糖基化亲和膜的制备及其除硼性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的发展,水资源匮乏正严重影响着全世界的经济发展与生态环境。相关国际机构郑重指出“水将成为世界最严重的资源问题”、“供水不足将成为一个深刻的社会危机”。硼作为水体中的常见污染物,在海水、苦咸水、工业废水中广泛存在,目前的除硼方法存在操作压强高、通量低的缺点。硼酸与二羟基化合物如糖能进行高亲和性且可逆的反应,本论文基于硼酸和糖的亲和作用,综合聚丙烯微孔膜良好的物理机械性能和化学稳定性,设计并制备了具有除硼功能的糖基化聚丙烯亲和膜,能在较低的操作压强下有效去除水体中的硼污染物。
     具体研究内容如下:用紫外光辐射接枝的方法在膜表面接枝甲基丙烯酸-2-氨乙酯盐酸盐(AEMA),在膜表面构建氨基活性接枝层(PAEMA),然后用三乙胺对氨基进行脱保护,EDC/NHS催化乳糖酸和氨基反应,固定糖基。接枝聚合过程可以通过改变单体浓度、紫外辐照时间来进行调控。接枝密度随单体浓度和光照时间的增加而增加。研究表明:温度、反应时间、溶液pH值等影响糖基化效率,最高糖基化效率为70%左右。FT-IR/ATR、XPS、染色法以及SEM对糖基化前后膜表面的化学结构以及形貌变化的表征,验证了糖基化各步的完成。水接触角和水通量实验揭示了糖基化改性接枝层对膜表面浸润和渗透性能的影响。
     以乳糖糖基化聚丙烯微孔膜为亲和膜,以3-氨基苯硼酸为模型硼酸,进行硼酸分离实验。发现,最佳的吸附pH为9.1,且随着糖基密度的增加,除硼效率提高,其最高硼脱除率为39.64%。吸附硼酸后的糖基化聚丙烯亲和膜能用0.3 M的盐酸再生,重复使用性好。进一步考察了糖基化聚丙烯亲和膜对硼酸的吸附分离,结果表明,往溶液中添加金属镁离子能有效的提高分离效率,最高硼脱除率为66.01%。此外,考察了葡萄糖糖基化聚丙烯亲和膜对硼酸的吸附分离,结果表明,在同一条件下,乳糖糖基化亲和膜的分离效率是葡萄糖的3倍。测定了乳糖酸、葡萄糖-δ-内酯与硼酸的络合比,结果表明乳糖与硼酸的结合能力优于葡萄糖。
A novel affinity membrane is proposed for boron removal by microporous polypropylene membrane (MPPM) functionalized with glycopolymer containing saccharide polyols as ligands. The affinity is based on specific complexation between the saccharide ligand and boric acid. A two-step procedure was used to prepare this glycopolymer-functionalized affinity membrane. 2-Aminoethyl methacrylate hydrochloride (AEMA) was tethered on the surface and in the pores of MPPM by UV-induced graft polymerization. Grafting in the membrane pores was visualized by dying the cross-section of poly(AEMA)-grafted MPPM with fluorescein disodium and imaging with CLSM. It is reasonable to conclude that glycopolymer can also be formed both on the membrane surface and in the membrane pores by the subsequent coupling of the AEMA unit with lactobionic acid (LA). Physical and chemical properties of the affinity membrane were characterized by FESEM and FT-IR/ATR.
     Boron removal from water was carried out by a single piece of glycopolymer-functionalized MPPM in a dynamic filtration system, and 3-aminophenylboronic acid was chosen as a typical model boric acid. The optimun operation condition was investigated. The results show that the highest removal efficiency is 39.64%. Regeneration of this affinity membrane was easily realized through washing with 0.3 M HCl. The membrane can thus be reused without significant loss of binding capability. Furthermore, the boron removal efficiency can be improved with the aid of magnesian ion, and the highest removal efficiency is 66.01%. The glycopolymer-functionalized MPPM with glucose pendant as the ligand was also applied to remove boron from water. The results show that the glucose-immobilized MPPM can not remove boron from water as effective as the lactose-immobilized MPPM. Complexometric titrition test was also carried out to confirm the results.
