天基红外监视系统目标检测与跟踪技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天基红外目标监视系统综合了天基平台和红外传感器两者的优势,具有探测距离远、覆盖范围广、测量精度高、隐蔽性强等优点,已成为空间目标跟踪监视的主要途径。本文针对天基红外目标监视系统中的单传感器像平面目标轨迹检测与跟踪问题进行研究,重点探讨了探测图像的非均匀性校正与背景杂波抑制、像平面多目标数据关联与轨迹跟踪、弱小多目标轨迹检测前跟踪等关键技术。
     论文的主要工作如下:
     第二章探讨了探测图像的非均匀性校正与背景杂波抑制问题。首先,针对探测图像的非均匀性校正问题,提出了一种改进的单帧场景类神经网络快速校正算法。仿真实验结果表明,所提算法相对传统的神经网络校正等算法具有更好的校正精度和收敛速度。其次,针对高轨静止平台探测中的背景杂波抑制问题进行研究,提出了基于Markov自回归模型的时空域融合抑制算法(Markov-SPAT)和基于约束序贯M估计的时空域融合抑制算法(M-SPAT)。仿真实验结果表明,所提算法相对艾斯卡尔等人的时空分级融合滤波、Tartakovsky等人的时空域融合滤波等算法,在背景杂波抑制、目标信号保持和信噪比改善等方面得到了改善。最后,针对中低轨运动平台探测中的背景杂波抑制问题进行研究,探讨了基于MHD-PSO特征图像配准的时空域融合抑制算法和基于平台运动参数的时空域融合抑制算法。仿真实验结果表明,所提两种算法优于已有的空域滤波等算法。相比而言,基于平台运动参数的时空域融合抑制算法具有更好的实时性。本章为后续章节的研究提供了支撑。
     第三章研究了高信噪比条件下像平面多目标数据关联与轨迹跟踪问题。首先,针对推扫型和锥扫型传感器两种不同工作模式,建立了像平面目标轨迹的运动模型和观测模型。其次,针对推扫型传感器重点研究了基于重要度采样-马尔可夫链蒙特卡洛(IS-MCMC)算法的多目标数据关联与跟踪技术,实现了目标轨迹的存在性检测和维持跟踪。通过仿真实验对算法的有效性进行了验证,并对算法性能进行了对比分析。仿真实验结果表明,相比于MHT、MCMC、SMC-PHD等算法,所提的IS-MCMC算法具有更好的数据关联和目标轨迹检测跟踪性能。最后,针对锥扫型传感器非线性观测环境,提出了基于扩展无味卡尔曼滤波与改进型积分概率多假设跟踪(AUKF-OIPMHT)的多目标数据关联与跟踪算法。进一步针对像平面非线性运动目标,结合交互多模型(IMM)方法,提出了IMM-OIPMHT算法。仿真实验结果表明,相比IS-MCMC、IPMHT等算法,IMM-OIPMHT具有更稳健的跟踪性能。
     第四章研究了低信噪比条件下像平面弱小目标轨迹的检测前跟踪(TBD)问题。首先,建立了弱小目标检测前跟踪处理中的像平面目标运动与观测模型。其次,对单目标多模型粒子滤波检测前跟踪(MM-PF TBD)算法进行了优化,并提出了启发式MM-PF TBD算法,将MM-PF扩展应用到未知目标数目、目标出现与消失时刻的天基红外目标监视系统中。仿真实验结果表明,所提启发式MM-PF算法相比于MM-PF、直方图概率多假设跟踪(H-PMHT)、动态规划(DPA)等已有TBD算法具有更优的检测跟踪性能。最后,为解决多目标环境中启发式MM-PF算法由于迭代搜索导致的计算效率下降问题,尝试将近年兴起的概率假设密度检测前跟踪算法(PHD TBD)引入到本文中。针对天基红外监视系统中的像平面非线性运动弱小目标轨迹的检测跟踪问题,在对PHD进行改进的基础上,结合多模型思想,提出了MM-PHD TBD算法。仿真实验结果表明,所提MM-PHD算法与启发式MM-PF算法性能相当,均优于PHD、H-PMHT、DPA等TBD算法。
Space-based infrared surveillance system has both the advantages of space-basedobserver and infrared sensor in many aspects, such as far sensing distance, largecoverage area, high measurement precision, concealment ability and so on. Space-basedinfrared surveillance system has been becoming the dominant measurement to keepstrategic targets under surveillance. The dissertation focuses on the problem of detectingand tracking targets in the focal plane array for the sensors of the space-based infraredsurveillance system. The key technologies are discussed and researched especiallyincluding the correction of the images non-uniformity, the suppression for thebackground clutter, the data association and tracking for multiple targets andtrack-before-detect (TBD) for dim targets at low signal to noise ratio(SNR). The maincontributions of this dissertation are demonstrated as follows:
     In chapter2, the studies are conducted on the correction of the imagesnon-uniformity and the suppression of the background clutter. Firstly, an improvedmethod based on Nerve-Network (NN) using the single scene image is proposed forcorrecting the non-uniformity. As the extensive experiments show that the proposedmethod achieves better performance and converges faster than the traditional NNmethod. Secondly, studies on the suppression of the background clutter for thegeo-stationary satellite is done with the two spatial-temporal fused filtering methodsconsequently proposed respectively based on Markov automatic regression(AR) modeland restricted sequential M-estimation. The experiments validate the superiority of theproposed method in