掺杂蒽醌/聚吡咯膜电极的电催化氧还原性能及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚吡咯(PPy)作为典型的导电聚合物,具有无毒无害、制备简便、高的导电性、优良的电催化活性和环境稳定性等特点。在吡咯(Py)单体聚合的过程中可以将不同的阴离子基团掺杂进PPy膜内,从而得到具有掺杂阴离子特性的导电聚合物薄膜。利用掺杂阴离子的电化学性质可以实现修饰电极的电催化和电分析等功能。
     由于氧电极在燃料电池和金属-空气电池上的广泛应用,电催化氧还原一直是备受瞩目的研究领域。此外,醌及其衍生物因能促进氧还原为过氧化氢(H_2O_2)的反应速率而使醌及其衍生物修饰电极电催化氧还原备受关注。然而,以自然吸附和共价键合两种方式修饰在电极表面的单层醌及其衍生物经长时间使用后容易脱落,造成修饰电极环境稳定性和电催化活性的降低甚至消失。为了提高修饰电极的稳定性和电催化活性,并利用醌型化合物和PPy膜的优点,本研究中用电化学的方法在水溶液中制备了掺杂蒽醌双磺酸盐(AQDS)的PPy膜(AQDS/PPy)修饰电极。
     本文采用循环伏安(CV)法研究了不同pH缓冲溶液中,扩散相和掺杂相AQDS的电化学行为以及AQDS/PPy复合膜修饰电极的稳定性。结果表明,水溶液介质条件下扩散相和掺杂相AQDS均表现出准可逆的氧化还原行为,两种状态AQDS均经历一步两电子的还原过程。扩散相AQDS的氧化还原过程受扩散传质控制,而掺杂相AQDS的氧化还原是非扩散控制的过程。在较宽的pH范围内,AQDS/PPy复合膜具有良好的电化学活性,扩散相和掺杂相AQDS的氢醌/氢醌阴离子(H_2AQ/HAQ~-)氧化还原对的电离常数pK_a分别为7.6和9.5。PPy膜的存在不仅增大了电极的比表面积,增强了复合膜修饰电极的电化学稳定性,而且促进了掺杂相和扩散相AQDS在PPy膜修饰电极上的电化学反应,增大了AQDS的氧化和还原峰电流,降低了氧化和还原峰电位差。
     本文以醌及其衍生物修饰电极电催化氧还原的理论为基础,利用循环伏安(CV)、旋转圆盘电极(RDE)、计时安培/计时库仑和Tafel极化等技术研究了扩散相和掺杂相AQDS对氧还原反应的电催化性能和电极过程动力学,确定了氧还原反应的扩散和反应动力学参数以及AQDS媒介电催化氧还原的反应机理。结果表明,扩散相和掺杂相AQDS电催化氧还原反应的最佳介质条件为pH=5.5-7.0。不同pH缓冲溶液中,AQDS媒介电催化氧还原主要是两电子还原为H_2O_2的不可逆过程。在酸性和碱性溶液介质中,氢醌(H_2AQ)和半醌基阴离子(AQ~(·-))分别对氧还原反应起主要的电催化作用,催化机理符合电化学-化学机制(EC机制),氧还原过程受溶解氧的扩散传质-催化反应动力学混合控制,而PPy膜只起到电子传递和增强修饰电极稳定性的作用。AQDS/PPy复合膜内AQDS与PPy链结合牢固,具有良好的电化学重现性。在氧饱和的缓冲溶液中长时间工作后,在氮气饱和的相同缓冲溶液中其循环伏安峰电流和峰电位仅有微小的降低(<15%)。
     本文分别以AQDS/PPy复合膜修饰的石墨(AQDS/PPy/Graphite)和裸石墨作为电解池的阴极,向电解液中通入氧气和投加Fe~(2+)或者Fe~(3+)盐,原位电生成Fenton试剂氧化降解苋菜红偶氮染料。考察了溶液pH、阴极电位、Fe~(2+)和Fe~(3+)浓度以及AQDS/PPy复合膜内AQDS掺杂浓度等因素对电Fenton氧化降解偶氮染料效率(染料脱色率和TOC去除率)的影响,确定了电Fenton过程的最佳工艺条件。此外,考察了AQDS/PPy/Graphite复合膜电极和裸石墨电极作为阴极时,溶液pH、阴极电位、氧气流率和PPy膜内AQDS的掺杂浓度等不同实验条件对H_2O_2形成和Fe~(2+)再生的影响。实验结果表明:(1)H_2O_2的形成和Fe~(2+)的再生依赖于所使用的阴极材料,AQDS/PPy/Graphite复合膜电极具有氧扩散阴极的性质,对溶解氧的两电子还原为H_2O_2的反应具有良好的电催化能力;(2)裸电极对Fe~(2+)的再生具有优良的电催化性能;(3)合适的Fe~(2+)和Fe~(3+)浓度是实现电Fenton过程氧化降解能力和效率的先决条件。循环伏安(CV)和傅立叶变换红外光谱(FT-IR)技术表明,在电Fenton系统中使用过的AQDS/PPy/Graphite复合膜电极具有良好的电化学重现性,掺杂的AQDS与PPy链结合牢固,没有从PPy聚合体中脱出。但AQDS/PPy复合膜的电催化能力有所降低。
Polypyrrole (PPy), as a typical conducting polymer, has many advantages such as harmlessness, simple and convenient preparation, high conductivity, electrocatalytic activity and high environmental stability. In seeking to functionalize films with the desired electrochemical properties such as electrocatalysis and electroanalysis, a wide variety of anionic functional groups were incorporated into PPy matrix during the polymerization process of pyrrole (Py) monomer. The electrochemical reduction of oxygen has been received much attention because of the wide use of oxygen reduction electrodes in fuel cells and metal-air batteries. Moreover, the electrochemical reduction of oxygen has also been widely studied on quinones and their various derivatives modified electrodes, since the surface modification of electrodes with quinones greatly increase the rate of oxygen reduction to hydrogen peroxide (H_2O_2). However, quinones and their various derivatives which are grafted as spontaneously adsorbed or covalently bound monolayer on the electrode surface, tend to desorb from the surface during the long-term operation, leading to a loss of electrocatalytic ability and stability of the working electrodes. Therefore, aimed at improving the stability and the electrocatalytic activity of electrocatalyst, and taking advantage of both PPy film and quinonoid compounds, anthraquinonedisulphonate (AQDS) was incorporated into PPy matrix using the electrochemical method during the preparation of the modified electrode.
     The electrochemical behaviors of AQDS dissolved in solution and incorporated into PPy matrix as doping species at PPy film modified glassy carbon (GC) electrode were investigated in various pH buffered solutions, also examined was the stability of the AQDS/PPy composite film (AQDS in doping phase). It was found that the redox process of AQDS in solution and doping phase both exhibit quasi-reversible behavior and pH dependence. For AQDS in solution phase, the reduction of AQDS is diffusion-controlled adsorption process, while for AQDS in doping phase the reduction of AQDS is non-diffusion-controlled process. The value of ionization constant pKa for the H_2AQ/HAQ~- couple increases obviously from 7.6 in solution phase to 9.5 when AQDS is incorporated into PPy matrix. The immobilized and diffusive AQDS both proceed a single two-electron reduction step in aqueous solution. The PPy matrix not only increases the specific surface area of electrode and lowers the redox peak potential separation of AQDS, but also increases the redox peak currents. In addition, the AQDS/PPy composite film modified electrode exhibited a good electrochemical stability.
     In view of the earlier works which have been done on the electrocatalytic effect of quinonoid compounds on O_2/O_2~(2-) redox reaction, the electrocatalytic activity of the immobilized and diffusive AQDS towards the electroreduction of oxygen was investigated using cyclic voltammetry (CV), rotating disc electrode (RDE), chronoamperometric/chronocoulometric and Tafel polarization technique. The diffusive and reactive kinetic parameters were also determined using these electrochemical approaches and the probable mechanism for oxygen reduction catalyzed by AQDS operating in various pH buffered solutions were proposed. It was found that the pH range of 5.5-7.0 buffered solution is a more suitable medium for oxygen reduction catalyzed by the immobilized and diffusive AQDS. In various pH buffered solutions, the electrocatalytic reduction of oxygen mediated by AQDS establishes a pathway of irreversible two-electron reduction to form H_2O_2. The dihydroanthraquinone (H2AQ) and semiquinone radical anion (AQ~-) are responsible for the extraordinary catalytic activity to the oxygen reduction reaction in acidic and alkaline media, respectively. The catalytic reaction occurred in the presence of AQDS and O_2 is in agreement with an electrochemical-chemical (EC) mechanism, and the electrocatalytic current is under mixed diffusion-reaction kinetic control. The AQDS/PPy composite film exhibits reproducible characteristic. After performing repetitive CVs in an O_2-saturated buffer solution, there was a slightly decrease (< 15%) in the corresponding voltammograms in the same N_2-saturated solution.
     The degradation of amaranth azo dye was investigated by in-situ electrogenerated Fenton's reagent using the bare graphite and the AQDS/PPy composite film modified graphite (AQDS/PPy/Graphite) as cathodes and Fe~(2+) or Fe~(3+) as catalyst. The H_2O_2 was produced by electrochemical reduction of oxygen on cathode and the Fe~(2+) was also regenerated by cathodic reduction of Fe~(3+). The influence of various operational parameters such as solution pH, cathode potential, Fe~(3+) and Fe~(2+) concentration, and AQDS doping concentration on amaranth azo dye degradation efficiency (color fading and total organic carbon (TOC) removal) were studied and the best experiment conditions for dye degradation was established. In addition, the electrocatalytic activities of the bare graphite and the AQDS/PPy/graphite cathodes towards oxygen reduction and Fe~(2+) regeneration were studied using CV and cathodic polarization technologies, and the effects of various operational parameters such as solution pH, cathodic potential, oxygen flow rate and AQDS doping concentration on H_2O_2 accumulation and current efficiency were investigated systematically. The results show that H_2O_2 generation and Fe~(2+) regeneration mainly depend on the cathode materials utilized. The AQDS/PPy/Graphite composite film electrode exhibits the characteristic of gas diffusion cathode and is highly efficient for H_2O_2 electrogeneration with high generation rate and current efficiency, while the bare graphite electrode exhibits better electrocatalytic activity for Fe~(2+) regeneration. The suitable Fe~(2+) and Fe~(3+) concentration is an important and crucial factor for electro-Fenton oxidation ability and efficiency. The CV and fourier transfer infrared (FT-IR) analyses confirm that the bulk AQDS strongly interacts with PPy matrix and cannot be expelled from the polymer after use in electro-Fenton process, but there is a slight decrease in the electrocatalytic activity of AQDS/PPy composite film.
引文
[1]董绍俊,车广礼,谢远武.化学修饰电极.北京:科学出版社,1995.
    
