克鲁维酵母同步糖化发酵菊芋生产乙醇的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在驯化选育一株马克斯克鲁维酵母K.marxianus YX01的基础上,进行了同步糖化发酵菊粉和菊芋粗原料生产乙醇的研究工作。
     通过正交实验法对该菌株产菊粉酶培养基组成及培养条件进行了研究,确定培养基组成为(g/L):菊粉40,酵母粉4,蛋白胨4,尿素1;在初始pH值5.0,温度30℃,转速150 rpm/min条件下培养菊粉酶活性达到57 U/mL。以菊粉为底物,该酶的最适水解温度为55℃,在60℃以下稳定性好;最适pH值为5.0,在pH4.6-5.2范围内酶稳定性好;该酶属于外切菊粉酶,8%的乙醇对其酶活力基本没有影响。
     K.marxianus YX01的种子液的培养时间为24 h,培养基初始pH最适为4.6,最适发酵温度为35℃;在通气量为50 ml/min和100 ml/min时菌体生长速度加快,发酵时间缩短,但不通气条件下糖醇转化率明显提高;在菊粉浓度235 g/L时,发酵终点乙醇浓度达到92.2 g/L,乙醇对糖的得率为0.436,为理论值的85.5%。
     不同浓度海水灌溉的菊芋都是乙醇发酵的良好底物,尤其以25%海水灌溉的为最好。粉碎粒度为40-80目范围内,对发酵没有明显影响。浓度分别为200、225和250g/L的25%海水灌溉的菊芋干粉乙醇发酵结果表明,底物浓度越高,发酵液黏度越大,混和程度越差。在底物浓度为200 g/L时,乙醇得率为0.439。进行批式补料发酵,将菊芋干粉浓度提高到280 g/L,发酵终点乙醇浓度达到83.75 g/L,为理论转化率的84.56%。
     采用有机酸色谱柱Aminex HPX-87H,以0.01 mol/L硫酸水溶液为流动相,流速为0.5ml/min,利用紫外和示差折光检测器为双通道检测手段,同时对K.marxianus YX01菊芋发酵液中的葡萄糖、丙酮酸、果糖、琥珀酸、乳酸、甘油、乙酸、乙醇进行了定量分析,发现主要的副产物为乳酸、甘油、乙酸,构建了乙醇的代谢网络。
     利用兼并引物,通过降落PCR法克隆了K.marxianus YX01的乳酸脱氢酶基因(LDH)片段,通过插入G418抗性基因构建基因破坏载体,利用同源重组对LDH基因进行了基因破坏。在生长条件下,破坏子T_4乳酸脱氢酶活力在120 h时比出发菌株降低了25%;在发酵条件下发酵终点时乳酸脱氢酶降低46%;乙醇、甘油、乙酸和乳酸的终浓度都出现不同程度的降低,但琥珀酸的浓度出现一定程度的提高。与出发菌株相比,破坏子的生长受到一定抑制,菊粉酶活力下降20-30%。破坏子T_4单位质量细胞的乙醇产量反而提高,由对照菌株的20.35 g/L/g(dcw)提高到T_4的22.64 g/L/g(dcw)。
     构建了菊粉酶基因的单拷贝整合表达载体,并转化K.marxianus YX01,获得整合子K/INU1。K/INU1的菊粉酶活力比出发菌株提高近一倍,发酵时间从对照的84h缩短到72h。以粗菊芋粉为底物进行的补料批式发酵发现整合子乙醇生成速度快于出发菌株。
Kluyveromyces marxianus is characterized by its thermal tolerant feature,and it is also fast growing and able to utilize broad range of substrates.Most importantly,it has the ability to produce inulinase,which enables direct ferementation of ethanol using inulin,the main carbohydrate in Jerusalem artichoke.In this study,a yeast strain of K.marxianus YX01 was selected for ethanol production using Jerusasalem artichoke.The extracellular inulinase production by K.marxianus YX01 was optimized and 57 U/mL inulinase was produced in shake flask culture,with the medium composition:inulin 40,yeast extract 4,peptone 4 and urea 1 g/L,under the culture conditions:pH 5.0,30℃and 150 rpm for 120 h.The optimal temperature and pH for the inulinase to hydrolysize inulin were 55℃and 5.0,but the enzyme was validated to be stable at the temperature as high as 60℃and the range of pH from 4.6 to 5.2.The activity ratio of the inulinase toward inulin and sucrose was 1.7 and 8%ethanol showed no significant effect on its activity.