the suppression of the clutter, the maintenance of the target signaland the improvement of the SNR over the being united and non-united spatial-temporalfused methods. Lastly, the studies are implemented on the suppression of thebackground clutter for the moving satellite sensors with low orbit. Two stagedspatial-temporal fused methods are discussed respectively on the images registration byfeatures and on the parameters of the plane with experiments following to compare andanalysis their performance. The results show that the presented algorithms outperformthe spatial filtering ones. The aforementioned researches can serve as the foundation forthe succeeding chapters.
     In chapter3, the issue of the dada association and multi-target tracking is studied.Firstly, the measurement model and target dynamic model on focal plane are bothestablished respectively for the broom-scanning and cone-scanning sensors. Secondly,for the broom-scanning sensor studies are focused on the multi-target data associationand tracking based on Markov chain Monte Carlo with importance sampling(IS-MCMC) to judge the target existence and then track it. The algorithm is validatedby experiments. Compared to the traditional methods such as MHT, MCMC and SMC-PHD, IS-MCMC has the superiority in data association and target detection. astly,to track multi-target under nonlinear observation for the cone-scanning sensor, a methodfor data association and tracking is proposed on augmented unscented Kalman filter(AUKF) and optimized integrated probability multi-hypothesis tracking (OIPMHT).Further OIPMHT is combined with interactive multiple model (IMM-OIPMHT) totrack the target with nonlinear motion. The methods including IMM-OIPMHT,IS-MCMC, IPMHT and so on are analyzed in comparison by simulations of thespaced-based infrared surveillance system, which show that IMM-OIPMHT works asthe best one.
     In chapter4, the studies are focused on TBD for the dim targets with low SNR.Firstly, the target dynamic and measurement model are set up for TBD. Secondly,heuristic particle filter on multiple-model (MM-PF) for TBD is proposed on theimprovement of the original single target MM-PF TBD, which is extended to thespace-based infrared surveillance system with unknown target number, launched andburned out time. The advantage of heuristic MM-PF TBD is validated over MM-PFTBD, histogram probability multi-hypothesis tracking(H-PMHT TBD), dynamicprogramming algorithm(DPA TBD) and so on. Lastly, to settle the low efficiency of theiterative searching of heuristic MM-PF, probability hypothesis density (PHD) TBDproposed recently is introduced and improved in combination with multiple-model(MM-PHD TBD) to track the dim targets with nonlinear motion. The experiments forspace-based infrared surveillance system with dim targets show that MM-PHD TBD assame as heuristic MM-PF outperforms other TBD algorithms such as PHD, H-PMHTand DPA.
引文
[1] Missile defense, the space relationship&the twenty-first century[R].Washington: The Institute for Foreign Policy Analysis,2007.
    [2] Morgan B L. Exploratory model analysis of the space-based infrared system(SBIRS) low global scheduler problem[D]. California, USA: NavalPostgraduate School,1999.
