非水相酶促合成阿魏酸衍生物及其静电纺速溶超细纤维膜的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿魏酸(Ferulic acid, (E)-3-甲氧基-4-羟基肉桂酸)是植物界普遍存在的一种酚酸,在植物中主要与多糖和木质素交联构成细胞壁的一部分,是阿魏、当归、川芎、升麻等重要的有效成分之一。尽管阿魏酸在某些方面具有确切的药理活性,但其分子中含有双键,烷烃基较短,亲水性较强,难以透过生物膜脂质分子层,这在很大程度上限制了阿魏酸应用,因此在不改变其生物活性的情况下增加其脂溶性成为亟待解决的问题。通过化学方法将长烷烃链引入阿魏酸进行修饰,已有报道,但是化学改性很大程度限制和破坏了阿魏酸生理活性的发挥。通过生物催化技术改性可以很好的解决这一难题,酶催化反应的特点在于所需要的反应条件温和、选择性高、催化剂可以重复利用,这可以在保证不改变阿魏酸生理活性前提下赋予其更广泛的功能性,选择性的合成不同结构的阿魏酸结构脂更是引起了广大研究学者的极大关注。
     本文以非水相为反应介质,建立了脂肪酶催化合成阿魏酸三油酸甘油酯的一种新的合成方法,即通过化学方法对底物阿魏酸进行修饰,制备了阿魏酸乙酯和阿魏酸乙烯酯,然后在脂肪酶的催化下一锅法制备阿魏酸三油酸甘油酯,并比较阿魏酸乙酯和阿魏酸乙烯酯在相同条件下作为底物合成阿魏酸三油酸甘油酯的合成效率;研究了阿魏酸三油酸甘油酯的体外清除自由基的生理活性;采用静电纺丝的方法,制备速溶阿魏酸及阿魏酸三油酸甘油酯聚乙烯吡咯烷酮纤维膜,并对其速溶性进行测试。
     通过化学方法对阿魏酸单体进行修饰,制备了阿魏酸乙酯和阿魏酸乙烯酯从而提高酶促反应的效率。在有机相甲苯中探讨了酶促合成阿魏酸三油酸甘油酯的研究。考察了不同反应条件,包括底物比、反应时间、反应温度、水活度,酶用量对转化率的影响,从而确定酶促合成阿魏酸三油酸甘油酯的最佳反应条件,另外对酶在本体系中的稳定性做了探讨。与此同时,在相同的条件下比较阿魏酸乙酯和阿魏酸乙烯酯分别作为反应底物时的合成效率,确定最佳底物。通过当实验可以得出阿魏酸乙烯酯做为底物时具有更高的转化率。阿魏酸乙烯酯为底物酶促合成阿魏酸油酸甘油酯的最佳条件:有机介质3.OmmL甲苯中底物阿魏酸乙烯酯与三油酸甘油酯的底物比为1:3,Novozyn 435脂肪酶60mg,550C下反应62h,摇床转速210r/min,水活度0.07条件下转化率可达90.2%,此时阿魏酸单油酸甘油酯和阿魏酸双油酸甘油酯含量分别为32.5%,57.6%。批试反应进行13批后相对酶活还保持在75%以上。阿魏酸乙酯作为底物酶促合成阿魏酸油酸甘油酯的最佳条件:有机介质3.0mL甲苯中底物阿魏酸乙烯酯与三油酸甘油酯的底物比为1:3, Novozyn 435脂肪酶100mg,50℃下反应96h,摇床转速210 r/min,水活度0.07条件下最大转化率为61.9%,此时阿魏酸单油酸甘油酯和阿魏酸双油酸甘油酯含量分别为30.4%,31.4%。
     研究了阿魏酸单油酸甘油酯(FMOG)、阿魏酸双油酸甘油酯(FDOG)清除二苯代苦味肼基自由基(DPPH·)、羟自由基(·OH)和超氧阴离子自由基(02·)的能力,并与VE作比较。实验结果表明:阿魏酸三油酸甘油酯清除自由基的能力随着浓度的增大而增大。清除DPPH·自由基的能力依次为:VE>FMOG>FDOG;清除·OH自由基的能力依次为:VE>FMOG>FDOG;清除O2-·自由基的能力依次为:VE>FMOG>FDOG。
     采用易溶于水的高聚物聚乙烯吡咯烷酮(PVP),利用静电纺丝法制备阿魏酸及阿魏酸三油酸甘油酯PVP速溶超细纤维膜,探讨了浓度和电压对纤维膜表面形态的影响,从而确定最佳电纺条件。并对两种纳米纤维膜的速溶性质做了测试。实验表明,制备阿魏酸PVP速溶超细纤维的最佳制备条件为:聚乙烯吡咯烷酮40(w/v)%,阿魏酸5(w/w)%,溶剂为无水乙醇,喷丝口流速为0.8 mL/h,两级间屏距为12cm,电压12 kV,所制得的纤维直径分布为800—1000nm,在水中完全溶解用时为3.4±1.5s;制备阿魏酸三油酸甘油酯PVP速溶超细纤维的最佳制备条件为:聚乙烯吡咯烷酮5(w/v)%,阿魏酸三油酸甘油酯25(w/w)%,三氯甲烷和乙醇的混合溶剂(V (CHCl3): V(C2H5OH)=4:1),喷丝口流速为0.8 mL/h,两级间屏距为12cm,电压为14 kV,所制得的纤维直径分布在800—1000nm,在水中完全溶解用时为2.0.±1.5s。
Ferulic acid (4-hydroxy-3-methoxy cinnamic acid, FA), is a phenolic compound that is abundant in plant cell walls. It has been shown to have many physiological functions, including antioxidant, antimicrobial, anti-inflammatory, anti-allergic, antiviral, anti-carcinogenic, free radical scavenging, and UV filter properties, which made FA widely used in the food, cosmetics, and pharmaceutical industries. However a major obstacle in the application of FA in oil-based food processing and other corresponding industries is its low solubility and stability in