used, the work provided systematic study of supercritical water gasification (SCWG) of real biomass (algae) with Ru/C. The catalyst loading had the mostsignificant effect on both the yields and composition of the gaseous products. Completegasification of the microalga was achieved with a catalyst loading of2g/g. Longer reactiontimes, higher catalyst loadings and water densities, and lower algae loadings provided highergas yields. This loss of activity is due, in large part, to deactivation by sulfur, which ispresent in the microalga at about0.5wt%. A simple two-step catalytic gasificationmechanism along with a step for catalyst poisoning by sulfur, led to a rate equation that wasconsistent with all of the experimental results. The presence in algae of sulfur, and perhapsother elements such as Cl that are not as prevalent in terrestrial biomass, indicates thatefficient and effective SCWG of microalgae could present new challenges in engineering andcatalyst design.
     Phenol and the related derivatives not only are main products in char and typical aromaticpollutants in industrial wastewater, but also are the basic unit of lignin, which is one of majorcomponents in lignocellulosic biomass. The cleavages of aromatic ring hardly occur at thetemperature around400oC. We proposed partial oxidative gasification of phenol at a lowertemperature (ranging from573to753K) in supercritical water. The results showed that O2is effective to gasification of phenol in SCW.~76%of phenol was gasified and2.2mol/mol of hydrogen was produced within180s with Na2CO3as catalyst at the selectedprocess conditions, a molar ratio of oxygen-to-phenol,7.5to1,723K, and24MPa. Thepartial oxidation process is a complex combination of both SCWO and SCWG, involving fourtypes of primary reactions; i.e.1) phenol oxidation,2) acid oxidation,3) acid gasification, and4) gaseous products interconversion. A lower concentration of oxygen caused a decrease inthe oxidation rates of acids and gases, resulting in conditions in which the gasification ofacids and the water-gas shift reaction were predominant. On the other hand, a higherconcentration oxygen resulted in the oxidation of acids and CO predominating.
     If autothermal gasification of biomass can be achieved in SCW, it will greatly reduce thecost and make the process more attractive for future development. We focused on the keyfactors upon which autothermal gasification by partial oxidation might depend. Gasificationof biomass in an autothermal process in SCW is thermodynamicallly possible, but will requirea high concentration for feedstock and a high ER. In addition, minimizing energy lossthroughout the process is also an important factor to address in order to achieve anautothermal process. It also should be noticed that it will be difficult for some wet biomass,such as sewage sludge which contains nearly85wt%water, to be gasified under autothermaloperation in SCW due to the low concentration of biomass (~15%).
引文
[1] Rodhe H. A Comparison of the Contribution of Various Gases to the Greenhouse Effect[J]. Science.1990(248):1217-1219.
    [2] Lala R, Bruceb J P. The potential of world cropland soils to sequester C and mitigatethe greenhouse effect [J]. Environmental Science&Policy.1999,2(2):177–185.
    [3] Zoua G, Chaub K W. Short-and long-run effects between oil consumption andeconomic growth in China[J]. Energy Policy.2006,34(18):3644–3655.
    [4] Hoogwijka M, Faaija A, Broeka A, et al. Exploration of the ranges of the globalpotential of biomass for energy[J]. Biomass and Bioenergy.2003,25(2):119-133.
    [5] Singhania R R, Patel A, Soccolc C R, et al. Recent advances in solid-statefermentation[J]. Biochemical Engineering Journal.2009,44(1):13-18.
    [6] Hambr usa1L. Biofuels-a new challenge for nutritional science[J]. Public HealthNutrition.2009,17(21):5323-5327.
    [7] Han J, Kim H. The reduction and control technology of tar during biomassgasification/pyrolysis: An overview[J]. Renewable and Sustainable Energy Reviews.2008,12(2):397-416.
    [8] Carlson T R, Tompsett G A, Conner W C, et al. Aromatic Production from CatalyticFast Pyrolysis of Biomass-Derived Feedstocks[J]. CHEMISTRY AND MATERIALSSCIENCE.2009,52(3):241-252.
    [9] Amin S. Review on biofuel oil and gas production processes from microalgae[J].Energy Conversion and Management.2009,50:1834–1840.