引文
[1]Xu R.J.; Xing X.R.;Zhou Q.F.;Jiang-G.B.; Wei F.S., Investigations on boron levels in drinking water sources in China. Environental Monitoring and Assessment 2009,165, (1-4),15-25.
    [2]赵志琦,郎赞超,刘丛强,硼及其同位素对水体污染物的示踪研究。地学前缘2002,9,(4),409-415.
    [3]Winker R.; Roos G.; Pilger A.; Rudiger H. W., Effect of occupational safety measures on micronucleus frequency in semiconductor workers. International Archives of Occupational and Environmental Health 2008,81, (4),423-428.
    [4]Evans S.; Krahenbuhl U., Boron analysias in biological-material microwave digestion procedure and determiantion by different methods. Fresenius Journal of Analytical Chemistry 1994,349, (6),454-459.
    [5]孙乾,傅金祥,由昆,沙明卓,何爱玲,刘宇,连雷,活性炭纤维吸附饮用水中硼的试验研究。供水技术2008,2,(3),4-19.
    [6]Chong M. F.; Lee K. P.; Chieng H. J.; Ramli Iisb., Removal of boron from ceramic industry wastewater by adsorption-flocculation mechanism using palm oil mill boiler (POMB) bottom ash and polymer. Water Research 2009,43, (13),3326-3334.
    [7]M.Mulder,膜技术基本原理。清华大学出版社,北京1999.
    [8]Cengeloglu Y.; Arslan G.; Kocak T. A.; Dursun N., Removal of boron from water by using reverse osmosis. Separation and Purification Technology 2008,64, (2),141-146.
    [9]Kabaya N.; Bryjakb M.; Schlosserc S.; Kitisd M.; AvlonitiseS.; Matejkaf Z.; Yuksel M., Adsorption-membrane filtration (AMF) hybrid process for boron remoyal from seawater:an overview Desalination 2008,223, (1-3),38-48.
    [10]Oo M. H.; Ong S. L., Implication of zeta potential at different salinities on boron removal by RO membranes. Journal of Membrane Science 2010,352, (1-2),1-6.
    II1] Melnik L.; Vysotskaja O.; Komilovich B., Boron behavior during desalination of sea and underground water by electrodialysis. Desalination 1999,124, (1-3),125-130.
    [12]闫春燕,邓小川,孙建之,宋士涛,魏述彬,硼的分离方法研究进展。海湖盐与化工2005,34,(5),27-35.
    [13]Fuente M. M.; Garcia-Soto E.; Camacho M., Boron removal by means of adsorption processes with magnesiumoxide — Modelization and mechanism. Desalination 2008,249, (2),626-634.
    [14]Edwards N. Y.; Sager T. W.; McDevitt J. T.; Anslyn E. V., Boronic acid based peptidic receptors for pattern-based saccharide sensing in neutral aqueous media, an application in real-life samples. Journal of American Chemistry Society 2007,129,13575-13583.
    [15]Jin S.; Suazette R. C.; Li M. Y.; Wang B. H., Carbohydrate recognition by boronolectins, small molecules and lectins. Medicinal Research Reviews 2009,30, (2),171-257.
    [16]Lu C.; Kostanski L.; Ketelson H.; Meadows D.; Pelton R., Hydroxypropyl guar-borate interactions with tear film mucin and lysozyme. Langmuir 2005,21, (22),10032-10037.
    [17]Musto C. J.; Lim S. H.; Suslick K. S., Colorimetric detection and identification of natural and artificial sweeteners. Analytical Chemistry 2009,81, (15),6526-6533.
    [18]Lopez-Gallego F. B.; Hidalgo A.; Dellamora-Ortiz G.; Mateo C.; Fernandez-Lafuente R.; Guisan J. M., Stabilization of different alcohol oxidases via immobilization and post immobilization techniques. Enzyme and Microbial Technology 2007,40, (2),278-284.
    [19]Shao M.; Zhao Y. M., Phenylboronic acid-functionalized TTFAQ:modular synthesis and electrochemical recognition for saccharides. Tetrahedron Letters 2010,51, (18),2508-2511.
    [20]Foster J. R.; Herbert R.; Marsh Adam J., Boron extractants. US Patent:3111383 1963.
    [21]Grinstead R. R., Selective extraction of boron from aqueous solutions. US Patent:3424563 1969.