hydrophobic media. To overcome this limitation the modification of FA through esterification with aliphatic alcohols or transesterification with triacylglycerols has been widely reported. Chemical synthesis of feruloylated lipids is difficult due to heat-sensitivity and susceptibility of ferulic acid to oxidation at high temperature and under certain pH conditions. The advantages associated with enzymatic synthesis include mild-operating reaction conditions, high specificity, and easy recovery of the end-product.
     Lipase-catalyzed synthesis of functional feruloyl-oleyl-glycerol (FOG), consisted of 1(3)-feruloyl-monooleyl-glycerol (FMOG) and 1(3)-feruloyl-dioleyl-glycerol (FDOG), in toluene was investigated in this study. First, ferulic acid was chemically modified to ethyl ferulate and vinyl ferulate in order to make the substrate more soluble in the fatty alcohols. Second, feruloy-oleyl-glycerol was synthesis through transesterification between ethyl ferulate or vinyl ferulate and triolein using Novozym 435 as catalyst. The optimal reaction conditions were obtained by investigation of reaction factors, including substrate molar ratio, reaction time, temperature, water activity, enzyme content and enzyme stability. Meanwhile, under the same conditions, the synthetic efficiency of ethyl ferulate and vinyl ferulate was compared in this study.
     The optimal conditions confirmed when vinyl ferulate was used as sustrate were:3.0 mL toluene,3 molar ration of vinyl ferulate to triolein, enzyme loading 60mg, reaction temperature 55℃, reaction time 62h, agitation speed 210 r/min, water activity 0.02. Under these optimal conditions, the highest reaction conversion achieved was 90.2%, which was composed of 1(3)-feruloyl-monooleyl-glycerol 32.5% and 1(3)-feruloyl-dioleyl-glycerol 57.6%. The optimal conditions confirmed when ethyl ferulate was used as sustrate were:3.0 mL toluene,3 molar ration of vinyl ferulate to triolein, enzyme loading 100mg, reaction temperature 50℃, reaction time 96h, agitation speed 210 r/min, water activity 0.07. Under these optimal conditions, the highest reaction conversion achieved was 61.9%, which was composed of 1(3)-feruloyl-monooleyl-glycerol 30.4% and 1(3)-feruloyl-dioleyl-glycerol 31.4%. The high synthetic efficiency of vinyl ferulate as substrate has been confirmed by the comparative studies. Furthermore, the residual activity of enzyme was keep about 75% after 13 runs when vinyl ferulate was used as substrate.