    [2]吕紫玲,董绍俊.化学修饰电极的研究Ⅷ.聚乙烯二茂铁薄膜电极对抗坏血酸的电催化氧化.化学学报,1988,44(1):32-38.
    
    [3]董绍俊.聚合物薄膜化学修饰电极.应用化学,1986,3(6):1-8.
    
    [4]董绍俊.化学修饰电极.化学通报,1981,12:9-17.
    
    [5] YeagerE. Electrocatalysts for O_2 reduction. Electrochimica Acta, 1984, 29(11): 1527-1537.
    
    [6] Couper A M, Pletcher D and Walsh F C. Electrode Materials for Electrosynthesis. Chemical Reviews, 1990,90(5): 837-865.
    
    [7]董绍俊,李凤斌.六氰亚铁钒薄膜修饰电极——一种新的电色薄膜.科学通报,1987,(01):36-38.
    
    [8]程发良,宁满霞,莫金垣等.水介质中吡咯的电化学聚合反应.分析测试学报,2002,21(4):30-33.
    
    [9] Malinauskas A. Electrocatalysis at conducting polymers. Synthetic Metals, 1999,107(2): 75-83.
    
    [10] Piatnicki C M S, Azambuja D S, Hasse E E S, Castagno K R L, Guterres S B. Removal of Cu(II) from dilutesolutions at polypyrrole modified electrodes. Separation Science and Technology, 2002, 37(10): 2459-2476.
    
    [11] Alatorre M A, Gutierresz S, Paramo U. Reduction of hexavalent chromium by polypyrrole deposited ondifferent carbon substrates. Journal of Applied Electrochemistry, 1998,28(5): 551-557.
    
    [12] Rodriguez F J, Gutiérrez S, Ibanez J G, Bravo J L, Batina N. The efficiency of toxic chromate reduction by aconducting polymer (polypyrrole): influence of electroplymerization conditions. Environmental Science &Technology, 2000,34(10): 2018-2023.
    
    [13] Wampler W A, Basak S, Rajeshmar K. Compostites of polypyrrole and carbon black: 4. use inenvironmental pollution abatement of hexavalent chromium. Carbon. 1996, 34(6): 747-755.
    
    [14] Conroy K G, Breslin C B. Reduction of hexavalent chromium at a polypyrrole-coated aluminium electrode:synergistic interactions. Journal of Applied Electrochemistry. 2004, 34(2): 191-195.
    
    [15] Wang Y, Rajeshwar K. Electrocatalytic reducetion of Cr(VI) by polypyrrole-modified glassy carbonelectrodes. Journal of Electroanalytical Chemistry. 1997,425(1-2): 183-189.
    
    [16] Pickup N L, Shaporo J S, Wong DRY. Extraction of silver by polypyrrole films upon a base-acid treatment.Analytica Chimica Acta, 1998, 364(1-3): 41-51.
    
    [17] Ding J, Price W E, Ralph S F, Wallace G G Recovery of gold eyanide using inherently conducting polymers.Polymer International, 2003,52(1): 51-55.
    
    [18] Pickup N L, Shaporo J S, Wong D K Y. Extraction of mercury and silver into base-acid treated polypyrrolefilms: a possible pollutant control technology. Journal of polymer research, 2001, 8(3): 151-157.
    
    [19] Tramontina J, Machado G, Azambuja D S, Piatnicki C M S, Samios D. Removal of Cd~(2+) from aqueoussolutions onto polypyrrole coated reticutated vitreous electrodes. Materials Research, 2001,4: 195-200.
    
    [20] Farrell S T and Breslin C B. Reduction of Cr(VI) at a polyaniline film: Influence of film thickness andoxidation state. Environmental Science & Technology, 2004, 38(17): 4671-4676.
    
    [21] Ruotolo L A M and Gubulin J C. Chromium(VI) reduction using conducting polymer films. Reactive and Functional Polymers, 2005,62(2): 141-151.
    
    [22] Lima A, Coutanceau C, Leger J M et al. Investigation of ternary catalysts for methanol electrooxidation. Journal of Applied Electrochemistry, 2001, 31(4): 379-386.
    
    [23]万本强.甲酸在铂微粒修饰的聚2,5-二甲氧基苯胺电极上的电催化氧化.应用化学,1999,16(2):60-64.
    
    [24] Galal A. Elelctrocatalytic oxidation of some biologically important compounds at conducting polymerelectrodes modified by metal complexes. Journal of Applied Electrochemistry, 1998, 2(1): 7-15.
    
    [25] Tuken T, Arslan G, Yazici B et al. The preparation of polypyrrole coated brass and copper electrodes forelectrocatalysis. Progress in Organic Coatings, 2004,49(2): 153-159.
    
    [26] Buttner E and Holze R. Hydroquinone oxidation electrocatalysis at polyaniline films. Journal ofElectroanalytical Chemistry, 2001, 508(1-2): 150-155.
    
    [27] Levi M D and Pisarevskaya E Y. Electrochemical characterisation of the polymer/solution interface forelectronically conducting and conventional redox-polymers. Synthetic Metals, 1993, 55(2-3): 1377-1381.
    