    [22]Falkestad F.; Loiten K.; Mejdell G.; Torvund A., Method of removing boric acid and boric acid salts from aqueousmagnesium chloride solutions. US Patent:38553921974.
    [23]Liu H. N.; Ye X. Li S.; Kim Q.; Qing T.; Guo B. J.; Ge M.; Wu F.; Lee K., Boron adsorption using a new boron-selective hybrid gel and the commercial resin D564. Colloids and surfaces a-physicochemical and engineering aspects 2009,341, (1-3),118-126.
    [24]Melnyk L.; Goncharuk V.; Butnyk I.; Tsapiuk E., Boron removal from natural and wastewaters using combined sorption/membrane process. Desalination 2005,185, (1-3),147-157.
    [25]刘茹,海水淡化后处理吸附法除硼研究。硕士毕业论文,大连理工大学,2006.06.
    [26]Kluczka J.; Ciba J.; Trojanowska J.; Zolotajkin M.; Turek M.; Dydo P., Removal of boron dissolved in water. Environmental Progress 2007,26, (1),71-77.
    [27]Geffen N.; Semiat R.; Eisen M. S.; Balazs Y.; Katz I.; Dosoretz C. G., Boron removal from water by complexation to polyol compounds. Journal of Membrane Science 2006,286, (1-2),45-51.
    [28]Dilek C.O.; Bicak H. O.; Yilmaz L. N., Removal of boron from aqueous solutions by continuous polymer-enhanced ultrafiltration with polyvinyl alcohol. Separation Science and Technology 2002,37, (6), 1257-1271.
    [29]吴水波,潘献辉,初喜章,反渗透淡化除硼的现状和进展。环境与健康杂志2008,25,(10),928-930.
    [30]Klein E., Affinity membranes:a 10-year review. Journal of Membrane Science 2000,179, (1-2),1-27.
    [31]Hu M. X.; Wan L. S.; Xu Z. K., Multilayer adsorption of lectins on glycosylated microporous polypropylene membranes. Journal of Membrane Science 2009,335, (1-2),111-117.
    [32]Wang Z. H.; Chien W. C.; Yue T. W.; Tang S. C., Application of heparinized cellulose affinity membranes in recombinant adeno-associated virus serotype 2 binding and delivery. Journal of Membrane Science 2008,310, (1-2),141-148.
    [33]Ulbricht M.; Yang H., Porous polypropylene membranes with different carboxyl polymer brush layers for reversible protein binding via surface-initiated graft copolymerization. Chemistry of Materials 2005,17, (10),2622-2631.
    [34]Haider S.; Park S. Y., Preparation of the electrospun chitosan nanofibers and their applications to the adsorption of Cu(Ⅱ) and Pb(Ⅱ) ions from an aqueous solution. Journal of Membrane Science 2009,328, (1-2),90-96.
    [35]赵睿,亲和色谱中配基的筛选与应用。色谱2007,25,(2),135-141.
    [36]Nova C. J. M.; Paolucci-Jeanjean D.; Belleville M. P.; Barboiu M.; Rivallin M.; Rios G., Elaboration, characterization and study of a new hybrid chitosan/ceramic membrane for affinity membrane chromatography. Journal of Membrane Science 2008,32, (1),81-89.
    [37]魏桂林,李京华,刘学良,商振华,于亿年,王俊德,纤维素亲和膜用于内毒素的去除。分析化学2001,29,(10),1117-1130.
    [38]Ma Z. W.; Lan Z. W.; Matsuura T.; Ramakrishna S., Electrospun polyethersulfone affinity membrane: Membrane preparation and performance evaluation. Journal of Chromatography B 2009,877, (27), 3686-3694.
    [39]Yang Y. F.; Wan L. S.; Xu Z. K., Surface hydrophilization for polypropylene microporous membranes:A facile interfacial crosslinking approach. Journal of Membrane Science 2009,326, (2),372-381.
    [40]孙彦伟,王兵,酰胺化改性聚砜亲和膜的制备及其对对硝基苯酚的吸附性能。天津工业大学学报2010,29,(1),14-18.
    [41]Gluck J. M.; Koenig B. W.; Willbold D., Nanodiscs allow the use of integral membrane proteins as analytes in surface plasmon resonance studies. Analytical Biochemistry 2011,408, (1),46-52.