    [3]盛卫东.天基光学监视系统目标跟踪技术研究[D].长沙,国防科学技术大学,2011.
    [4]张天序,施长城,李洁珺等.红外焦平面阵列非均匀性自适应校正算法研究进展[J].红外与毫米波学报,2007,26(6):409-413.
    [5] Harris J G, Chiang Y M. Nonuniformity correction using the constant-statistics constraint: analog and digital implementations[C]. SPIE,1997.
    [6] Scribner D A, Sarkady K A. Adaptive non-uniformity correction for IR focalplane arrays using neural networks[C]. Infrared Sensors: Detectors,Electronics and Signal Processing, SPIE,1991.
    [7] Torres S N, Hayat M M. Kalman filtering for adaptive non-uniformitycorection in infrared focal plane arays[J]. Journal of the Optical Society ofAmerican,2003,20(3):470-480.
    [8]张兵,张浩,陈正超等.一种基于图像统计量的相对辐射纠正算法[J].遥感学报,2006,10(5):631-635.
    [9] Wang J, Bao S Q, Ralph J F, et al. Detection of small objects in multi-layeredinfrared images[C]. Signal and Data Processing of Small Targets, Orlando,FL, USA: SPIE,2008.
    [10] Wemett B D. Automatic target detection using vector quantization error[C].Automatic Target Recognition XVIII, SPIE,2008.
    [11]杨卫平,沈振康.起伏背景下的自适应门限检测方法[J].红外与毫米波学报,1999,18(2):120-124.
    [12]余农,吴长泳,汤心溢等.红外目标检测的自适应背景感知算法[J].电子学报,2005,33(2):200-204.
    [13]李红艳,吴成柯.一种基于小波和遗传算法的小目标检测算法[J].电子学报,2001,29(4):439-442.
    [14]胡谋法,陈曾平.基于zrnike-facet模型和整体最小二乘的弱小目标检测[J].电子与信息学报,2008,30(1):194-197.
    [15]胡谋法,沈燕,陈曾平.自适应序贯M估计算法及其性能分析[J].电子学报,2007,35(9):1651-1655.
    [16]刘靳,姬红兵.基于非平稳背景下的红外小目标检测[J].电子与信息学报,2010,32(6):1295-1300.
    [17]沈宇键,何昕,郝志航.运动小目标实时检测系统的设计与分析[J].红外与毫米波学报,2000,19(5):366-370.
    [18] Tartakovsky A, Blazek R. Effective adaptive spatial-temporal technique forclutter rejection in IRST[C]. Signal and Data Proceeding of Small Targets,SPIE,2000.
    [19] Tartakovsky A, Brown J. Adaptive spatial-temporal filtering methods forclutter removal and target tracking[J]. IEEE Transactions on Aerospace andElectronic Systems,2007,44(4):1522-1537.
    [20]艾木都拉艾斯卡尔,吐尔逊地里木拉提.基于时空非参数回归估计的动态杂波抑制技术研究[J].通信学报,2007,28(3):63-67.
    [21] Oh S, Russell S, Sastry S. Markov chain Monte Carlo data association forgeneral multi-target tracking problems[C]. Proceedings of the43rd Conferenceon Decision and Control, IEEE,2004.
    [22] Y B, Li X R. Multitarget-multisensor tracking: principles and techniques[M].Storrs, CT: YBS,1995.
    [23] Blackman S, Popoli R. Design and analysis of modern tracking systems[M].Norwood, MA: Artech House,1999.
    [24] Bar-Shalom Y, Fortmann T E. Tracking and data association[M]. New York:Academic,1988.
    [25] Musicki D. Integrated Probabilistic data association[J]. IEEE Transactions onAutomatic Control,1994,39(6):1237-1241.
    [26] Musicki D, Evans R. Clutter map information for data association and trackinitialization[J]. IEEE Transactions on Aerospace and Electronic Systems,2004,40(2):387-398.
    [27] Musicki D, Suvorova S. Tracking in clutter using IMM-IPDA based algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems,2008,44(1):111-126.