    [28] Malinauskas A and Holze R. A UV-vis spectroelectrochemical study of redox reactions of solution species ata polyaniline electrode in the conducting and the reduced state. Journal of Electroanalytical Chemistry, 1999,461(1-2): 184-193.
    
    [29] Komura T, Mori Y, Yamaguti T et al. Electrostatic incorporation of anthraquinonesulfonate ions into apolypyrrole film containing pyridinium groups. Electrochimica Acta, 1997,42(6): 985-991.
    
    [30] Komura T, Yokono Y, Yamaguchi T et al. Current enhancing effect of poly[1-methyl-3-(pyrrol-1-ylmethyl)-pyridinium] films on the electrode reaction of anthraquinonedisulfonate. Journal of Electroanalytical Chemistry,1999,478(1-2): 9-16.
    
    [31] Ardiles P, Trollund E, Isaacs M et al. Electrocataltyic oxidation of hydrazine at polymericiron-tetraaminophthalocyanine modified electrodes. Journal of Molecular Catalysis A: Chemical, 2001,165(1-2):169-175.
    
    [32] Zhang J, Tse Y-H, Pietro W J et al. Electrocatalytic activity of N,N',N",N'"-tetramethyl-tetra-3,4-pyridopor-phyrazinocobalt(Ⅱ) adsorbed on a graphite electrode towards the oxidation of hydrazine and hydroxylamine.Journal of Electroanalytical Chemistry, 1996,406(1-2): 203-211.
    
    [33] Erdogdu G and Karagozler A E. Investigation and comparison of the electrochemical behavior of someorganic and biological molecules at various conducting polymer electrodes. Talanta, 1997,44(11): 2011-2018.
    
    [34]候士峰,方惠群,陈洪渊.聚乙撑二氧噻吩修饰电极的电化学行为及对抗坏血酸的电催化作用.高等学校化学学报,1995,16(1):39-42.
    
    [35] Pournaghi-Azar M H and Ojani R. Electrochemistry and electrocatalytic activity of polypyrrole/ferrocyanidefilms on a glassy carbon electrode. Journal of Solid State Electrochemistry, 2000,4(2): 75-79.
    
    [36] Zhang L and Dong S. The electrocatalytic oxidation of ascorbic acid on polyaniline film synthesized in thepresence of camphorsulfonic acid. Journal of Electroanalytical Chemistry, 2004, 568: 189-194.
    
    [37] Raoof J B, Ojani R and Kiani A. Carbon paste electrode spiked with ferrocene carboxylic acid and itsapplication to the electrocatalytic determination of ascorbic acid. Journal of Electroanalytical Chemistry, 2001,515(1-2): 45-51.
    
    [38] Bartlett P N, Birkin P R and Wallace E N K. Oxidation of β-nicotinamide adenine dinucleotide (NADH) atpoly(aniline)-coated electrodes. Journal of the Chemical Society, Faraday Transactions, 1997, 93(10): 1951-1960.
    
    [39] Grzeszczuk M. Electrochemical study of polyaniline film electrodes and their modifications-impedancespectroscopy measurements on hydrogen evolution reaction. Electrochimica Acta, 1994, 39(11-12): 1809-1816.
    
    [40]万本强,吴婉群.铂微粒修饰聚2,5-二甲氧基苯胺电极对甲醇的电催化作用.高等学校化学学报,1995,16(4):622-625.
    
    [41]吴婉群,王月丰.铂微粒弥散的聚2,5-二甲氧基苯胺膜电极在甲醇电氧化中的催化行为.应用化学,1996,13(5):21-24.
    
    [42]吴婉群,王月丰.掺铂微粒的聚2,5-二甲氧基苯胺膜电极对甲醛氧化的电催化作用.西南师范大学学报(自然科学版),1996,21(6):579-584.
    
    [43] Yang C-H and Wen T-C. Electrodeposited platinum microparticles in a sulfonate-polyaniline film for theelectrosorption of methanol and sorbitol. Electrochimica Acta, 1998,44(2-3): 207-218.
    
    [44] Yang H, Lu T, Xue K et al. Electrocatalytic Oxidation of Methanol on Polypyrrole Film Modified withPlatinum Microparticles. Journal of the Electrochemical Society, 1997,114(7): 2302-2307.
    
    [45] Morita M, Matsuno M and Matsuda Y. Platinum microparticle electrocatalysts deposited onpoly-(N-methylpyrrole)-Nafion composite films for anodic oxidation of methanol. Denki Kagaku, 1996, 64(6):749-751.
    
    [46] Barth M, Lapkowski M, Urek W et al. Catalytic properties of ruthenium dioxide in polyaniline matrix.Synthetic Metals, 1997, 84(1-3): 111-112.
    
    [47] Kelaidopoulou A, Abelidou E, Papoutsis A et al. Electrooxidation of ethylene glycol on Pt-based catalystsdispersed in polyaniline. Journal of Applied Electrochemistry, 1998, 28(10): 1101-1106.
    
    [48] Lai E K W, Beattie P D, Orfino F P et al. Electrochemical oxygen reduction at composite films of Nafion(R),polyaniline and Pt. Electrochimica Acta, 1999,44(15): 2559-2569.
    
    [49] Lai E K W, Beattie P D and Holdcroft S. Electrocatalytic reduction of oxygen by platinum microparticlesdeposited on polyaniline films. Synthetic Metals, 1997, 84(1-3): 87-88.
    
    [50] Holdcroft S and Funt B L. Preparation and electrocatalytic properties of conducting films of polypyrrolecontaining platinum microparticulates. Journal of Electroanalytical Chemistry, 1988,240(1-2): 89-103.
    
    [51] Vork F T A, Janssen L J J and Barendrecht E. Oxidation of hydrogen at platinum-polypyrrole electrodes.Electrochimica Acta, 1986, 31(12): 1569-1575.
    
    [52] Chen C C, Bose C S C and Rajeshwar K. The reduction of dioxygen and the oxidation of hydrogen atpolypyrrole film electrodes containing nanodispersed platinum particles. Journal of Electroanalytical Chemistry,1993,350(1-2): 161-176.
    
    [53] Guascito M R, Boffi P, Malitesta C et al. Conducting polymer electrodes modified by metallic species forelectrocatalytic purposes--spectroscopic and microscopic characterization. Materials Chemistry and Physics,1996,44(1): 17-24.
    
    [54] Casella I G, Cataldi T R I, Guerrieri A et al. Copper dispersed into polyaniline films as an amperometricsensor in alkaline solutions of amino acids and polyhydric compounds. Analytica Chimica Acta, 1996, 335(3):217-225.
    
    [55] Abrantes L M and Correia J P. Poly(3-methylthiophene) incorporating electrolessly deposited Ni-P particles.Surface and Coatings Technology, 1998,107(2-3): 142-148.
    
    [56] Sung H, Lee T and Paik W-k. Electroactive counter anions in conducting polypyrrole: hexacyanoferrate andheteropolytungstate ions. Synthetic Metals, 1995,69(1-3): 485-486.
    
    [57] Shchukin D G and Sviridov D V. Highly efficient generation of H_2O_2 at compositepolyaniline/heteropolyanion electrodes: effect of heteropolyanion structure on H_2O_2 yield. ElectrochemistryCommunications, 2002, 4(5): 402-405.
    
    [58] Dong S and Liu M. Preparation and properties of polypyrrole film doped with a Dawson-typeheteropolyanion. Electrochimica Acta, 1994,39(7): 947-951.
    
    [59] Wang P and Li Y. Electrochemical and electrocatalytic properties of polypyrrole film doped withheteropolyanions. Journal of Electroanalytical Chemistry, 1996,408(1-2): 77-81.
    
    [60] Pham M-C, Bouallala S, Le L A et al. Study of a heteropolyanion-doped poly(5-amino-l-naphthol) filmelectrode and its catalytic activity. Electrochimica Acta, 1997,42(3): 439-447.
    