    [42]Zheng Y.; Liu H. Y.; Gurgel P. V., Polypropylene nonwoven fabrics with conformal grafting of poly(glycidyl methacrylate) for bioseparations. Journal of Membrane Science 2010,364, (1-2),362-371.
    [43]Astrid W.; Isabelle C.; Jiao C. Y., Different membrane behaviour and cellular uptake of three basic arginine-rich peptides. Biochimica Biophysica Acta 2011,1808, (1),382-393.
    [44]杨谦,聚丙烯微孔膜表面的糖基化研究。博士学位论文,浙江大学2007.04.
    [45]Yu H. Y.; Liu L.; Tang Q.; Yan Z. Q.; Gu M. G.; Wei J. S., Surface modification of polypropylene microporous membrane to improve its antifouling characteristics in an SMBR:Air plasma treatment. Journal of Membrane Science 2008,311, (1-2),216-224.
    [46]Huang J.; Murata Y.; Koepsel H.; Russell R. R.; Matyjaszewski A. J., Antibacterial polypropylene via surface-initiated atom transfer radical polymerization. Biomacromolecules 2007,8, (5),1396-1399.
    [47]Ahmad E.; Madkour J. M.; Dabkowski K. N.; Gregory N. T., Fast disinfecting antimicrobial surfaces. Langmuir 2009,25, (2),1060-1067.
    [48]Acik G.; Kahveci M. U.; Yagci Y., Synthesis of block copolymers by combination of atom transfer radical polymerization and visible light radical photopolymerization methods. Macromolecules 2010,43, (21), 9198-9201.
    [49]Yang Q.; Xu Z. K.; Dai Z. W.; Wang J. L.; Ulbricht M., Surface modification of polypropylene microporous membranes with a novel glycopolymer. Chemistry of Material 2005,17, (11),3050-3058.
    [50]Yang Q.; Xu Z. K.; Hu M. X.; Li J. J.; Wu J., Novel sequence for generating glycopolymer tethered on a membrane surface. Langmuir 2005,21, (23),10717-10723.
    [51]Yang Q.; Kaul C.; Ulbricht M., Anti-nonspecific protein adsorption properties of biomimetic glycocalyx-like glycopolymer layers:effects of glycopolymer chain density and protein size. Langmuir 2010,26,(8),5746-5752.
    [52]Hicks B. G.; Erasmo A. L.; Ratner F. I.; Wessells B. D.; Voelzke H.; Bassuk B. B.; James A., Differential affinity of vitronectin versus collagen for synthetic biodegradable scaffolds for urethroplastic applications. Biomaterials 2008,32, (3),797-807.
    [53]Deng J. P.; Wang L. F.; Liu L. Y.; Yang W. T., Developments and new applications of UV-induced surface graft polymerizations. Progress in Polymer Science 2009,34, (2),156-193.
    [54]Pichavant L.; Guillermain C.; Coqueret X., Reactivity of Vinyl Ethers and Vinyl Ribosides in UV-Initiated Free Radical Copolymerization with Acceptor Monomers. Biomacromolecules 1998,11, (9), 2415-2421.
    [55]Yang Q.; Xu Z. K.; Dai Z. W.; Ulbricht M., Surface modification of polypropylene microporous membranes with a novel glycopolymer. Chemistry of Materials 2005,17, (11),3050-3058.
    [56]Crivello, J. V.; McGrath T. M., Photoinitiated alternating copolymerization of dialkyl maleates and fumarates with vinyl ethers. Journal of Polymer Science Part a-Polymer Chemistry 2002,48, (21), 4726-4736.
    [57]Doumanidis C.C., Nanomanufacturing of random branching material architectures. Microelectronic Engineering 2009,86, (4-6),467-478.
    [58]Grabarek Z.; Gergely J., Zero-length crosslinking procedure with the use of active esters. Analytical Biochemistry 1990,185, (1),131-135.
    [59]van Dijk-Wolthuis W. N. E.; van de Wetering P.; Hinrichs W. L. J.; Hofmeyer L. J. F.; Liskamp R. M. J.; Crommelin D. J. A.; Hennink W. E., A versatile method for the conjugation of proteins and peptides to poly[2-(dimethylamino)ethyl methacrylate]. Bioconjugate Chemistry 1999,10, (7),687-692.