     The radical scavenging properties of feruloyl-oleyl-glycerol were evaluated using several different tests, including hydroxyl radical scavenging, superoxide anion radical scavenging, 1,1-diphenyl-2-picrylhydrazyl (DPPH-) radical scavenging and using tocopherol as check sample. The results showed that feruloyl-oleyl-glycerol had strong radical scavenging ability and their abilities increased with the increase of their concentration. The experiment results indicated that the DPPH·scavenging properties of feruloyl-oleyl-glycerol in decreasing order was tocopherol> 1(3)-feruloyl-monooleyl-glycerol>1(3)-feruloyl-dioleyl-glycerol; for·OH radical the decreasing order was tocopherol> 1(3)-feruloyl-monooleyl-glycerol> 1(3)-feruloyl-dioleyl-glycerol; for O2·radical the decreasing order was tocopherol> 1(3)-feruloyl-monooleyl-glycerol> 1 (3)-feruloyl-dioleyl-glycerol.
     Fast-dissolving ultrafine membranes (FDMs) were prepared with the water-soluble polymer polyvinylpyrrolidone (PVP) K90 as the filament-forming matrix and ferulic acid and feruloyl-oleyl-glycerol as a poorly water-soluble drug. The influence of PVP concentration and the applied voltage on the morphology of fibers were investigated. Wetting time tests were conducted to evaluate fast-dissolving properties. For preparation of ferulic acid-loaded PVP ultrafine membranes, the optimal conditions are:ferulic acid 5 (w/w)%, PVP 40 (w/v)%, solvent anhydrous ethanol, applied voltage 12 kV, distance from the syringe tip to aluminium foil 12cm, feed rate 0.8 mL/h. Under the optimal conditions, the fibers with the diameter ranging from 800 to 1000 nm were obtain, wetting time 3.4±1.5 s; For preparation of feruloyl-oleyl-glycerol-loaded PVP ultrafine membranes, the optimal conditions are:PVP 5(w/v)%, feruloyl-oleyl-glycerol 25 (w/w)%, mixed solvent V(CHCl3):V(C2H5OH)= 4:1, applied voltage 14 kV, distance from the syringe tip to aluminium foil 12 cm, feed rate 0.8 mL/h. Under the optimal conditions, the fibers with the diameter ranging from 800 to 1000 nm were obtain, wetting time 2.0±1.5 s
引文
[1]赵东平 杨文钰等,阿魏酸的研究进展,时珍国医国药.2008,19(8):1839-1841.
    [2]胡益勇,徐晓玉,阿魏酸的化学和药理研究进展,中成药,2006,28(2):253-255.
    [3]欧仕益,阿魏酸的功能和应用,广州食品工业科技.2002,18(4):50-53.
    [4]Willis, W.M., R.W. Lencki, et al., Lipid Modification Strategies in the Production of Nutritionally Functional Fats and Oils, Critical Reviews in Food Science and Nutrition,1998,38(8):639-674.
    [5]刘国安,李梅基等,一些抗氧化剂对蛋白质氧化降解的保护作用,四川大学学报:自然科学版,2006,43(6):1416-1418.
    [6]吕星,自由基所致DNA损伤及其致突致癌的研究进展,癌变.畸变.突变,1992,4(3):43-46,38.
    [7]Twu, Y.K., Shih, I. L., et al., Optimization of lipase-catalyzed synthesis of octyl hydroxyphenylpropionate by response surface methodology, Journal of Agricultural and Food Chemistry,2005,53(4):1012-1016.
    [8]Kawabata, K., Yamamoto, T., et al., Modifying effects of ferulic acid on azoxymethane-induced colon carcinogenesis in F344 rats, Cancer Letters, 2000,157(1):15-21.
    [9]Ogiwara, T., Satoh, K, et al., Radical scavenging activity and cytotoxicity of ferulic acid, Anticancer Research,2002,22(5):2711-2717.
    [10]句海松,李小洁,阿魏酸钠和18β—甘草次酸对氧自由基的清除作用,中国药理学报,1990,11(5):466-470.
    [11]欧仕益,高孔荣,麦麸膳食纤维抗氧化和OH自由基清除活性的研究,食品工业科技,1997(5):44-45.
    [12]李炎:包惠燕,油脂稳定性与抗氧化方法的研究,中国食品工业,1997(2):18-18,20,22.
    [13]喻红,吴东方等,阿魏酸钠拮抗氧化型脂蛋白(a)对人动脉平滑肌细胞的作用,中国病理生理杂志,2002,18(8):938-941.
    [14]卓致远,黄茂,血.小板激活因子与支气管哮喘,国际呼吸杂志:2007,27(1):26-28.