    [28] Musicki D, Evans R. Joint integrated probabilistic data association: JIPDA[J].IEEE Transaction on Aerospace Electronicx and Systems,2004,40(3):1093-1099.
    [29] Li N, Li X R. Tracker design based on target perceivability[J]. IEEETransaction on Aerospace Electronicx and Systems,2001,37(1):214-225.
    [30] Li N, Li X R. Target perceivability and its application[J]. IEEE Transactionson Signal Processing,2001,49(11):2588-2604.
    [31] Dezert, Li N, Li X R. Theoretical development of an integrated JPDAF formultitarget tracking in clutter[C]. In Proceeding of Workshop ISIS-GDR/NUWC,1998.
    [32]韩崇昭,朱洪艳,段战胜等.多源信息融合[M].北京:清华大学出版社,2006.
    [33] Reed D. A algorithm for tracking multiple targets[J]. IEEE Transaction onAutomatic Control,1979,24(6):843-854.
    [34] Cox I, Hingorani S. An efficient implementation of Reid's multiple hypothesistracking algorithm and its evaluation for the purpose of visual tracking[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,1996,18(2):138-150.
    [35] Mori S, Chong C. Evaluation of a posteriori probabilities of multi-frame dataassociation hypothesis[C]. Signal and Data Processing of Small Targets, SPIE,2007.
    [36] Fortunato E, Kreamer W, Mori S, et al. Generalized Murty's algorithm withapplication to multiple hypothesis tracking[C]. Proceedings of10thInternational Conference on Information Fusion,2007.
    [37] Mahler R. Multi-target Bayes filtering via first-order multi-target moments[J].IEEE Transaction on Aerospace and Electronic System,2003,39(4):1152-1178.
    [38] Vo B N, Singh S S, Doucet A. Sequential Monte Carlo methods formulti-target filtering with random finite sets[J]. IEEE Transactions onAerospace and Electronic System,2005,41(4):1224-1245.
    [39] Punithakumar K, Kirubarajan T, Sinha A. Multiple-model probabilityhypothesis density filter for tracking maneuvering targets[J]. IEEETransactions on Aerospace and Electronic System,2008,44(1):87-98.
    [40] Panta K, Ba-Ngu V, Sumeetpal S. Probability hypothesis density filter versusmultiple hypothesis tracking[C]. Signal Processing, Sensor Fusion, and TargetRecognition, Florida, USA: SPIE,2004.
    [41] Juang R, Burlina P. Comparative performance evaluation of GM-PHD filter inclutter[C].12th International Conference on Information Fusion, Seattle, WA,USA: IEEE,2009.
    [42] Kusha P. Multi-target tracking using1st moment of random finite sets[D].Melbourne,Australia, The University of Melbourne,2007.
    [43] Oh S, Russell S, Sastry S. Markov chain Monte Carlo data association formulti-target tracking[J]. IEEE Transaction on Automatic Control,2009,54(3):481-497.
    [44] Cong S, Hong L, Wicker D. Markov chain Monte Carlo approach forassociation probability evaluation[J]. IEE Proceddings of Control, Theory andApplications,2004,151(2):185-193.
    [45] Bergman N, Doucet A. Markov chain Monte Carlo data association for targettracking[C]. International Conference on Acoustic, Speech and Signalprocessing (ICASSP), IEEE,2000.
    [46] Streit R, Luginbuhl T E. Probabilistic multi-hypothesis tracking[R]. RhodeIsland: Naval Undersea Warfare Center Division,1995.
    [47] Willett P, Ruan Y, Streit R. PMHT: problems and some solutions[J]. IEEETransactions on Aerospace and Electronic Systems,2002,38(3):738-754.
    [48] Efe M, Ruan Y, Willett P. Probabilistic multi-hypothesis tracker: addressingsome basic issues[J]. IEE Proc. Radar Sonar Navig,2001,151(4):189-196.
    [49] Rago C, Willett P K, Streit R L. A modified PMHT[C]. Proceedings of theConference on Informatiopn Sciences and Sustems,1995.