    [61] Dong S, Cheng L and Zhang X. Electrochemical studies of a lanthanide heteropoly tungstate/molybdatecomplex in polypyrrole film electrode and its electrocatalytic reduction of bromate. Electrochimica Acta, 1997,43(5-6): 563-568.
    
    [62] Fabre B and Bidan G Electrosynthesis of different electronic conducting polymer films doped with aniron-substituted heteropolytungstate: choice of the immobilization matrix the most suitable for theelectrocatalytic reduction of nitrite ions. Electrochimica Acta, 1997,42(16): 2587-2590.
    
    [63] Lee J K, Song I K and Lee W Y. Design of novel catalyst imbedding heteropoly acids in polymer films:Catalytic activity for ethanol conversion. Journal of Molecular Catalysis A: Chemical, 1997, 120(1-3): 207-216.
    
    [64] Pielichowskia K and Hasik M. Thermal properties of new catalysts based on heteropolyanion-dopedpolyaniline. Synthetic Metals, 1997,89(3): 199-202.
    
    [65] Stochmal-Pomarzanska E, Quillard S, Hasik M et al. Spectroscopic and catalytic studies of selectedpolyimines protonated with heteropolyacids. Synthetic Metals, 1997, 84( 1-3): 427-428.
    
    [66] Lapkowski M, Turek W, Barth M et al. Changes in catalytic properties of substituted and unsubstitutedheteropolyacids in conductive polymer matrix. Synthetic Metals, 1995,69(1-3): 127-128.
    
    [67]董国孝,李纪生,庄瑞舫.酞菁钴-高分子双层膜修饰电极对氧的催化电还原.高等学校化学学报,1996,17(5):794-796.
    
    [68] Coutanceau C, Rakotondrainibe A, Crouigneau P et al. Spectroscopic investigations of polymer-modifiedelectrodes containing cobalt phthalocyanine: application to the study of oxygen reduction at such electrodes.Journal of Electroanalytical Chemistry, 1995, 386(1-2): 173-182.
    
    [69] Coutanceau C, El Hourch A, Crouigneau P et al. Conducting polymer electrodes modified by metaltetrasulfonated phthalocyanines: Preparation and electrocatalytic behaviour towards dioxygen reduction in acidmedium. Electrochimica Acta, 1995,40(17): 2739-2748.
    
    [70] Coutanceau C, Crouigneau P, Leger J M et al. Mechanism of oxygen electroreduction at polypyrroleelectrodes modified by cobalt phthalocyanine. Journal of Electroanalytical Chemistry, 1994, 379(1-2): 389-397.
    
    [71]吴宝璋,杨长通,吴辉煌.氧在铁卟啉/聚吡咯膜修饰电极上的还原.应用化学,1999,16(5):17-20.
    
    [72] Yamamota K and Taneichi D. Electrochemical Catalytic Reduction of Oxygen by a Self-DopedPolyaniline-Co-Porphyrin Complex-Modified Glassy Carbon Electrode. Journal of Inorganic and OrganometallicPolymers, 1999, 9(4): 231-242.
    
    [73] Retamala B A, Vaschettob M E and Zagal J. Catalytic electro-oxidation of 2-mercaptoethanol using cobaltphthalocyanine + poly(2-chloroaniline) modified electrodes. Journal of Electroanalytical Chemistry, 1997,431(1):1-5.
    
    [74] Nakayama M, lino M and K. Ogura. In situ infrared spectroscopic investigations on the electrochemicalproperties of Prussian blue-polyaniline-modified electrodes with various anionic Fe(II) complexes working as amediator for the electroreduction of CO_2. Journal of Electroanalytical Chemistry, 1997,440(1-2): 251-257.
    
    [75] Nguyen Cong H, El Abbassi K, Gautier J L et al. Oxygen reduction on oxide/polypyrrole compositeelectrodes: effect of doping anions. Electrochimica Acta, 2005, 50(6): 1369-1376.
    
    [76] Nguyen-Cong H, de la Garza Guadarrama V, Gautier J L et al. Oxygen reduction on Ni_xCo_(3-x)O_4 spinelparticles/polypyrrole composite electrodes: hydrogen peroxide formation. Electrochimica Acta, 2003, 48(17):2389-2395.
    
    [77] Gautier J L, Marco J F, Gracia M et al. Ni_(0.3)Co_(2.7)O_4 spinel particles/polypyrrole composite electrode: Study??by X-ray photoelectron spectroscopy. Electrochimica Acta, 2002,48(2): 119-125.
    
    [78] Marco J F, Gancedo J R, Cong H N et al. Characterization of Cu_(1.4)Mn_(1.6)O_4/PPy composite electrodes. SolidState Ionics, 2006, 177(15-16): 1381-1388.
    
    [79] Cong H N, Abbassi K E and Chartier P. Electrocatalysis of Oxygen Reduction on Polypyrrole/MixedValence Spinel Oxide Nanoparticles. Journal of the Electrochemical Society, 2002, 149(5): A525-A530.
    
    [80] Singh R N, Lal B and Malviya M. Electrocatalytic activity of electrodeposited composite films ofpolypyrrole and CoFe_2O_4 nanoparticles towards oxygen reduction reaction. Electrochimica Acta, 2004, 49(26):4605-4612.
    
    [81] Abe T, Kubota J, Tanaka T et al. Voltammetric study of electrocatalysis for dioxygen reduction by trinuclearrutheniumammine complex confined in a polymer membrane. Electrochimica Acta, 2002,47(24): 3901 -3907.
    
    [82] Ryu K S, Lee Y, Han K-S et al. The electrochemical performance of polythiophene synthesized by chemicalmethod as the polymer battery electrode. Materials Chemistry and Physics, 2004, 84(2-3): 380-384.
    
    [83] Tsutsumi H, Higashiyama H, Onimura K et al. Preparation of poly(N-methylpyrrole) modified withpentathiepin rings and its application to positive active material for lithium secondary. Journal of Power Sources,2005, 146(1-2): 345-348.
    
    [84] Courric S and Iran V H. The electromagnetic properties of poly(p-phenylene-vinylene) derivatives. Polymer,1998, 39(12): 2399-2408.
    
    [85] Makela T, Pienimaa S, Taka T et al. Thin polyaniline films in EMI shielding. Synthetic Metals, 1997,85(1-3): 1335-1336.
    
    [86] Talaie A. Conducting polymer based pH detector: A new outlook to pH sensing technology. Polymer, 1997,38(5): 1145-1150.
    
    [87] Talaie A and Romagnoli J A. An integrated artificial neural network/polymer-based pH sensor: a newengineering perspective to conducting polymer technology. Synthetic Metals, 1996, 82(3): 231-235.
    
    [88] Bartlett P N and Ling-Chung S K. Conducting polymer gas sensors part II: response of polypyrrole tomethanol vapour. Sensors and Actuators, 1989, 19(2): 141-150.
    
    [89] Selampinar F, Toppare L, Akbulut U et al. A conducting composite of polypyrrole II. As a gas sensor.Synthetic Metals, 1995,68(2): 109-116.
    
    [90]董绍俊,吕紫玲,孙志胜.一种新型导电聚合物离子选择电极.科学通报,1989,21:1677-1678.
    
    [91] Atta N F, Galal A, Mark H B et al. Conducting polymer ion sensor electrodes-III. Potentiometric sulfide ionselective electrode. Talanta, 1998,47(2): 987-999.
    
    [92] Karagozler A E, Ataman O Y, Galal A et al. Potentiometric iodide ion sensor based on a conductingpoly(3-methylthiophene) polymer film electrode. Analytica Chimica Acta, 1991,28(1): 163-172.
    
    [93] Huissoud A and Tissot P. Electrochemical reduction of 2-ethyl-9,10-anthraquinone (EAQ) and mediatedformation of hydrogen peroxide in a two-phase medium Part I: Electrochemical behaviour of EAQ on a vitreouscarbon rotating disc electrode (RDE) in the two-phase medium. Journal of Applied Electrochemistry, 1999, 29(1):11-16.
    