    [15]陈军,孙恒芳等,急性脑梗死与活化血小板因子相关性的研究,实用老年 医学,2007,21(3):209-210.
    [16]黄丰阳,徐秋萍,中药有效成分的抗血小板作用研究进展,北京中医药大学学报,1999,22:28-31.
    [17]Suzuki, A., Kagawa, D., et al., Short-and long-term effects of ferulic acid on blood pressure in spontaneously hypertensive rats, American Journal of Hypertension,2002,15(4):351-357.
    [18]李尚珠黄平平等,阿魏酸钠对闭塞性动脉硬化症患者白细胞自发活化及表面粘附分子表达的影响,中国中西医结合杂志.2001,21(7):492-494.
    [19]王荣丽杨小琼等,阿魏酸钠对肺心病急性加重肺动脉高压、血浆内皮素、D—二聚体的影响,临床内科杂志,2001,18(5):343-344.
    [20]林迎辉,陈文为,阿魏酸钠的药理作用及分子改造前景,药学学报,1994,29:14-17.
    [21]陈伟海,徐晓玉等,阿魏酸钠对小鼠H22肝癌生长的抑制作用及其机制研究,北京中医药大学学报,2006,29(10):690-701.
    [22]Tsou, M.F., Hung, C.F., et al., Effects of caffeic acid, chlorogenic acid and ferulic acid on growth and arylamine N-acetyltransferase activity in Shigella sonnei (group D), Microbios,2000,101(398):37-46.
    [23]Stead, D., The Effect of hydroxycinnamic acids potassium sorbate on the growth of 11 strain of spoilage yeasts, Journal of Applied Bacteriology,1995, 78(1):82-87.
    [24]Lo, H.H., Chung J.G., The effects of plant phenolics, caffeic acid, chlorogenic acid and ferulic acid on arylamine N-acetyltransferase activities in human gastrointestinal microflora, Anticancer Research,1999,19(1 A):133-139.
    [25]李根林,王津津等,阿魏酸对培养视网膜神经细胞增殖活性的影响,中华眼科杂志,2003,39(11):650-654.
    [26]马逢时,李家明,阿魏酸及其衍生物的合成及药效研究进展,亚太传统医药,2008,4(5):55-57.
    [27]Silva, F.A.M., Borges, F., et al., Phenolic acids and derivatives:Studies on the relationship among structure, radical scavenging activity, and physicochemical parameters, Journal of Agricultural and Food Chemistry,2000,48(6): 2122-2126.
    [28]李东明,吕彤等,合成阿魏酸乙酯方法的研究,当代化工,2005,34(005):318-320.
    [29]王献钊,刘明娣,阿魏酸及阿魏酸乙酯的合成,湖南城市学院学报:自然科学版,2007,16(004):63-65.
    [30]Akira M., Ishikawa H., et al, Drug-induced Pneumonitis:Thin-Section CT Findings in 60 Patientsl, Radiology,2002,224(3):852-860.
    [31]李天锡,阿魏酸衍生物高分子药物的合成及其对血小板聚集和TXB2,6-Keto-PGF1α释放的影响,中国药物化学杂志,1999,9(2):98-101.
    [32]王小莉,徐鸣夏等,7-羟基黄酮衍生物的合成,华西药学杂志,1999,14(5):309-314.
    [33]胡志忠,田硕等,阿魏酸酰胺类化合物的合成,内蒙古医学院学报,2007,29(006):407-410.
    [34]Yingyongnarongkul, B., Apiratikul, N., et al., Solid-phase synthesis and antibacterial activity of hydroxycinnamic acid amides and analogues against methicillin-resistant Staphylococcus aureus and vancomycin-resistant S. aureus, Bioorganic & Medicinal Chemistry Letters,2006,16(22):5870-5873.
    [35]莫若莹,邵国贤等,阿魏酸衍生物的合成,药学学报,1985,20(8):584-584.
    [36]李家明,何广卫等,川芎嗪芳酸醚类衍生物制备方法和药物组合与应用,2008-03-19:中国.CN101143581A.
    [37]Singh, G.B., Leach G.D.H., et al., Antiinflammatory actions of methyl-and phenyl-3-methoxy-4-hydroxy styryl ketones, Arzneimittel-Forschung,1987, 37(4):435-440.