    [10] Kunaver M, Jasiukaityte E, Guthrie J T. Liquefaction of wood, synthesis andcharacterization of liquefied wood polyester derivatives[J]. Journal of Applied PolymerScience.2010,115(3):1265-1271.
    [11] Yin S D, Dolan R, Harris M, et al. Subcritical hydrothermal liquefaction of cattlemanure to bio-oil: Effects of conversion parameters on bio-oil yield and characterizationof bio-oil[J]. Bioresource Technology.2010,101(10):3657-3664.
    [12] Agarwal A K. Biofuel (alcohol and biodiesel) applications as fuel for internalcombustion engine[J]. Progress in Energy Combust Science.2007,33:233-71.
    [13] Journey to forever. Make your own biodiesel.[accessed02.02.06].
    [14] Sutton D, Kelleher B, Ross R H. Review of literature on catalysts for biomassgasification[J]. Fuel Processing Technology,2001,73(3):155-173.
    [15] Modell M. Processing methods for the oxidation of organics insupercritical water. USPat.1982,199:4338.
    [16] Matsumura Y. Evaluation of supercritical water gasificationand biomethanation for wetbiomass utilization in Japan[J]. Energy Conversion and Management.2002,43:1301-1310.
    [17] Siskin M. Reactivity of Organic Compounds in Hot Water: Geochemical andTechnological Implications[J]. Science.1991,254(5029):231-237.
    [18] Akiya N, Savage P E. Roles of Water for Chemical Reactions in High-TemperatureWater[J]. Chem. Rev.2002,102:2725-2750.
    [19] Tester J W, Cline J A. Supercritical water oxidation for the destruction of toxic organicwastewaters: A review[J]. Corrosion.1999,55:1088-1100.
    [20] Kalinichev A G. Molecular Dynamics of Supercritical Water: A Computer Simulationof Vibration Spectra with the Flexible BJH Potential[J]. Geochimica et ComsmochimicaActa.1995,59:641-650.
    [21] Hoffmann M M. Are There Hydrogen Bonds in Supercritical Water[J]? J. Am. Chem.Soc.1997,119:3811-3817.
    [22] Poliakoff M. Phenomenal fluids[J]. NATURE.2001,412(12):125-125.
    [23] Boukis N, Habicht W, et al. Methanol Reforming in Supercritical Water[J]. Ind. Eng.Chem. Res.2003,42(4):728-735.
    [24] Holgate H R, Tester J W. Oxidation of hydrogen and carbon monoxide in sub-andsupercritical water: reaction kinetics, pathways, and water-density effects.1.Experimental results [J]. J. Phys. Chem.1994,98:800-809.
    [25] Modell M. Processing methods for the oxidation of organics in supercritical water. USPat.1985,543:190.
    [26] Antal Jr M J, Adschiri T, Ekbom T, et al. Hydrogen production from highmoisturecontent biomass in supercritical water. Proc US DOE Hydrogen Program Rev.1996:499–511
    [27] Matsumura Y, Minowa T, Potic B, et al. Biomass gasification in near-and super-criticalwater: Status and prospects[J]. Biomass and Bioenergy.2005,29:269-292.
    [28] Beer L L, Boyd E S, Peters J W, et al. Engineering algae for biohydrogen and biofuelproduction[J]. Current Opinion in Biotechnology.2009,20(3):264-271.
    [29] Raissi A, Mok W S, Antal M J. Cellulose Pyrolysis Kinetics in a Simulated SolarEnvironment[J]. Ind. Eng. Chem. Res.1989,28:856-865.
    [30] Gr nli M, Antal M J, Va′rhegyi G. A Round-Robin Study of Cellulose PyrolysisKinetics by Thermogravimetry[J]. Ind. Eng. Chem. Res.1999,38:2238-2244
    [31] Resende F L P, Fraley S A, Savage P E. Noncatalytic Gasification of Lignin inSupercritical Water[J]. Energy&Fuels.2008,22:1328-1334.