    [94] Tissot P and Huissoud A. Proton effects in the electrochemical behaviour of 2-ethyl-9,10-anthraquinone inthe medium dimethoxyethane-tetrabutylammonium hydroxide with and without oxygen. Electrochimica Acta,1996,41(15): 2451-2456.
    
    [95] Shamsipur M, Salimi A, Golabi S M et al. Electrochemical properties of modified carbon paste electrodescontaining some amino derivatives of 9,10-anthraquinone. Journal of Solid State Electrochemistry, 2001, 5(1):68-73.
    
    [96] Salimi A, Eshghi H, Sharghi H et al. Electrocatalytic Reduction of Dioxygen at the Surface of GlassyCarbon Electrodes Modified by Some Anthraquinone Substituted Podands. Electroanalysis, 1999, 11(2): 114-119.
    
    [97] Salimi A, Mousavi M F, Sharghi H et al. Electrocatalysis of O_2 Reduction at Glassy Carbon ElectrodesModified with Adsorbed 1,4-Dihydroxy-9,10-anthraquinone Derivatives. Bulletin of the Chemical Society ofJapan, 1999, 72(9): 2121-2127.
    
    [98] Salimi A, Banks C E and Compton R G Ultrasonic effects on the electro-reduction of oxygen at a glassycarbon anthraquinone-modified electrode. The Koutecky-Levich equation applied to insonated electro-catalyticreactions. Physical Chemistry Chemical Physics, 2003, 5(18): 3988-3993.
    
    [99] Sljukic B, Banks C E, Mentus S et al. Modification of carbon electrodes for oxygen reduction and hydrogenperoxide formation: The search for stable and efficient sonoelectrocatalysts. Physical Chemistry ChemicalPhysics, 2004,6(5): 992-997.
    
    [100] Forster R J and O'Kelly J P. Protonation reactions of anthraquinone-2,7-disulphonic acid in solution andwithin monolayers. Journal of Electroanalytical Chemistry, 2001,498(1-2): 127-135.
    
    [101] Hossain M S, Tryk D and Yeager E. The electrochemistry of graphite and modified graphite surfaces: thereduction of O_2. Electrochimica Acta, 1989, 34(12): 1733-1737.
    
    [102] Tammeveski K, Kontturi K, Nichols R J et al. Surface redox catalysis for O_2 reduction onquinone-modified glassy carbon electrodes. Journal of Electroanalytical Chemistry, 2001,515(1-2): 101-112.
    
    [103] Vaik K, Schiffrin D J and Tammeveski K. Electrochemical reduction of oxygen on anodically pre-treatedand chemically grafted glassy carbon electrodes in alkaline solutions. Electrochemistry Communications, 2004,6(1): 1-5.
    
    [104] Vaik K, Maeorg U, Maschion F C et al. Electrocatalytic oxygen reduction on glassy carbon grafted withanthraquinone by anodic oxidation of a carboxylate substituent. Electrochimica Acta, 2005, 50(25-26):5126-5131.
    
    [105] Sarapuu A, Vaik K, Schiffrin D J et al. Electrochemical reduction of oxygen on anthraquinone-modifiedglassy carbon electrodes in alkaline solution. Journal of Electroanalytical Chemistry, 2003, 541: 23-29.
    
    [106] Manisankar P and Gomathi A. Electrocatalysis of oxygen reduction at polypyrrole modified glassy carbonelectrode in anthraquinone solutions. Journal of Molecular Catalysis A: Chemical, 2005, 232(1-2): 45-52.
    
    [107] Manisankar P and Gomathi A. Mediated oxygen reduction at a glassy carbon electrode modified withriboflavin and 9,10-anthraquinones. Journal of Power Sources, 2005, 150: 240-246.
    
    [108] Manisankar P, Gomathi A and Velayutham D. Oxygen reduction at the surface of glassy carbon electrodesmodified with anthraquinone derivatives and dyes. Journal of Solid State Electrochemistry, 2005, 9(9): 601-608.
    
    [109] Mirkhalaf F, Tammeveski K and Schiffrin D J. Substituent effects on the electrocatalytic reduction ofoxygen on quinone-modified glassy carbon electrodes. Physical Chemistry Chemical Physics, 2004, 6(6):1321-1327.
    
    [110] Nagaoka T, Sakai T, Ogura K et al. Oxygen reduction at electrochemically treated glassy carbon electrodes.Analytical Chemistry, 1986, 58(9): 1953-1955.
    
    [111] Degrand C. Influence of the pH on the catalytic reduction of oxygen to hydrogen peroxide at carbonelectrodes modified by an adsorbed anthraquinone polymer. Journal of Electroanalytical Chemistry, 1984,169(1-2): 259-268.
    
    [112] Andrieux C P, Audebert P, Hapiot P et al. Electrochemistry in hydrophobic Nafion gels: Part 2.Electrochemical behaviour and catalytic properties of electrodes modified by hydrophobic Nafion gels loadedwith 9-phenylacridinium salts and anthraquinone. Journal of Electroanalytical Chemistry, 1990, 296(1): 129-139.
    
    [113] Golabi S M and Raoof J B. Catalysis of dioxygen reduction to hydrogen peroxide at the surface of carbonpaste electrodes modified by 1,4-naphthoquinone and sone of its derivatives. Journal of ElectroanalyticalChemistry, 1996,416(1): 75-82.
    
    [114] Jurmann G, David J S and Tammeveski K. The pH-dependence of oxygen reduction on quinone-modified??glassy carbon electrodes. Electrochimica Acta. 2007, 53(2): 390-399.
    
    [115] Taylor R J and Humffray A A. Electrochemical studies on glassy carbon electrodes: II. Oxygen reduction insolutions of high pH (pH>10). Journal of Electroanalytical Chemistry, 1975, 64(1): 63-84.
    
    [116] Yeager E. Electrocatalysts for O_2 reduction. Electrochimica Acta, 1984,29(11): 1527-1537.
    
    [117] Appel M and Appleby A J. A ring-disk electrode study of the reduction of oxygen on active carbon inalkaline solution. Electrochimica Acta, 1978,23(11): 1243-1246.
    
    [118] Xu J, Huang W and McCreery R L. Isotope and surface preparation effects on alkaline dioxygen reductionat carbon electrodes. Journal of Electroanalytical Chemistry, 1996,410(2): 235-242.
    
    [119] Wass J R T J, Ahlberg E, Panas I et al. Quantum chemical modelling of the rate determining step foroxygen reduction on quinones. Physical Chemistry Chemical Physics, 2006, 8(36): 4189-4199.
    
    [120]魏小平,李建平,戴达勇.吡咯烷二硫代氨基甲酸盐碳糊修饰电极的研究.分析实验室,1997,16(4):13-16.
    
    [121]王胜天,许宏鼎,李景虹.环境电分析化学.分析化学,2002,30(8):1005-1011.
    
    [122]杨大鸣,胡晓安,陆俭洁.PVC膜修饰粉末电极的研制和应用.分析化学,1998,19(11):1743-1745.
    
    [123]姜艳霞,宋文波,刘颖.分子筛修饰电极中电子传输机理的研究.高等学校化学学报,1998,19(12):1929-1932.
    
    [124]吴鸣虎,王升富.磷钼钒杂多酸-聚吡咯膜修饰电极测定污水中亚硝酸根离子.理化检验-化学分册,2000,36(6):244-246.
    
    [125]吴鸣虎,王升富.亚硝酸根在磷钼镍杂多酸-聚吡咯膜修饰电极上的伏安法行为及其含量测定.分析实验室,1999,18(3):45-48.
    
    [126]兰雁华,陆光汉,吴晓刚.甲壳素修饰碳糊电极测定亚硝酸根.分析实验室,1999,18(1):27-30.
    
    [127]田敏,奚晓丹,董绍俊.硅钨杂多酸修饰微电极的研究.分析化学,1996,24(8):902-905.
    
    [128]孙玉堂,吴建人,刘强.铅基磷酸铅化学修饰电极的研究.分析化学,1995,23(11):1274-1276.
    