    [38]Elias G., Rao M.N.A., Synthesis and anti-inflammatory activity of substituted(E)-4-phenyl-3-buten-2-ones, European Journal of Medicinal Chemistry,1988,23(4):379-380.
    [39]唐刚华,姜国辉等,阿魏酸盐的合成及药理作用研究,中国药学杂志,1999,34(10):697-699.
    [40]王汝涛,周四元等,阿魏酸乙酯的药理活性及其机制研究,中国临床药理学与治疗学,2004,9(008):925-928.
    [41]Okombi S., Rival D., et al., Analogues of N-hydroxycinnamoylphenal kylamides as inhibitors of human melanocyte-tyrosinase, Bioorganic & Medicinal Chemistry Letters,2006,16(8):2252-2255.
    [42]Jin S., Yoshida M., Antifungal compound, feruloylagmatine, induced in winter wheat exposed to a low temperature, Bioscience, biotechnology, and biochemistry,2000,64(8):1614-1617.
    [43]Carmignani M., Volpe A.R., et al., Novel Hypotensive Agents from Verbesina caracasana. 8. Synthesis and Pharmacology of (3,4-Dimethoxycinnamoyl)-N1-agmatine and Synthetic Analoguesl, Journal of Medicine Chemistry, 2001,44(18):2950-2958.
    [44]Srinivasan M., Sudheer, A.R., et al., Ferulic Acid:therapeutic potential through its antioxidant property, Journal of Clinical Biochemistry and Nutrition,2007,40(2):92-100.
    [45]廖凯荣,卢泽俭,聚磷酸铵型膨胀阻燃剂对聚丙烯的阻燃作用,高分子材料科学与工程,1999,15(2):59-61.
    [46]丁克祥,天然植物活性物阿魏酸,中国化妆品:专业版,2003(020):76-77.
    [47]许仁溥,许大申,阿魏酸应用开发,粮食与油脂,2000(6):7-9.
    [48]Nielsen N., Yang T., et al., Production and oxidative stability of a human milk fat substitute produced from lard by enzyme technology in a pilot packed-bed reactor, Food Chemistry,2006,94(1):53-60.
    [49]Kikuzaki H., Hisamoto M., et al., Antioxidant properties of ferulic acid and its related compounds, Journal of Agricultural and Food Chemistry,2002,50(7): 2161-2168.
    [50]Gandhi N.N., Sawant S.B., et al., Studies on the lipozyme-catalyzed synthesis of butyl laurate, Biotechnology and Bioengineering,1995,46(1):1-12.
    [51]Vikbjerg, A., Mu H., et al., Synthesis of structured phospholipids by immobilized phospholipase A2 catalyzed acidolysis, Journal of Biotechnology, 2007,128(3):545-554.
    [52]Xu X., Balchen S., et al., Production of specific-structured lipids by enzymatic interesterification in a pilot continuous enzyme bed reactor, Journal of the American Oil Chemists Society,1998,75(11):1573-1579.
    [53]Bornscheuer, U.T., Lipase-Catalyzed Syntheses of Monoacylglycerols, Journal of Molecular Catalysis B-Enzymatic,1995,17(7):578-586.
    [54]Compton D.L., Laszlo J.A., et al., Lipase-catalyzed synthesis of ferulate esters, Journal of the American Oil Chemists Society,2000,77(5):513-519.
    [55]Tsuchiyama M., Sakamoto T., et al., Esterification of ferulic acid with polyols using a ferulic acid esterase from Aspergillus niger, BBA-General Subjects, 2006,1760(7):1071-1079.
    [56]Laszlo J.A., Compton D.L., et al., Packed-bed bioreactor synthesis of feruloylated monoacyl- and diacylglycerols:clean production of a "green" sunscreen, Green Chemistry,2003,5(4):382-386.
    [57]辛嘉英,郑妍等,VE阿魏酸酯的酶法合成及抗氧化性的研究,食品科学,2006,27(10):229-233.
    [58]辛嘉英,郑妍等,无溶剂体系生物合成新型抗氧化剂阿魏酸双甘酯,食品工业科技,2007,28(2):207-210.
    [59]辛嘉英,郑妍等,无溶剂体系脂肪酶催化制阿魏酸双油酸甘油酯,精细化工,2007,24(2):172-177.
    [60]辛嘉英,郑妍等,无溶剂体系生物合成阿魏酸双甘酯对油脂抗氧化性能的研究,食品科技.2006,31(11):168-171.