    [32] Resende F L, Neff M E, Savage P E. Noncatalytic Gasification of Cellulose inSupercritical Water[J]. Energy&Fuels.2007,21:3637-3643.
    [33] Resende F L, Savage P E. Expanded and Updated Results for Supercritical WaterGasification of Cellulose and Lignin in Metal-Free Reactors[J]. Energy Fuels.2009,23:6213-6221.
    [34] Kruse A, Gawlik A. Biomass Conversion in Water at330-410°C and30-50MPa.Identification of Key Compounds for Indicating Different Chemical ReactionPathways[J]. Ind. Eng. Chem. Res.2003,42:267-279.
    [35] Kruse A, Henningsen T, Pfeiffer J. Biomass Gasification in Supercritical Water:Influence of the Dry Matter Content and the Formation of PhenolsInd[J]. Eng. Chem.Res.2003,42:3711-3717
    [36] Schmieder H, Abeln J, Boukis N, et al. Hydrothermal gasification of biomass andorganic wastes[J]. Journal of Supercritical Fluids.2000,17:145–153.
    [37] S nag A, Kruse A, Rathert J. Influence of the Heating Rate and the Type of Catalyst onthe Formation of Key Intermediates and on the Generation of Gases DuringHydropyrolysis of Glucose in Supercritical Water in a Batch Reactor[J]. Ind. Eng. Chem.Res.2004,43:502-508.
    [38] Antal M J. Hydrogen production by gasification of glucose and wet biomass insupercritical water. HNEI Pub, University of Hawaii.1990:90-1026.
    [39] Minowa T, Sawayama S. A novel microalgal system for energy production withnitrogen cycling[J]. Fuel.1999,78:1213-1218.
    [40] Stucki S, Vogel F, Ludwig C, et al. Catalytic gasification of algae in supercritical waterfor biofuel production and carbon capture[J]. Energy Environ. Sci.2008,22:535-541.
    [41] Haiduc A G, Brandenberger M, Suquet S, et al. SunChem: an integrated process for thehydrothermal production of methane from microalgae and CO2mitigation[J]. J. Appl.Phycol.2009,21:529-541.
    [42] Brown T M, Duan P G, Savage P E. Hydrothermal Liquefaction and Gasification ofNannochloropsis sp[J]. Energ. Fuel.2010,24:3639-3646.
    [43] Duan P G, Savage P E. Hydrothermal Liquefaction of a Microalga with HeterogeneousCatalysts[J]. Ind. Eng. Chem. Res.2011,50:52–61.
    [44] Duan P G, Savage P E. Hydrothermal Liquefaction of a Microalga with HeterogeneousCatalysts[J]. Ind. Eng. Chem. Res.2011,50:52–61.
    [45] Chakinala A G, Brilman D, Swaaij W, et al. Catalytic and Non-catalytic SupercriticalWater Gasification of Microalgae and Glycerol[J]. Ind. Eng. Chem. Res.2010,49:1113–1122.
    [46] Elliott D C, Butner R S, Sealock L J, et al. Low-temperature gasification ofhigh-moisture biomass. Reasearch in Thermocemical biomass. Elsevier Alllied Sciences.1988:676-709.
    [47] Ahmed I, Gupta A K. Syngas yield during pyrolysis and steam gasification of paper[J].Appl Energ.2009,86:1813-1821.
    [48] Ahmed I, Gupta A K. Pyrolysis and gasification of food waste: Syngas characteristicsand char gasification kinetics[J]. Appl Energ.2009,87:101-108.
    [49] Muangrat R, Onwudili J A, Williams P T. Reaction products from the subcritical watergasification of food wastes and glucose with NaOH and H2O2[J]. Bioresource Technol.2010,101:6812-6821.
    [50] Onwudili J A, Williams P T. Hydrothermal reforming of bio-diesel plant waste:Products distribution and characterization[J]. Fuel.2010,89:501-509.
    [51] Yan B, Wu J Z, Xie C, He F M, Wei C H. Supercritical water gasification with Ni/ZrO2catalyst for hydrogen productionfrom model wastewater of polyethylene glycol[J]. JSupercrit Fluids.2009,50:155-161.