    [50] Ruan Y H, Willett P. Multiple model PMHT and its application to the secondBenchmark Radar tracking problem[J]. IEEE Transaction on Aerospace andElectronic Systems,2004,40(4):1337-1350.
    [51] Zaveri M A, Desai U B, Merchant S N. PMHT based multiple point targetstracking using multiple models in infrared image sequence[C]. Proceedings ofthe Conference on Advanced Video and Signal Based Surveillance, IEEE,2003.
    [52] Davey S J, Gray D A. Integrated track maintenance for the PMHT via thehysteresis model[J]. IEEE Transactions on Aerospace and Electronic Systems,2007,43(1):93-111.
    [53] Davey S J. Extensions to the probabilistic multi-hypothesis tracker forimproved data association[D]. Adelaide, Australia: University of Adelaide,2003.
    [54] Musicki D. Track management and PMHT[C]. The10th InternationalConference on Information Fusion,2007.
    [55] Mohanty N C. Computer tracking of moving point targets in space[J]. IEEETransactions on Pattern Analysis and Machine Intelligence,1981,3:606-611.
    [56] Reed I S, Gagliardi R M, Shao H M. Application of three dimensional filteringto moving target detection[J]. IEEE Transactions on Aerospace and ElectronicSystems,1983,19(6):898-905.
    [57] Reed I S, Gagliardi R, Stotts L. Optical moving target detection with3-Dmatched filtering[J]. IEEE Transactions on Aerospace and Electronic Systems,1988,24(4):327-336.
    [58] Stocker A D, Jensen P. Algorithms and architetures for implementing largevelocity filter banks[C]. Signal and Data Processing of Small Targets, SPIE,1991.
    [59] Chen Y. On suboptimal detection of3-dimensional moving targets[J]. IEEETransactions on Aerospace and Electronic Systems,1989,1989:343-350.
    [60] Barniv Y, Kella O. Dynamic programming solution for detecting dim movingtargets[J]. IEEE Transactions on Aerospace and Electronic Systems,1987,23(6):776-788.
    [61]强勇,焦李成,保铮.动态规划算法进行弱目标检测的机理研究[J].电子与信息学报,2003,25(6):721-727.
    [62]强勇,焦李成,保铮.一种有效的用于雷达目标检测的算法[J].电子学报,2003,31(3):440-443.
    [63] Blostein B D, Richardson H S. A sequential detection approach to targettracking[J]. IEEE Transactions on Aerospace and Electronic Systems,1994,30(1):197-212.
    [64]崔常嵬,林英.低信噪比缓动点目标的序贯检测算法分析和改进[J].电子学报,2001,29(6):820-823.
    [65] Carlson B D, Evans E D, Wilson S L. Search radar detection and track withthe Hough transform[J]. IEEE Transactions on Aerospace and ElectronicSystems,1994,30(1):116-124.
    [66]曲长文,黄勇,苏峰等.基于随机Hough变换的匀加速运动目标检测算法及性能分析[J].电子学报,2005,33(9):1603-1606.
    [67] Liou R J, Sadjadi M R A. Multiple target detection using modified high ordercorrelations[J]. IEEE Transactions on Aerospace and Electronic Systems,1998,34(2):553-568.
    [68] Liou R J, Sadjadi M R A. Multiple target detection and track identificationusing modified high order correlation[C]. International conference of NeuralNetworks, Orlando, USA:1994.
    [69] Rozovskii B, Petrov A. Optimal nonlinear filtering for track-before-detect inIR image sequences[C]. Conference on Signal and Data Processing of SmallTargets,1999.
    [70] Strait R L. Tracking on intensity-modulated data streams[R]. Rhode Island:Naval Undersea Warfare Center Division,2000.
    [71] Efe M, Parkfiliz A G. Multi-target tracking in clutter with histogramprobabilistic multi-hypothesis tracker[C]. International Conference on SystemsEngineering,2005.
    [72] Boers Y, D J N. Particle filter based detection for tracking[C]. Proc.AmericanControl Conference,2001.
    [73] Salmond D J, Birch H. A particle filter for track-before-detect[C]. Proc.American Control Conference,2001.
    [74] Davey S J, Rutten M G. A comparison of three algorithms for tracking dimtargets[C]. International Conference on Information, Decision and Control,IEEE,2007.