     The growth and ethanol fermentation of K.marxianus YX01 were studied using inulin as substrate.The activity of inulinase,which attributes to the hydrolysis of inulin,was monitored in both shake flask culture and bioreactor.The optimum seed culture time is 24 h,and the pH of medium is 4.6.The optimum temperatures were 38℃for growth and inulinase production, and 35℃for ethanol fermentation.Aeration was not necessary for ethanol fermentation with the K.marxianus YX01 from inulin.Furthermore,the impact of aeration and substrate concentration was studied through batch fermentation in the 2.5 L bioreactor,and the results indicated that the average ethanol fermentation time was decreased at the aeration rates of 50 mL/min and 100 mL/min,but higher ethanol yield was achieved under non-aeration conditions with more substrate directed to ethanol production.The ethanol concentration of 92.2 g/L was obtained with the substrate containing 235 g/L inulin,and the ethanol yield was calculated to be 0.436,equivalent to 85.5%of its theoretical value.
     The fresh Jerusalem artichoke tubers grown in salina and irrigated with 25%and 50% seawater mixed with fresh water were further examined for ethanol fermentation with the K. marxianus YX01,and a higher ethanol yield was achieved for the Jerusalem artichoke tuber irrigated with 25%seawater.Furthermore,the dry meal of the Jerusalem artichoke tubers irrigated with 25%seawater was examined for ethanol fermentation at three solid concentrations of 200,225 and 250 g/L,and the highest ethanol yield of 0.439,or 86.1%of the theoretical value of 0.511,was achieved for the slurry with a solid concentration of 200 g/L.Finally,Jerusalem artichoke grown in salina and irrigated with seawater was fermented without sterilization treatment to further improve the economic competitiveness of the fermentation process,and 83.75 g/L ethanol was obtained with the substrate containing 280 g/L dry Jerusalem artichoke meal,with an ethanol yield of 0.432,indicating the Jerusalem artichoke could be an alternative feedstock for grain-based fuel ethanol production.
     An efficient high performance liquid chromatographic(HPLC) method for simultaneous determination of ethanol,sugar and organic acids in the K.marxianus YX01 culture broth was developed.Aminex HPX-87H organic acids analysis column was used and the mobile phage was 0.01 mol/L sulfic acid solution with the flow rate of 0.5 ml/min.The components of the culture broth containing glucose,fructose,ethanol,acetic acid,glycerol,lactic acid were detected with UV and RID dual detectors.The main by-products of the ethanol fermentation were determined to be lactic acid,glycerol and acetic acid.This method ensured rapid and accurate quantification of the metabolites of the K.marxianus YX01 in the ethanol fermentation from Jerusalem artichoke,and provided basis for the future metabolic flux analysis as well.
     Fragments of the lactic dehydrogenase gene(LDH) gene sequence from K.marxianus YX01 were cloned using degenerate primers and touch-down PCR.Kam gene conferring G418 resistance was inserted into the clone vector,and the LDH gene of the K.marxianus YX01was disrupted by homologous recombination.Cell growth and ethanol fermentation of the disruptant T_4 were investigated,and the results showed that the LDH activity of T_4 was 75%of that of the control under growth conditions and 54%of that of control in the fermentation process,and the concentrations of ethanol,glycerol,acetic acid and lactic acid in T4 were decreased,but the production of succinic acid production increased.The growth of T_4 was deficient comparing with the control,and the inulinase activity of T_4 was decreased 20-30%.However,due to its low biomass yield,the final specific ethanol productivity of T_4 was 11.25%higher that of the control strain(22.64 g/L/g(dcw) comparing to 20.35 g/L/g (dcw)).
     Improvement of the inulinase activity and stable expression of inulinase gene is beneficial to improve the ethanol productivity.To this end,inulinase gene INU with its native promoter was amplified from K.marxianus YX01 by PCR,and integrative vector with the HO flanking sequences was constructed.The integration vector was linerized by Not I and then transformed into K.marxianus YX01.The inulinase activity and ethanol fermentation performance of the transformant K/INU1 were investigated.The inulinase activity in K/INU1 doubled that of the control,and the fermentation time was shortened from 84 h in the control strain to 72 h in K/INU1,with similar final ethanol titer in the two strains.Using raw Jerusalem artichoke flour,fed batch culture was performed,and it was revealed that the fermentation rate of K/INU1 is faster than that of the wild strain,with similar final ethanol titer.Multicopy integration of INU will be an efficient way to further improve the ethanol fermentation performance of K.marxianus YX01.