    [52] Wei G T, Wei C H, He F M, et al. Dechlorination of chlorobenzene in subcritical waterwith Fe/ZrO2, Ni/ZrO2and Cu/ZrO2[J]. J. Environ. Monit.2009,11:678-683.
    [53] Kabyemela B M, Malaluan R M, et al., Kinetics of Glucose Epimerization andDecomposition in Subcritical and Supercritical Water[J]. Ind. Eng. Chem. Res.1997,36(5):1552-1558.
    [54] Kabyemela B M, Malaluan R M, et al. Rapid and Selective Conversion of Glucose toErythrose in Supercritical Water[J]. Ind. Eng. Chem. Res.1997,36(12):5063-5067.
    [55] Kabyemela B M, Malaluan R M, et al., Glucose and Fructose Decomposition inSubcritical and Supercritical Water: Detailed Reaction Pathway, Mechanisms, andKinetics[J]. Ind. Eng. Chem. Res.1999,38(8):2888-2895.
    [56] Brock E E, Savage P E, et al. Kinetics and Mechanism of Methanol Oxidation inSupercritical Water[J]. J Phys Chem.1996,100:15834-15842.
    [57] Brock E E, Savage P E, Barker J R. A Reduced Mechanism for Methanol Oxidation inSupercritical Water[J]. Chemical Engineering Science.1997,53:857-867.
    [58] DiLeo G J, Neff M E, Kim S, Savage P E. Supercritical Water Gasification of Phenoland Glycine as Models for Plant and Protein Biomass[J]. Energ Fuels.2008,22:871–877.
    [59] Yu D H, Antal Jr. M J. Hydrogen Production by Steam Reforming Glucose inSupercritical Water[J]. Energy&Fuels.1993,7(5):574-577.
    [60] Boukis N, Habicht W, et al. Methanol Reforming in Supercritical Water[J]. Ind. Eng.Chem. Res.2003,42(4):728-735.
    [61] Kabyemela B M, Adschiri T, Malaluan R M, et al. Glucose and FructoseDecomposition in Subcritical and Supercritical Water: Detailed Reaction Pathway,Mechanisms, and Kinetics[J]. Ind. Eng. Chem. Res.1999,38:2888-2895.
    [62] Gadhe J B. Hydrogen Production by Methanol Reforming in Supercritical Water:Suppression of Methane Formation[J]. Ind. Eng. Chem. Res.2005,44(13):4577-4585.
    [63] Antal Jr M J. The Effects of Reactor Severity on the Gas Phase Pyrolysis of Celluloseand Kraft Lignin Derived Volatile Matter[J]. Ind. Eng. Chem. Res.1983,22:366-375.
    [64] Antal M J, Varhegyi G. Cellulose Pyrolysis Kinetics: The Current State ofKnowledge[J]. Ind. Eng. Chem. Res.1995,34:703-717.
    [65] Resende F L P, Savage P E. Kinetic Model for Noncatalytic Supercritical WaterGasification of Cellulose and Lignin. AIChE Journal.2010,56:2412-2420..
    [66] Tang H Q, Kitagawa K. Supercritical water gasification of biomass: thermodynamicanalysis with direct Gibbs free energy minimization[J]. Chemical Engineering Journal.2005:106:261–267.
    [67] Lu Y, Guo L, Zhang X, et al. Thermodynamic modeling and analysis of biomassgasification for hydrogen production in supercritical water[J]. Chemical EngineeringJournal.2007,131:233-244.
    [68] Elliott DC, Sealock LJ Jr. Aqueous Catalyst Systems for the Water-Gas Shift Reaction.2. Mechanism of Basic Catalysis. Ind[J]. Eng. Chem. Prod. Res. Dev.1983,22(3):431-435.
    [69] Elliott DC. Aqueous Catalyst Systems for the Water-Gas Shift Reaction.3. ContinuousGas Processing Results[J]. Ind. Eng. Chem. Prod. Res. Dev.1986,25(4):541-549.
    [70] Kruse A, Rimbrecht P, et al. Gasification of Pyrocatechol in Supercritical Water in thePresence of Potassium Hydroxide[J]. Ind. Eng. Chem. Res.2000,39(12):4842-4848.