    [75] Davey S J, Rutten M G. A comparison of detection performance for severaltrack-before-detect algorithm[J]. EURASIP Journal on Advances in SignalProcessing,2008.
    [76] Rutten M G, Gordona N J, Maskell S. Efficient particle-based track-before-detect in rayleigh noise[C]. The7th International Conference on InformationFusion,2004.
    [77] Boers Y, Driessen J N. Interacting multiple model particle filter[J]. IEE Proc.Radar Sonar Navig,2003,150(5):344-349.
    [78] Zaveri M A, Merchant S N, Desai U B. Arbitrary trajectories tracking usingmultiple model based particle filtering in infrared image sequence[C].International Conference on Information Technology: Coding and Computing,IEEE,2004.
    [79] Ru J F, Li X R, Jilkov V P. Multiple-model detection of target maneuvers.[C].Signal and Data Processing of Small Targets, SPIE,2005.
    [80]龚亚信,杨宏文,胡卫东等.基于多模粒子滤波的机动弱目标检测前跟踪[J].电子与信息学报,2008,30(4):941-944.
    [81]龚亚信,杨宏文,胡卫东等.基于粒子滤波的弱目标检测前跟踪算法[J].系统工程与电子技术,2007,29(12):2143-2148.
    [82] Boers Y, Driessen J N. Multitarget particle filter track before detectapplication[J]. IEE Proc. Radar Sonar Naving,2004,151(6):351-357.
    [83] Boers Y, Diressen H, Torstensson J, et al. A track-before-detect algorithm fortracking extended targets[J]. IEE Proc.Radar Sonar Naving,2006,153(4):345-351.
    [84] Punithakumar K, Kirubarajan T, Sinha A. A sequential Monte Carloprobability hpothesis density algorithm for multitarget track-before-detect[C].Signal and Data Processing of Small Targets, SPIE,2005.
    [85] Tong H S, Zhang H, Meng H D, et al. Multitarget tracking before detection viaprobability hypothesis density filter[C]. International Conference onElectronical and Control Engineering, IEEE,2010.
    [86]杨少林,于慧敏.基于场景的焦平面阵列非均匀性校正算法研究[J].浙江大学学报(工学版),2006,40(7):1150-1153.
    [87] Torres S N, Vera E M, Reeves R A, et al. Adaptive scene-basednon-uniformity correction method for infrared focal plane arrays[J].Proceedings of the SPIE,2003,20(3).
    [88]牛照东,王卫华,陈曾平. IMM算法在红外焦平面阵列非均匀性校正中的应用[J].光电子技术,2004,24(4):238-242.
    [89] Vera E M, Reeves R A, Sergio D T. Soft computing systems: design,management and applications[M]. IOS Press,2002.
    [90]郭文鸽,冯书兴.美国导弹预警卫星系统分析及其启示[J].中国航天,2005,6(12):39-42.
    [91] Howell B S. Handbook of CCD astronomy[M]. London: Cambridge universityPress,2000.
    [92] Dimitris M G, Vinar L K, Stephen K M. Statistical and adaptive signalprocessing[M]. Beijing: Publishing House of Electronics Industry,2003.
    [93] Tzannes A P. Detecting small moving objects using temporal hypothesistesting[J]. IEEE Transactions on Aerospace and Electronic Systems,2002,38(2):570-586.
    [94]龙云利,徐晖,安玮等.基于分层动态规划的红外弱小目标检测[J].光电工程,2008,35(11):18-23.
    [95]龙云利,徐晖,安玮等.基于约束序贯M估计的时空域融合红外杂波抑制[J].航空学报,2011,32(8):1531-1541.
    [96] Manuel S G, Samuel T T, James F R. Efficient sub-pixel image registrationalgorithms[J]. Optics Letters,2008,33(2):156-158.
    [97]于寅.高等工程数学[M].武汉:华中科技大学出版社,2001.
    [98] Fox D. Adapting the sample size in particle filters through KLD-sampling[J].International Journal of Robotics Research,2003.