    [129]但德忠,陈文,龚峰景.聚氯乙烯膜修饰碳微电极的研究及应用.分析化学,2000,28(9):1150-1154.
    
    [130]魏培海,陈立仁,李关宾.酚类化合物在二氧化锡微粒修饰碳纤维电极上的氧化和检测.分析化学,2001,29(1):49-52.
    
    [131]李启隆,赵敏,胡劲波.离子注入修饰电极检测硝基苯.分析化学,1997,25(11):1246-1249.
    
    [132]金利通,周满水,史占玲.C60修饰电极电位传感器对十六烷基三甲基溴化铵的检测研究.分析化学,1995,23(2):163-166.
    
    [133]金利通,鲜跃仲,毛兰群.修饰电极化学振荡电流法用于苯胺的检测.分析化学,1996,24(8):896-901.
    
    [134] Quan X, Liu X, Bo L et al. Regeneration of acid orange 7-exhausted granular activated carbons withmicrowave irradiation. Water Research, 2004, 38(20): 4484-4490.
    
    [135] Tezcanli-Guyer G and Ince N H. Degradation and toxicity reduction of textile dyestuff by ultrasound.Ultrasonics Sonochemistry, 2003, 10(4-5): 235-240.
    
    [136] Abdelmalek F, Gharbi S, Benstaali B et al. Plasmachemical degradation of azo dyes by humid air plasma:Yellow Supranol 4 GL, Scarlet Red Nylosan F3 GL and industrial waste. Water Research, 2004, 38(9):2339-2347.
    
    [137] Dajka K, Takacs E, Solpan D et al. High-energy irradiation treatment of aqueous solutions of C.I. ReactiveBlack 5 azo dye: pulse radiolysis experiments. Radiation Physics and Chemistry, 2003,67(3-4): 535-538.
    
    [138] Arnold S M, Hickey W J and Harris R F. Degradation of Atrazine by Fenton's Reagent: ConditionOptimization and Product Quantification. Environmental Science & Technology, 1995,29(8): 2083-2089.
    
    [139] Huston P L and Pignatello J J. Degradation of selected pesticide active ingredients and commercial formulations in water by the photo-assisted Fenton reaction. Water Research, 1999,33(5): 1238-1246.
    
    [140]范少华,崔玉民.光催化技术在污水处理方面的应用.化工进展,2002,21(5):345-348.
    
    [141]江立文,李耀中,周岳溪等.流化床光催化反应器降解4BS染料的研究.中国给水排水,2001,17(2):12-15.
    
    [142]崔鹏,范益群,徐南平等.三相流化床中光催化降解反应特性的研究.高校化学工程学报,2002,16(1):53-57.
    
    [143]马永明,余国琮.水中溶解有机物TiO2-UV-O2光催化氧化动力学研究.化工进展, 2002,21(2):112-114.
    
    [144] Vlyssides A G, Loizidou M, Karlis P K et al. Electrochemical oxidation of a textile dye wastewater using a Pt/Ti electrode. Journal of Hazardous Materials, 1999, 70(1-2): 41-52.
    
    [145]申哲民,雷阳明,贾金平等.PbO_2电极氧化有机废水的研究.高校化学工程学报,2004,18(1):105-108.
    
    [146]杨蕴哲,杨卫身,杨风林等.恒电流下原位电生成活性氯氧化降解葸醌染料.大连理工大学学报,2006,46(6):813-818.
    
    [147]范丽.染料在铂和活性炭纤维电极上的电化学行为:(博士学位论文).大连:大连理工大学,2005.
    
    [148] Nakajima Y, Nakamatsu S, Shimamune T et al. Electrochemical Characteristics of Ru-Sn Oxide-coated Titanium Anodes for Chlor-alkali Membrane Electrolysis. DenkiKagaku, 1995,63(11): 1011-1015.
    
    [149]吴星五,赵国华,高廷耀.电化学法水处理新技术.降解有机废水.环境科学学报,2000,20(增刊):80-84.
    
    [150] Chen X, Chen G and Yue P L. Anodic oxidation of dyes at novel Ti/B-diamond electrodes. Chemical Engineering Science, 2003,58(3-6): 995-1001.
    
    [151]俞杰飞,周亮,王亚林等.掺硼金刚石薄膜电极电催化降解染料废水的研究.高校化学工程学报,2004,18(5):648-652.
    
    [152] Fan L, Yang F and Yang W. Performance of the decolorization of an azo dye with bipolar packed bed cell. Separation and Purification Technology, 2004, 34(1-3): 89-96.
    
    [153]范丽,杨卫身,杨凤林等.复极填充床电解槽用于偶氮染料废水脱色.中国给水排水,2002,18(4):34-36.
    
    [154] Xiong Y, Strunk P J, Xia H et al. Treatment of dye wastewater containing acid orange II using a cell with three-phase three-dimensional electrode. Water Research, 2001,35(17): 4226-4230.
    
    [155]赵少陵,贾金平.活性炭纤维电极法处理印染废水的应用研究.上海环境科学,1997,16(5):24-27.
    
    [156]贾金平,杨骥,廖军等.活性炭纤维(ACF)电极法处理染料废水的探讨.上海环境科学,1997,16(4):19-22.
    
    [157] Shen Z, Wang W, Jia J et al. Degradation of dye solution by an activated carbon fiber electrode electrolysis system. Journal of Hazardous Materials, 2001, 84(1): 107-116.
    
    [158]周艳伟,范丽,杨卫身等.活性炭纤维电极上苋菜红的恒电位电化学脱色.化工学报,2006,57(10):2420-2427.
    
    [159]周艳伟,范丽,杨卫身等.ACF电极上苋菜红的恒电流电化学脱色.高校化学工程学报,2006,20(2):264-269.
    
    [160]王斌,樊瑞,杨卫身等.恒电位下活性艳蓝KN-R在活性炭纤维电极上的脱色行为.化工学报,2005,56(11):2178-2182.
    
    [161]付红苹,杨卫身,李笑岚等.电极成对电解苋菜红脱色研究.环境科学与技术,2007,30(5):92-94.
    
    [162]杨卫身,毕会锋,王斌等.蒽醌染料活性艳蓝KN-R的ACF电极成对电解脱色.化工学报,2006,57(11):2714-2719.
    
    [163] Huang Y H, Chen C C, Huang G H et al. Comparison of a novel electro-Fenton method with Fenton'sreagent in treating a highly contaminated wastewater. Water Science and Technology, 2001,43(2): 17-24.
    
    [164] Lin S H and Lo C C. Fenton process for treatment of desizing wastewater. Water Research, 1997, 31(8):2050-2056.
    
    [165] Kusic H, Loncaric Bozic A and Koprivanac N. Fenton type processes for minimization of organic contentin coloured wastewaters: Part I: Processes optimization. Dyes and Pigments, 2007, 74(2): 380-387.
    
    [166] Qiang Z, Chang J and Huang C. Electrochemical regeneration of Fe~(2+) in Fenton oxidation processes. WaterResearch, 2003, 37(6): 1308-1319.
    
    [167] Brillas E, Mur E, Sauleda R et al. Anline mineralization by AOP's: anodic oxidation, photocatalysis,electro-Fenton and photo-Fenton processes. Applied Catalysis B: Environmental, 1998, 16(1): 31-42.
    
    [168] Peralta-Hernandez J M, Meas-Vong Y, Rodriguez F J et al. In situ electrochemical andphoto-electrochemical generation of the fenton reagent: A potentially important new water treatment technology.Water Research, 2006,40(9): 1754-1762.
    
    [169] Flox C, Ammar S, Arias C et al. Electro-Fenton and photoelectro-Fenton degradation of indigo carmine inacidic aqueous medium. Applied Catalysis B: Environmental, 2006, 67(1-2): 93-104.
    
    [170]杨可盛,侯士峰,方惠群.聚吡咯-肝素共聚膜修饰电极对钙离子的响应.无机化学学报,1999,15(2):201-204.
    