    [60]Grondahl L.; Chandler-Temple A.; Trau M., Polymeric grafting of acrylic acid onto poly(3-hydroxybutyrate-co-3-hydroxyvalerate):Surface functionalizatiori for tissue engineering applications. Biomacromolecules 2005,6, (4),2197-2203.
    [61]Anne A.; Moiroux B. B.; Saveant J., Facile derivatization of glassy carbon surfaces by N-hydroxysuccinimide esters in view of attaching biomolecules. Langmuir 1998,14, (9),2368-2371.
    [62]Ye P.; Xu Z. K.; Che A. F.; Wu J.; Seta P., Chitosan-tethered poly(acrylonitrile-co-maleic acid) hollow fiber membrane for lipase immobilization. Biomaterials 2005,26, (32),6394-6403.
    [63]Debord J.D.; Lyon L. A., On the unusual stability of succinimidyl esters in pNIPAm-AAc microgels. Bioconjugate Chemistry 2007,18, (2),601-604.
    [64]Hu M. X.; Wan L. S.; Fu Z. S.; Fan Z. Q.; Xu Z. K., Construction of glycosylated surfaces fox poly(propylene) beads with a photoinduced grafting/chemical reaction sequence. Macromolecular Rapid Communications 2007,28, (24),2325-2331.
    [65]Palermo E. F.; Kuroda K., Chemical structure of cationic groups in amphiphilic polymethacrylates modulates the antimicrobial and hemolytic activities. Biomacromolecules 2009,10, (6),1416-1428.
    [66]Hu M. X.; Yang Q.; Xu Z. K, Enhancing the hydrophilicity of polypropylene microporous membranes by the grafting of 2-hydroxyethyl methacrylate via a synergistic effect of photoinitiators. Journal of Membrane Science 2006,285, (1-2),196-205.
    [67]Oo M. H.; Song L. F., Effect of pH and ionic strength on boron removal by RO membranes. Desalination 2009,246, (1-3),605-612.
    [68]Ruckenstein E.; Guo W., Cellulose and glass fiber affinity membranes for the chromatographic separation of biomolecules. Biotechnology Progress 2004,20, (1),13-25.
    [69]He Z. Y.; Christopher B. W.; Zhou Y. T.; Nie H. L.; Zhu L. M., Papain adsorption on chitosan-coated nylon-based immobilized metal ion (Cu2+, Ni2+, Zn2T, Co2+) affinity membranes. Separation Science and Technology 2004,45, (4),525-534.
    [70]Li Y.; Chung T. S., Exploration of highly sulfonated polyethersulfone (SPES) as a membrane material with the aid of dual-layer hollow fiber fabrication technology for protein separation. Journal of Membrane Science 2008,309, (1-2),45-55.
    [71]Kim M.; Saito K.; Furusaki S.; Sugo T.; Ishigaki I., Protein adsorption capacity of a porous phenylalanine-containing membrane based on a polythylene matrix. Journal of Chromatography 1991,586, (1),27-33.
    [72]Kim M.; Saito K.; Furusaki S.; Sugo T.; Ishigaki I., High-capacity, protein-binding membranes based on polymer brushes grown in porous substrates. Chemistry of Materials 2006,18, (17),4033-4039.
    [73]Tuytten R.; Esmans E. L.; Herrebout W. A.; vanderVeken B. J.; Dudley E., Role of nitrogen lewis basicity in boronate affinity chromatography of nucleosides. Analytical Chemistry 2007,79, (17),6662-6669.
    [74]Jiang X. Z.; Ahmed M.; Deng Z. C.; Narain R., Biotinylated glyco-functionalized quantum dots:synthesis, characterization, and cytotoxicity studies. Bioconjugate Chemistry 2009,20, (5),994-1001.
    [75]Lee J. W.; Lee J. S.; Chang Y. T., Colorimetric identification of carbohydrates by a pH indicator/pH change inducer ensemble. Angewandte Chemie International Edition 2006,45, (39),6485-6487.
    [76]Edwards N. Y., Sager T. W., McDevitt J. T., Anslyn E. V., Boronic acid based peptidic receptors for pattern-based saccharide sensing in neutral aqueous media, an application in real-life samples. Journal of the American Chemical Society 2007,129,13575-13583.