    [99]张新生,陈金广,马丽丽.基于对称KL距离的自适应粒子滤波算法[J].西安工程大学学报,2010,24(315-319).
    [100]曹炬,谭毅华,马杰等.从移动背景红外序列图像中检测运动目标[J].电子与信息学报,2005,27(1):43-46.
    [101]时永刚,刘小军,王东峰等.多模态图像配准的配准测度和性能分析[J].电子与信息学报,2004,26(11):1706-1713.
    [102]张泽旭,李金宗,李冬冬.基于光流场分析的红外图像自动配准方法研究[J].红外与毫米波学报,2003,22(24):307-312.
    [103] Huttenlocher D P, Klanderman G A, Rucklidge W J. Comparing images usingthe Hausdorff distance[J]. IEEE Transactions on Pattern Analysis and MachineIntelligence,1993,15(9):850-863.
    [104]王靖,朱梦宇,赵保军.基于小波和改进hausdorff距离的遥感图像配准算法[J].电子学报,2006,34(12):2167-2169.
    [105] Sim D G, Kyu K O, Hong P R. Object matching algorithm using robustHausdorff distance measures[J]. IEEE Transactions on Image Processing,1999,8(3):425-429.
    [106] Kennedy J E R. Particle swarm optimization[C]. Proceedings of the IEEEInternational Conference on Neural Networks,1995.
    [107] Ratanweera A, Halgamuge S K, Watson H C. Self-organization hierarchicalparticle swarm optimizer with time varing acceleration coefficients[J]. IEEETransactions on Evolutionary Computation,2004,8(3):240-255.
    [108]葛永新,杨丹,雷明.基于良分布的亚像素定位角点的图像配准[J].电子与信息学报,2010,33(2):427-432.
    [109] Harris C, Stephens J M. A combined corner and edge detector[C]. Proceedingof the Fourth Alvey Vision Conference, Manchester,1988.
    [110]孙家抦.遥感原理与应用[M].武汉:武汉大学出版社,2009.
    [111] Daniel C, Judith B. Bayesian multiple target tracking in forward scan sonarimages using the PHD filter[J]. IEE Proceedings-Radar,Sonar,and Navigation,2005,152(5):327-334.
    [112] Tobias M, Lanterman A. A probability hypothesis density based multitargettracking with multiple bistatic range and doppler observations[J]. Proc. IEERadar Sonar and Navigation,2005,152(5):327-334.
    [113]张涛.地球同步轨道预警卫星系统中的弹道估计技术研究[D].长沙,国防科学技术大学,2006.
    [114]谢恺.天基红外低轨星座对目标的定位与跟踪[D].长沙,国防科学技术大学,2006.
    [115] Keil K H, Werner H, Astrium G E. Simulation of signal and data processingfor a pair of GEO[C]. Signal and Data Processing of Small Targets, SPIE,2007.
    [116] Li X R, Jinkov V P. A survey of maneuvering target tracking-Part I: dynamicmodels[J]. IEEE Transactions on Aerospace and Electronic System,2003,39(4):1333-1364.
    [117] Li X R, Jilkov V P. A survey of maneuvering target tracking-part II: ballistictarget models[C]. Signal and Data Processing of Small Targets, SPIE,2001.
    [118]盛卫东,许丹,周一宇等.基于高斯混合概率假设密度滤波的扫描型光学传感器像平面多目标跟踪算法[J].航空学报,2011,32(3):497-506.
    [119]刘兴.防空防天信息系统及其一体化技术[M].北京:国防工业出版社,2009.
    [120] Lomheim T S, Milne E L, Jeffrey L, et al. Performance/sizing relationships fora short-wave/mid-wave infrared scanning point-source detection spacesensor[C]. Aerospace Applications Conf. Proceedings, IEEE,1999.
    [121] Mcwilliams J K, Strinath M D. Performance analysis of a target detectionsystem using infrared imagery[J]. IEEE Transactions on Aerospace andElectronic Systems,1984,20(1):38-48.
    [122] Askar H, Li X F, Li Z M. Performance analysis of dim moving point targetdetection algorithms[C]. International Conference on Communications,Circuits and Systems and West Sino Expositions, IEEE,2002.