    [171]张文,许群,曹旭妮等.过氧化聚吡咯膜修饰电极色谱电化学用于帕金森试验动物的研究.分析化学,2001,29(2):133-137.
    
    [172] Jang K S, Lee H and Moon B. Synthesis and characterization of water soluble polypyrrole doped withfunctional dopants. Synthetic Metals, 2004,143(3): 289-294.
    
    [173] Wang J, Mo X, Ge D et al. Polypyrrole nanostructures formed by electrochemical method on graphiteimpregnated with paraffin. Synthetic Metals, 2006, 156(7-8): 514-518.
    
    [174] Chen J H, Huang Z P, Wang D Z et al. Electrochemical synthesis of polypyrrole films over each ofwell-aligned carbon nanotubes. Synthetic Metals, 2001, 125(3): 289-294.
    
    [175] Jerome C, Labaye D E and Jerome R. Electrochemical formation of polypyrrole nanowires. SyntheticMetals, 2004,142(1-3): 207-216.
    
    [176] Shamsipur M, Yousefi M, Hosseini M et al. A Schiff Base Complex of Zn(II) as a Neutral Carrier forHighly Selective PVC Membrane Sensors for the Sulfate Ion. Analytical Chemistry, 2001, 73(13): 2869-2874.
    
    [177] Amini M K, Shahrokhian S and Tangestaninejad S. PVC-Based Mn(III) Porphyrin Membrane-CoatedGraphite Electrode for Determination of Histidine. Analytical Chemistry, 1999,71(13): 2502-2505.
    
    [178]孟宪伟,唐芳琼,冉均国等.纳米颗粒复合材料增强的葡萄糖生物传感器.化学通报,2001,64(6):365-367.
    
    [179] Gao L, Seliskar C J and Heineman W R. Spectroelectrochemical Sensing Based on Multimode Selectivity Simultaneously Achievable in a Single Device. 4. Sensing with Poly(vinyl alcohol)-Polyelectrolyte Blend Modified Optically Transparent Electrodes. Analytical Chemistry, 1999,71(18): 4061-4068.
    
    [180] Sugawara K, Miyasita T, Hoshi S et al. Voltammetric detection of MoO_(2-4) at a modified carbon paste electrode containing chitin. Analytica Chimica Acta, 1997, 353(2-3): 301-306.
    
    [181]陈刚,张剑霞,张欣等.壳聚糖修饰石墨电极半微分伏安法测定L-抗坏血酸.分析化学,2000,28(10):1220-1223.
    
    [182] Shamsipur M, Salimi A, Haddadzadeh H et al. Electrocatalytic activity of cobaloxime complexes adsorbed??on glassy carbon electrodes toward the reduction of dioxygen. Journal of Electroanalytical Chemistry, 2001,517(1-2): 37-44.
    
    [183] Raoof D B and Golabi S M. Electrochemical Properties of Carbon-Paste Electrodes Spiked with Some1,4-Naphthoquinone Derivatives. Bulletin of the Chemical Society of Japan, 1995, 68(8): 2253-2261.
    
    [184] Salimi A, Mousavi M F, Sharghi H et al. Electrocatalysis of O_2 Reduction at Glassy Carbon ElectrodesModified with Adsorbed l,4-Dihydroxy-9,10-anthraquinone Derivatives. Bulletin of the Chemical Society ofJapan, 1999, 72(9): 2121-2127.
    
    [185] Vaik K, Sarapuu A, Tammeveski K et al. Oxygen reduction on phenanthrenequinone-modified glassycarbon electrodes in 0.1 M KOH. Journal of Electroanalytical Chemistry, 2004, 564: 159-166.
    
    [186] Choi Y-K, Park J-K and Jeon S. Electrocatalytic Reduction of Dioxygen at Carbon Electrodes Modifiedwith Co(II)-Schiff Base Complexes in Various pH Solutions. Electroanalysis, 1999, 11 (2): 134-138.
    
    [187] Van Brussel M, Kokkinidis G, Hubin A et al. Oxygen reduction at platinum modified gold electrodes.Electrochimica Acta, 2003,48(25-26): 3909-3919.
    
    [188] Markovi N M, Gasteiger H A and Ross P N. Oxygen Reduction on Platinum Low-Index Single-CrystalSurfaces in Alkaline Solution: Rotating Ring DiskPt(hkl) Studies. The Journal of Physical Chemistry, 1996,100(16): 6715-6721.
    
    [189] Ramirez G, Ejnar Trollund, Isaacs M et al. Electroreduction of Molecular Oxygen onPoly-Iron-Tetraaminophthalocyanine Modified Electrodes. Electroanalysis, 2002, 14(7-8): 540-545.
    
    [190] Golabi S M and Zare H R. Electrocatalytic Oxidation of Hydrazine at Glassy Carbon Electrode Modifiedwith Electrodeposited Film Derived from Caffeic Acid. Electroanalysis, 1999,11(17): 1293-1300.
    
    [191] Polcaro A M, Palmas S, Renoldi F et al. On the performance of Ti/SnO_2 and Ti/PbO_2 anodesinelectrochemical degradation of 2-chlorophenolfor wastewater treatment. Journal of Applied Electrochemistry,1999,29(2): 147-151.
    
    [192] Cossu R, Polcaro A M, Lavagnolo M C et al. Electrochemical Treatment of Landfill Leachate: Oxidation atTi/PbO_2 and Ti/SnO_2 Anodes. Environmental Science & Technology, 1998, 32(22): 3570-3573.
    
    [193] Chen G, X Chen and Yue P L. Electrochemical Behavior of Novel Ti/IrOx-Sb_2O_5-SnO_2 Anodes. Journal ofphysical chemistry B, 2002, 106(17): 4364-4369.
    
    [194] Martinez-Huitle C A, Quiroz M A, Comninellis C et al. Electrochemical incineration of chloranilic acidusing Ti/IrO_2, Pb/PbO_2 and Si/BDD electrodes. Electrochimica Acta, 2004, 50(4): 949-956.
    
    [195] Saez C, Panizza M, Rodrigo M A et al. Electrochemical incineration of dyes using a boron-doped diamondanode. Journal of Chemical Technology & Biotechnology, 2007, 82(6): 575-581.
    
    [196] Brillas E, Sires I, Arias C et al. Mineralization of paracetamol in aqueous medium by anodic oxidation witha boron-doped diamond electrode. Chemosphere, 2005, 58(4): 399-406.
    
    [197] Cafiizares P, Louhichi B, Gadri A et al. Electrochemical treatment of the pollutants generated in anink-manufacturing process. Journal of Hazardous Materials, 2007, 146(3): 552-557.
    
    [198] Panizza M and Cerisola G. Application of diamond electrodes to electrochemical processes. ElectrochimicaActa, 2005, 51(2): 191-199.
    
    [199] Flox C, Garrido J A, Rodriguez R M et al. Degradation of 4,6-dinitro-o-cresol from water by anodicoxidation with a boron-doped diamond electrode. Electrochimica Acta, 2005,50(18): 3685-3692.
    
    [200] Nasr B, Abdellatif G, Cafiizares P et al. Electrochemical Oxidation of Hydroquinone, Resorcinol, andCatechol on Boron-Doped Diamond Anodes. Environmental Science & Technology, 2005, 39(18): 7234-7239.
    
    [201] Brillas E, Boye B, Sires I et al. Electrochemical destruction of chlorophenoxy herbicides by anodicoxidation and electro-Fenton using a boron-doped diamond electrode. Electrochimica Acta, 2004, 49(25):4487-4496.
    
    [202] Sires I, Garrido J A, Rodriguez R M et al. Catalytic behavior of the Fe~(3+)/Fe~(2+) system in the electro-Fentondegradation of the antimicrobial chlorophene. Applied Catalysis B: Environmental, 2007, 72(3-4): 382-394.
    
    [203] Brillas E, Mur E, Sauleda R et al. Aniline mineralization by AOP's: anodic oxidation, photocatalysis,electro-Fenton and photoelectro-Fenton processes. Applied Catalysis B: Environmental, 1998, 16(1): 31-42.
    