引文
[1]高学,张国俊,纪树兰等.燃料乙醇制备技术及其发展现状[J].高科技与产业化,2008,8:73-74
    [2]Bai F W,Anderson WA,Moo-Young M.Ethanol fermentation technologies from sugar and starch feedstocks[J].Biotechnol Adv,2008,26(1):89-105.
    [3]Nobuya M等.生谷物原料乙醇发酵的工业化[J].张柏青译.发酵译丛,1984,1:53-60.
    [4]秦先魁.低脂玉米粉无蒸煮液态发酵制乙醇技术初探[J].西部粮油科技,2000,25(6):59-60.
    [5]池振明,刘自熔.生淀粉高浓度乙醇发酵的研究[J].生物工程学报,1994,10(2):130-134.
    [6]葛向阳,王丽森,张伟国.利用根霉和酿酒酵母转化生玉米粉为高浓度乙醇[J].微生物学通报,2007,34(2):261-265.
    [7]Shigechi H,Koh J J,Fujita Y,et al.Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and a-Amylase[J].Appl Environ Microbiol,2004,70:5037-5040.
    [8]Kosugi A,Kondo A,Ueda M,et al.Production of ethanol from cassava pulp via fermentation with a surface-engineered yeast strain displaying glucoamylase[J].Renewable Energy,2009,34(5):1354-1358.
    [9]Bayrock D P,Ingledew W M.Application of multistage continuous fermen- tation for production of fuel alcohol by very-high-gravity fermentation technology[J].J Indust Microbiol Technol,2001,27:87-93.
    [10]Patil B G,Gokhale D V,Bastawde K B,et al.The use of tamarind waste to improve ethanol production from cane molasses[J].J Inst Microbiol Biotechnol,1998,21:307-310.
    [11]Reddy L V A,Reddy O V S.Rapid and enhanced production of ethanol in very high gravity(VHG)sugar fermentation by Saccharomyces cerevisiae:Role of finger millet(Eleusine coracana L.) flour[J].Process Biochem,2006,41:726-729.
    [12]Bai F W,Chen L J,Anderson W A,et al.Parameter oscillations in very high gravity medium continuous ethanol fermentation and their attenuation on multi-stage packed column bioreactor system[J].Biotechnol Bioeng,2004,88:558-566.
    [13]Bai F W,Chen L J,Zhang Z,et al.Continuous ethnaol Production and evaliuation of yeast cell lysis and vibailiy under very high gravity medium conditions[J].J Biotechnol,2004,110:287-293.
    [14]陈丽杰,白凤武,Anderson WA等.超高浓度培养基条件下酵母细胞生长及乙醇生成的准稳态动力学研究[J].生物加工过程,2004,2:25-29.
    [15]Anderson P J,McNeil K,and Watson K.High-efficiency carbohydrate fermentation to ethanol at temperatures above 40℃ by Kluyveromyces marxianus var.marxianus isolated from sugar mills[J].Appl Environ Microbiol,1986,51:1314-1320.
    [16]Banat I M,Nigam P,Singh D,et al.Ethanol production at elevated temperatures and alcohol concentrations I:Yeasts in general[J].World J Microbiol Biotechnol,1998,14:809-821.
    [17]文铁桥,赵学慧.酵母菌属间原生质体融合构建高温酵母菌株[J].微生物学报,1999,39(2):240-246.
    [18]庞会利,李景原,秦广雍.耐高温乙醇酵母的研究现状及进展[J].酿酒科技,2008,2:99-102.
    [19]Tony D A,Guy C,Inge R,Selection and optimization of yeast suitable for ethanol production at 40℃[J].Enzyme Microb Technol,1989,11(7):411-416.
    [20]Kourkoutas Y,Dimitropoulou S,Kanellaki M,et al.High-temperature alcoholic fermentation of whey using Kluyveromyces marxianus IMB3 yeast immobilized on delignified cellulosic material[J].Bioresour Technol,2002,82(2):177-181.
    [21]Hisayori S C,Jun K,Yasuya F,et al.Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and a-amylase[J].Appl Environ Microbiol,2004,70(8):5037-5040.
    [22]Ulgen K O,Saygili B,Onsan Z I,et al.Byconversion of starch into ethanol by a recombinant Saccharomyces cerevisiae strain YPG-AB[J].Process Biochem,2002,37(10):1157-1168.