    [71] Wang J, et al. Role of Calcium Hydroxide in Supercritical Water Gasification ofLow-Rank Coal[J]. Energy&Fuels.2001,15:356-362.
    [72] Lin S Y, Hatano H, et al. Hydrogen Production from Hydrocarbon by Integration ofWater-Carbon Reaction and Carbon Dioxide Removal (HyPr-RING Method)[J]. Energy&Fuels.2001,15(2):339-343.
    [73] Lin S Y, Hatano H. Developing an innovative method, HyPr-RING, to producehydrogen from hydrocarbons[J]. Energy Conversion and Management.2002.43(9-12):1283-1290.
    [74] Zhang S P, Yan Y J, Ren Z, et al. Study of hydrodeoxygenation of bio-oil from the fastpyrolysis of biomass[J]. Energy Sources Part A.2003,25:57-65.
    [75] Ferrari M, Delmon B, Grange P. Influence of the active phase loading in carbonsupported molybdenum-cobalt catalysts for hydrodeoxygenation reactions. MicroporousMesoporous Mater.2002,56:279-90.
    [76] Cortright R D, Dumesic J A. Hydrogen from catalytic reforming of biomass-derivedhydrocarbons in liquid water[J]. Nature.2002,418(29):964-967.
    [77] Park K C. Gasification Reaction of Organic Compounds Catalyzed by RuO2inSupecritical Water. Chem Comun.2003,3(6):694-695.
    [78] Sato T, Watanabe M et al. Gasification of Alkylphenols with Supported Noble MetalCatalysts in Supercritical Water[J]. Ind. Eng. Chem. Res.2003,42(19):4277-4282.
    [79] Furusawa T, Sugito H, et al. Hydrogen Production from the Gasification of Ligin withNickel Catalysts in Supercritical Water[J]. International Iournal of Hydrogen Energy.2007,32(6):699-704.
    [80] Kersten S R A, Prins W, et al. Gasification of Model Compounds and Wood in HotCompressed Water[J]. Ind. Eng. Chem. Res.2006,45:4169-4177.
    [81] Clarens A F, Resurreccion E P, White M A, et al. Environmental Life CycleComparison of Algae to Other Bioenergy Feedstocks[J]. Environ. Sci. Technol.2010,44(5):1813-1819.
    [82] Heilmann S M, Davis H T,. Jader L R, et al. Hydrothermal carbonization ofmicroalgae[J]. Biomass Bioenerg.2010,34:875-882.
    [83] Levine R B, Pinnarat T, Savage P E. Biodiesel Production from Wet Algal Biomassthrough in Situ Lipid Hydrolysis and Supercritical Transesterification[J]. Energ. Fuel2010,24:5235-5243.
    [84] Brown T M, Duan P G, Savage P E. Hydrothermal Liquefaction and Gasification ofNannochloropsis sp[J]. Energ. Fuel.2010,24:3639-3646.
    [85] Duan P G, Savage P E. Hydrothermal Liquefaction of a Microalga with HeterogeneousCatalysts. Ind. Eng. Chem. Res.2011,50:52-61.
    [86] Haiduc A G, Brandenberger M, Suquet S, et al. SunChem: an integrated process for thehydrothermal production of methane from microalgae and CO2mitigation[J]. J. Appl.Phycol.2009,21:529-541..
    [87] Calzavara Y, Joussot-Dubien C, Boissonnet G, et al. Evaluation of biomass gasificationin supercritical water process for hydrogen production[J]. Energ. Convers. Manage.2005,46:615-631.
    [88] Resende F L P, Savage P E. Effect of Metals on Supercritical Water Gasification ofCellulose and Lignin[J]. Ind. Eng. Chem. Res.2010,49:2694-2700.
    [89] Plazaa M, Santoyob S, Jaimeb L, et al. Screening for bioactive compounds fromalgae[J]. J. Pharmaceut. Biomed.2010,51:450-455.
    [90] Kruse A. Supercritical water gasification[J]. Biofuel Bioprod. Bior.2008,2:415–437.