    [204] Brillas E, Calpe J C and Casado J. Mineralization of 2,4-D by advanced electrochemical oxidationprocesses. Water Research, 2000, 34(8): 2253-2262.
    
    [205] Brillas E and Casado J. Aniline degradation by Electro-Fenton(?) and peroxi-coagulation processes using aflow reactor for wastewater treatment. Chemosphere, 2002,47(3): 241-248.
    
    [206] Sanchez-Sanchez C M, Exposito E, Casado J et al. Goethite as a more effective iron dosage source formineralization of organic pollutants by electro-Fenton process. Electrochemistry Communications, 2007, 9(1):19-24.
    
    [207] Oturan M A, Peiroten J, Chartrin P et al. Complete Destruction of p-Nitrophenol in Aqueous Medium byElectro-Fenton Method. Environmental Science & Technology, 2000,34(16): 3474-3479.
    
    [208] Flox C, Ammar S, Arias C et al. Electro-Fenton and photoelectro-Fenton degradation of indigo carmine inacidic aqueous medium. Applied Catalysis B: Environmental, 2006,67(1-2): 93-104.
    
    [209] Oturan M A. An ecologically effective water treatment technique using electrochemically generatedhydroxyl radicals for in situ destruction of organic pollutants: Application to herbicide 2,4-D. Journal of AppliedElectrochemistry, 2000, 30(4): 475-482.
    
    [210] Boye B, Dieng M M and Brillas E. Degradation of Herbicide 4-Chlorophenoxyacetic Acid by AdvancedElectrochemical Oxidation Methods. Environmental Science & Technology, 2002, 36(13): 3030-3035.
    
    [211] Faouzi M, Canizares P, Gadri A et al. Advanced oxidation processes for the treatment of wastes pollutedwith azoic dyes. Electrochimica Acta, 2006, 52(1): 325-331.
    
    [212] Brillas E, Sauleda R and Casado J. Peroxi-coagulation of aniline in acidic medium using an oxygendiffusion cathode. Journal of the Electrochemical Society, 1997,144(7): 2374-2379.
    
    [213] Sires I, Garrido J A, Rodriguez R M et al. Electrochemical degradation of paracetamol from water bycatalytic action of Fe~(2+), Cu~(2+), and UVA light on electrogenerated hydrogen peroxide. Journal of theElectrochemical Society, 2006,153(1): D1-D9.
    
    [214] E.Guivarch, Trevin S, Lahitt C et al. Degradation of azo dyes in water by Electro-Fenton process.Environmental Chemistry Letters, 2003,1(1): 38-44.
    
    [215] Zhou M, Yu Q, Lei L et al. Electro-Fenton method for the removal of methyl red in an efficientelectrochemical system. Separation and Purification Technology, 2007,57(2): 380-387.
    
    [216] Liu H, Wang C, Li X et al. A Novel Electro-Fenton Process for Water Treatment: Reaction-controlled pHAdjustment and Performance Assessment. Environmental Science & Technology, 2007,41(8): 2937-2942.
    
    [217] Diagne M, Oturan N and Oturan M A. Removal of methyl parathion from water by electrochemicallygenerated Fenton's reagent. Chemosphere, 2007,66(5): 841-848.
    
    [218] Gozmen B, Oturan M A, Oturan N et al. Indirect Electrochemical Treatment of Bisphenol A in Water viaElectrochemically Generated Fenton's Reagent. Environmental Science & Technology, 2003, 37(16): 3716-3723.
    
    [219] Hanna K, Chiron S and Oturan M A. Coupling enhanced water solubilization with cyclodextrin to indirectelectrochemical treatment for pentachlorophenol contaminated soil remediation. Water Research, 2005, 39(12):2763-2773.
    
    [220] Sires I, Arias C, Cabot P L et al. Degradation of clofibric acid in acidic aqueous medium by electro-Fentonand photoelectro-Fenton. Chemosphere, 2007, 66(9): 1660-1669.
    
    [221] Oturan M A, Oturan N, Lahitte C et al. Production of hydroxyl radicals by electrochemically assistedFenton's reagent: Application to the mineralization of an organic micropollutant, pentachlorophenol. Journal of??Electroanalytical Chemistry, 2001, 507(1-2): 96-102.
    
    [222] Wang A, Qu J, Ru J et al. Mineralization of an azo dye Acid Red 14 by electro-Fenton's reagent using anactivated carbon fiber cathode. Dyes and Pigments, 2005, 65(3): 227-233.
    
    [223] Guinea E, Arias C, Cabot P L et al. Mineralization of salicylic acid in acidic aqueous medium byelectrochemical advanced oxidation processes using platinum and boron-doped diamond as anode andcathodically generated hydrogen peroxide. Water Research, 2008, 42(1-2): 499-511.
    
    [224] Pozzo A D, Palma L D, Merli C et al. An experimental comparison of a graphite electrode and a gasdiffusion electrode for the cathodic production of hydrogen peroxide. Journal of Applied Electrochemistry, 2005,35(4): 413-419.
    
    [225] Qiang Z, Chang J-H and Huang C-P. Electrochemical generation of hydrogen peroxide from dissolvedoxygen in acidic solutions. Water Research, 2002, 36(1): 85-94.
    
    [226] Zhou M, Yu Q and Lei L. The preparation and characterization of a graphite-PTFE cathode system for thedecolorization of C.I. Acid Red 2. Dyes and Pigments, 2008, 77(1): 129-136.
    
    [227] Alvarez-Gallegos A and Pletcher D. The removal of low level organics via hydrogen peroxide formed in areticulated vitreous carbon cathode cell, Part 1. The electrosynthesis of hydrogen peroxide in aqueous acidicsolutions. Electrochimica Acta, 1998,44(5): 853-861.
    
    [228] Sires I, Oturan N, Oturan M A et al. Electro-Fenton degradation of antimicrobials triclosan and triclocarban.Electrochimica Acta, 2007,52(17): 5493-5503.
    
    [229] Brillas E, Banos M A, Skoumal M et al. Degradation of the herbicide 2,4-DP by anodic oxidation,electro-Fenton and photoelectro-Fenton using platinum and boron-doped diamond anodes. Chemosphere, 2007,68(2): 199-209.
    
    [230] Fan L, Zhou Y, Yang W et al. Electrochemical degradation of aqueous solution of Amaranth azo dye onACF under potentiostatic model. Dyes and Pigments, 2008, 76(2): 440-446.
    
    [231] Karkmaz K, Puzenat E, Guillard C et al. Photocatalytic degradation of the alimentary azo dyeamaranth-Mineralization of the azo dye to nitrogen. Applied Catalysis B: Environmental, 2004,51(3): 183-194.
    
    [232] Joseph J, Destaillats H, Hung H et al. The sonochemical degradation of azobenzene and related azo dyes:rates enhancements via Fenton's reactions. The Journal of Physical Chemistry A, 2000, 104(2): 301-307.
    
    [233] Maletzky P, Bauer R. The photo-Fenton method degradation of nitrogen containing organic compounds.Chemosphere, 1998, 37(5): 899-909.
    
    [234] Tanaka K, Padermole K, Hisanaga T. Photocatalytic degradation of commercial azo dyes. Water Research,2000, 34(1): 327-333.
    
    [235] Kaplin D A and Qutubuddin S. Electrochemically synthesized polypyrrole films: effects of polymerizationpotential and electrolyte type. Polymer, 1995, 36(6): 1275-1286.
    
    [236] H(?)kansson E, Lin T, Wang H et al. The effects of dye dopants on the conductivity and optical absorptionproperties of polypyrrole. Synthetic Metals, 2006,156(18-20): 1194-1202.
    
    [237] Buschel M, Stadler C, Lambert C et al. Heterocyclic quinones as core units for redox switches:UV-vis/NIR, FTIR spectroelectrochemistry and DFT calculations on the vibrational and electronic structure ofthe radical anions. Journal of Electroanalytical Chemistry, 2000,484(1): 24-32.