    [611 Margolin, A.L., Enzymes in the synthesis of chiral drugs, Enzyme and Microbial Technology,1993,15(4):266-280.
    [62]Malcata F.X., Reyes H.R., et al., Kinetics and mechanisms of reactions catalyzed by immobilized lipases, Enzyme and Microbial Technology,1992, 14(6):426-446.
    [63]Kuo S.J., Parkin K.L., Acetylacylglycerol formation by lipase in microaqueous milieueffects of acetyl group donor and environmental-factors, Journal of Agricultural and Food Chemistry,1995,43(7):1775-1783.
    [64]Reslow M., Adlercreutz P., et al., On the importance of the support material for bioorganic synthesis-Influence of water partition between solvent, enzyme and solid support in water-poor reaction media, European Journal of Biochemistry,1988,172(3):573-578.
    [65]Gao X.G., Cao S.G., et al., The influence of different physicochemical parameters of the solvent on the activity and selectivity of lipase, Acta Biochimica et Biophysica Sinica,1997,29(4):337-342.
    [66]Ke T., Wescott C.R., et al., Prediction of the solvent dependence of enzymatic prochiral selectivity by means of structure-based thermodynamic calculations, Journal of the American Chemical Society,1996,118(14):3366-3374.
    [67]Russell A.J., Klibanov A.M., inhibitor-induced enzyme activation in organic-solvents, Journal of Biological Chemistry,1988,263(24): 11624-11626.
    [68]Hailing, P.J., Solvent selection for biocatalysis in mainly organic-synthesis predictions of effects on equilibrium positon, Biotechnology and Bioengineering,1990,35(7):691-701.
    [69]Simon L.M., Laszlo K., et al., Stability of hydrolytic enzymes in water-organic solvent systems, Journal of Molecular Catalysis B-Enzymatic,1998,4(1-2): 41-45.
    [70]Hailing P.J., Thermodynamic predictions for biocatalysis in nonconventional meida-theory, tests, and recommendations for experimental design and analysis, Enzyme and Microbial Technology,1994,16(3):178-206.
    [71]Zaks A., Klibanov A.M., The effect of water on enzyme action in organic media, Journal of Biological Chemistry,1988.263(17):8017-8021.
    [72]师奇松,于建香等,静电纺丝技术及其应用,化学世界,2005,46(5):313-316.
    [73]纪杰,戴礼兴,静电纺丝技术研究进展及其应用,科技资讯,2009(33):118-118.
    [74]杨恩龙,王善元等,静电纺丝技术及其研究进展,产业用纺织品,2007,25(8):7-10,14.
    [75]吴佳林,张钰等,多层静电纺丝技术制作血管支架,国外丝绸,2007,22(1):6-8.
    [76]贾骏,段嫄嫄等,聚己内酯电纺纤维支架培养人牙周膜细胞的体外研究,牙体牙髓牙周病学杂志,2007,17(5):243-246.
    [77]Fertala A., Han W.B., et al, Mapping critical sites in collagen II for rational design of gene-engineered proteins for cell-supporting materials, Journal of Biomedical Materials Research,2001,57(1):48-58.
    [78]刘东,缪洁等,静电纺聚砜纳米纤维预过滤膜,国外丝绸,2008,23(6):10-12,19.
    [79]Bergshoef M.M., Vancso G.J., Transparent nanocomposites with ultrathin, electrospun nylon-4,6 fiber reinforcement, Advanced Materials,1999,11(16): 1362-1365.
    [80]Pedicini A., Farris R.J., Thermally induced color change in electrospun fiber mats, Journal of Polymer Science Part B-Polymer Physics.,2004,42(5): 752-757.
    [81]Compton D.L., King J.W., Lipase-catalyzed synthesis of triolein-based sunscreens in supercritical CO2, Journal of the American Oil Chemists Society, 2001,78(1):43-47.
    [82]Compton D.L., Laszlo J.A., et al., Identification and quantification of feruloylated mono-, di-, and triacylglycerols from vegetable oils, Journal of the American Oil Chemists Society,2006,83(9):753-758.
    [83]Karboune S., Safari M., et al., Lipase-catalyzed biosynthesis of cinnamoylated lipids in a selected organic solvent medium, Journal of Biotechnology,2005, 119(3):281-290.
    [84]李东明,吕彤等,合成阿魏酸乙酯方法的研究,当代化工2005,34(5):318-320,340.