    [123] Bar-Shalom Y, Dale B W. Multitarget-multisensor tracking: applications andadvances[M]. London: Artech House,2000.
    [124] Clark D, Ristic B, Vo B N, et al. Bayesian multi-object filtering withamplitude feature likelihood for unknown object SNR[J]. IEEE Transactionson signal processing,2010,58(1):26-37.
    [125] Clark D, Risti B, Vo B N. PHD filtering with target amplitude feature[C]. The11th International Conference on Information Fusion, IEEE,2008.
    [126] Ehrman L M, Blair W D. Comparison of methods for using target amplitude toimprove measurement-to-track association in multi-target tracking[C]. The9thInternational Conference on Information Fusion,2006.
    [127] Vermaak J, J G S, Perez P. Monte carlo filtering for multi-target tracking anddata association[J]. IEEE Transactions on Aerospace and Electronic Systems,2005,41(1):309-332.
    [128] Dronkolaei A G, Nazari V, Mohammad, et al. A joint probability dataassociation filter algorithm for multiple robot tracking problems[J]. Tools inArtificial Intelligence,2008,8:163-186.
    [129]何友,王国宏,陆大金等.多传感器信息融合及应用[M].北京:电子工业出版社,2001.
    [130] Beichl I, Sullivan F. The metropolis algorithm[J]. Computing in Science andEngineering,2000,2(1):65-69.
    [131] Khan Z, Tucker B, Frank D. MCMC based particle filtering for tracking avariable number of interacting targets[J]. IEEE Transactions on PatternAnalysis and Machine Intelligence,2005,27(11).
    [132] Hastings W K. Monte Carlo sampling methods using Markov Chains and theirapplications[J]. Biometrika,1970,57(1).
    [133] Chib S, Greenberg E. Understanding the Metropolois-Hastings algorithm[J].American Statistician,1995,49:327-355.
    [134] Chen J, Henry L, Titus L, et al. A modified probabilistic data association filterin a real clutter environment[J]. IEEE Transaction on Aerospace andElectronic Systems,1996,32(1):309-322.
    [135] Wu Y, Dewen H, Meiping W, et al. Unscented Kalman filtering for additivenoise case: augmented versus non-augmented[J]. IEEE Signal ProcessingLetters,2005,12(5):357-360.
    [136]武元新.对偶四元数导航算法与非线性高斯滤波研究[D].长沙,国防科学技术大学,2005.
    [137] Julier S J, Uhlmann J K, Durrant-Whyte H F. A new approach for filteringnonlinear systems.[C]. In Proceedings of the American Control Conference,1995.
    [138] Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation[J]. InProceedings of the IEEE,2004,92(3):401-422.
    [139] Kotecha J H, M D P. Gaussian particle filtering[J]. IEEE Transactions onSignal Processing,2003,51(10):2592-2600.
    [140] Ristic B, S A, N G. Beyond the Kalman filter[M]. Artech House,2004.
    [141]杨露菁,耿伯英.多传感器数据融合手册[M].北京:电子工业出版社,2008.
    [142] Luginbuhl T, Streit R L. Acurate likelihood evaluation for multiple modelPMHT algorithms[J]. IEEE Automatic Control,2007.
    [143] Dominic S, Batuong V, Vo B N. A consistent metric for performanceevaluation of multi-object filters[J]. IEEE Transactions on signal processing,2008,56(8):3447-3457.
    [144] Kirubarajan T, Barshalom Y. Probabilistic data association techniques fortarget tracking in clutter[J]. Proceedings of IEEE,2004,92(3):536-557.
    [145]张惠娟,梁彦,程咏梅等.运动弱小目标先跟踪后检测技术的研究进展[J].红外技术,2006,28(7):423-430.
    [146] Deepa K, Dimitrios H. Blind image deconvolution[J]. IEEE Signal ProcessingMagazine,1996,13(3):43-64.
    [147]刘福声,罗鹏飞.统计信号处理[M].长沙:国防科技大学出版社,1999.
    [148] Boers Y, Driessen H. A particle filter based detection scheme[J]. IEEESignal Processing Letters,2003,10(10):300-302.