    [91] Macey R, Oster G, Zahnley T. Berkeley Madonna User’s Guide. University ofCalifornia, Berkeley.2008.
    [92] Rice S F, Steeper R R, Aiken J D. Water Density Effects on Homogeneous Water-GasShift Reaction Kinetics[J]. J. Phys. Chem. A.1998,102:2673–2678.
    [93] Yanik J, Ebale S, Kruse A, et al. Biomass gasification in supercritical water: Part1.Effect of the nature of biomass[J]. Fuel.2007,86:2410-2415.
    [94] Sato T, Osada M, Watanabe M, et al. Gasification of Alkylphenols with SupportedNoble Metal Catalysts in Supercritical Water[J]. Ind. Eng. Chem. Res.2003,42:4277-4282.
    [95] Elliott D C. Catalytic hydrothermal gasification of biomass[J]. Biofuels, Bioprod.Bioref.2008,2:254-265.
    [96] Resende F, Savage P E. Effect of Metals on Supercritical Water Gasification ofCellulose and Lignin[J]. Ind. Eng. Chem. Res.2010,49(6):2694-2700.
    [97] Rabe S, Nachtegaal M, Ulrich T, et al. Towards Understanding the Catalytic Reformingof Biomass in Supercritical Water[J]. Angew. Chem. Int. Ed.2010,49:6434-6437.
    [98] Osada M, Sato O, Arai K, et al. Stability of Supported Ruthenium Catalysts for LigninGasification in Supercritical Water[J]. Energy&Fuels.2006,20:2337-2343
    [99] DiLeo G J, Neff M E, Savage P E. Gasification of Guaiacol and Phenol in SupercriticalWater[J]. Energ. Fuels.2007,21:2340-2345.
    [100] Goodwin A K, Rorrer G L. Conversion of Xylose and Xylose-Phenol Mixtures toHydrogen-Rich Gas by Supercritical Water in an Isothermal Microtube Flow Reactor[J].Energ Fuels.2009,23:3818–3825.
    [101] Yoshida T, Oshima Y. Partial Oxidative and Catalytic Biomass Gasification inSupercritical Water: A Promising Flow Reactor System[J]. Ind Eng Chem Res.2004,43:4097-4104
    [102] Lilac W D, Lee S. Kinetics and mechanisms of styrene monomer recovery from wastepolystyrene by supercritical water partial oxidation[J]. Advances in EnvironmentalResearch.2001,6:9-16.
    [103] Watanabe M, Mochiduki M, Sawamoto S. Partial oxidation of n-hexadecane andpolyethylene in supercritical water[J]. J Supercrit Fluids.2001,20:257–266.
    [104] Thornton T D, Savage P E. Phenol Oxidation Pathways in Supercritical Water[J]. IndEng Chem Res.1992,31:2451-2456.
    [105] Marias F, Letellier S, Cezac P, Serin J P. Energetic analysis of gasification of aqueousbiomass in supercritical water. biomass and bioenergy.2011,35:59-73.
    [106] Shi L M, Bayless D J, Prudich M E. A CFD model of autothermal reforming.International Journal of hydrogen energy.2009,34:7666-7675.
    [107] Smith Jr R, Adschiri T, Arai K. Energy integration of methane’s partial-oxidation insupercritical water and exergy analysis. Applied Energy.2002,71:205-214.
    [108] Jin H, Lu Y J, Guo L J, et al. Hydrogen production by partial oxidative gasification ofbiomass and its model compounds in supercritical water. International Journal ofHydrogen Energy.2010,35:3001-3010.
    [109] Muhlbauer A, Raal J. Computational and thermodynamic interpretation of high-pressurevapour-liquid equilibrium-a review[J]. J. Chemical Engineering.1995,60:1-29.
    [110] Abrams D S, Seneci F, Chueh P L, et al. Thermodynamics of Multicomponentliquid-mixtures containing subcritical and supercritical components. Industrial&Engineering Chemistry Fundamentals.1975,14:52-54.
    [111] Wooley R J, Putsche V. Development of an ASPEN PLUS physical property databasefor biofuel components. National renewable energy laboratory (U.S.).1996.