    [85]於洋,郑妍等,非水相酶促不可逆转酯反应合成阿魏酸三油酸甘油酯,精细化工,2010,27(5):471-475.
    [86]Compton D.L., Laszlo J.A.,1,3-Diferuloyl-sn-glycerol from the biocatalytic transesterification of ethyl 4-hydroxy-3-methoxy cinnamic acid (ethyl ferulate) and soybean oil, Biotechnology Letters,2009,31(6):889-896.
    [87]Laszlo J.A., Compton D.L., et al., Acyl migration kinetics of vegetable oil 1,2-diacylglycerols, Journal of the American Oil Chemists Society,2008, 85(4):307-312.
    [88]Compton D.L., Laszlo J.A., et al., Purification of 1,2-diacylglycerols from vegetable oils:Comparison of molecular distillation and liquid CO2 extraction, Industrial Crops and Products,2008,28(2):113-121.
    [89]Laszlo J.A., Compton D.L., Enzymatic glycerolysis and transesterification of vegetable oil for enhanced production of feruloylated glycerols, Journal of the American Oil Chemists Society,2006,83(9):765-770.
    [90]Sun S.D., Shan L., et al., Solvent-free enzymatic preparation of feruloylated monoacylglycerols optimized by response surface methodology, Journal of Agricultural and Food Chemistry,2008,56(2):442-447.
    [91]Sun S.D., Shan L., et al., A novel, two consecutive enzyme synthesis of feruloylated monoacyl- and diacyl-glycerols in a solvent-free system, Biotechnology Letters,2007,29(12):1947-1950.
    [92]Sun S.D., Shan L., et al., Solvent-free synthesis of glyceryl ferulate using a commercial microbial lipase, Biotechnology Letters,2007,29(6):945-949.
    [93]Akoh C.C., Yee L.N., Lipase-catalyzed transesterification of primary terpene alcohols with vinyl esters in organic media, Journal of Molecular Catalysis B: Enzymatic,1998,4(3):149-153.
    [94]崔玉敏,魏东芝,水在有机介质酶催化反应中的作用,生物工程进展,1999,19(1):54-58,47.
    [95]Zheng Y., Wu X.M., et al., Enzymatic synthesis and characterization of novel feruloylated lipids in selected organic media, Journal of Molecular Catalysis B-Enzymatic,2009,58(1-4):65-71.
    [96]Uppenberg J., Ohrner N., et al., Crystallographic and molecular-modeling studies of lipase B from Candida antarctica reveal a stereospecificity pocket for secondary alcohols, Biochemistry,1995,34(51):16838-16851.
    [97]Castelluccio C., Bolwell G.P., et al., Differential distribution of ferulic acid to the major plasma constituents in relation to its potential as an antioxidant, Biochemical Journal,1996,316:691-694.
    [98]Stamatis H., Sereti V., et al., Enzymatic synthesis of hydrophilic and hydrophobic derivatives of natural phenolic acids in organic media, Journal of Molecular Catalysis B-Enzymatic,2001,11(4-6):323-328.
    [99]Zheng Y., Brandford-White C., et al., Enzymatic Synthesis of Novel Feruloylated Lipids and Their Evaluation as Antioxidants, Journal of the American Oil Chemists Society,87(3):305-311.
    [100]张昊,任发政,羟基和超氧自由基的检测研究进展,光谱学与光谱分析,2009(4):1093-1099.
    [101]王织云,肖怀秋,羟基自由基测定技术研究进展,广西轻工业,2009,25(6):23-24.
    [102]王萍,葛丽花,阿魏酸低聚糖的体外抗氧化性质的研究,食品研究与开发,2007,28(3):8-11.
    [103]王辉,罗顺德等,莲心碱对氧自由基和脂质过氧化的影响,中国药理学通报,2004,20(10):1197-1198.
    [104]Yu D.G., Zhang X.F., et al., Ultrafine ibuprofen-loaded polyvinylpyrrolidone fiber mats using electrospinning, Polymer International,2009,58(9): 1010-1013.
    [105]赵敏丽,隋刚等,静电纺丝法纺制聚乳酸纳米纤维无纺毡,合成纤维工业,2006,29(1):5-7.
    [106]Yarin A.L., Koombhongse S., et al., Taylor cone and jetting from liquid droplets in electrospinning of nanofibers, Journal of Applied Physics,2001, 90(9):4836-4846.