    [23]Latorre G L,Adam A C,Manzanares P,et al.Improving the amylolytic activity of Saccharomyces cerevisiae glucoamylase by the addition of a starch binding domain[J].J Biotechnol,2005,118(2):167-176.
    [24]Chang D M,Yu L,Lim M H,et al.Efficient one-step starch utilization by industrial strains of Saccharomyces cerevisiae expressing the glucoamylase and the alphy-amylase genes from Debaryomyces occidentalis[J].Biotechnol Lett,2007,29(8):1203-1208.
    [25]Jeong Y S,and Vieth W R.Fermentation of lactose to ethanol with recombinant yeast in an immobilized yeast membrane bioreactor[J].Biotechnol Bioeng,1991,37:587-590.
    [26]Sreekrishna K,and Dickson R D.Construction of strains of Saccharomyces cerevisiae that grow on lactose[J].Proc Nat Acad Sci USA,1985,82:7909-7913.
    [27]Farahnak F,Seki T,Ryu D Y,et al.Construction of lactose-assimilating and high ethanol producing yeasts by protoplast fussion[J].Appl Environ Microbiol,1986,51:362-367.
    [28]Dominques L,Dantas M M,Lima N,et al.Continuous ethanol fermentation of lactose by a recombinant flocculating Saccharomyces cerevisiae strain[J].Biotechnol Bioeng,1999,64:692-697
    [29]Beccerra M,DiazPrado S,Rodrguez-Belmonte E,et al.Metabolic engineering for direct lactose utilization by Saccharomyces cerevisiae[J].Biotechnol Lett,2002,24(17):1391-1396.
    [30]Rosen K.Production of baker's yeast[M].London:United Kingdom Press.1987,471-500.
    [31]Ronnow B,Olsson L,Nielsen J,et al.Derepression of galactose metabolism in melibiase producing bakers' and distillers' yeast[J].J Biotechnol,1999,72:213-228.
    [32]Vincent S F,Bell P J L,Bissinger P,et al.Comparison of melibiose utilizing baker's yeast strains produced by genetic engineering and classical breeding[J].Lett Appl Microbiol,1999,28:148-152.
    [33]Senac T,and Hahn-Hagerdal B.Intermediary metabolite concentrations in xylulose and glucose-fermenting Saccharomyces cerevisiae cells[J].Appl Environ Microbiol,1990,56:120-126.
    [34]Hahn-Hagerdal B,Hallborn J,Jeppson H,et al.Pentose fermentation to alcohol[J].Biotechnol Agric,1993,9:231-290.
    [35]Moes C J,Pretorius I S,and van Zyl W H.Cloning and expression of the Clostridium thermosulfurogenes D-xylose isomerase gene(xylA) in Saccharomyces cerevisiae[J].Biotechnol Lett,1996,18:269-274.
    [36]Kotter P,Ciriacy M.Xylose fermentation by Saccharomyces cerevisiae[J].Appl Microbiol Biotechnol,1993,38:776-783.
    [37]Tantirungkij M,Nakashima N,Seki T,et al.Construction of xylose-assimilating Saccharomyces cerevisiae[J].J Ferment Biotechnol,1993,75:83-88.
    [38]Tantirungkij M,Izuishi T,Seki T,et al.Fed-batch fermentation of xylose by a fast-growing mutant of xylose-assimilating recombinant Saccharomyces cerevisiae[J].Appl Microbiol Biotechnol,1994,41:8-12.
    [39]Walfridsson M,Anderlund M,Bao X,et al.Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilization[J].Appl Microbiol Biotechnol,1997,48:218-224.
    [40]Senac T,Hahn-Hagerdal B.Effects of increased transaldolase activity on D-xylulose and D-glucose metabolism in Saccharomyces cerevisiae cell extracts[J].Appl Environ Micribiol,1991,57:1701-1706.
    [41]鲍晓明,高东,曲音波等.木糖代谢基因表达水平对酿酒酵母重组菌株产物形成的影响[J].生物工程学报,1997,13(4):355-361.
    [42]鲍晓明,高东,王祖农.嗜热细菌木糖异构酶基因xylA在酿酒酵母中的高效表达[J].微生物学报,1999,39(1):49-54.
    [43]Andre L,Hemming A,Adler L.Osmoregulation in Saccharomyces cerevisiae Studies on the osmotic induction of glycerol production and glycerol 3-phosphate dehydrogenase(NAD~+)[J].FEBS Lett,1991,292(2):13-17.
    [44]Bjorkqvist S,Ansell R,Adler L,et al.Physiological response to anaerobicity of glycerol 3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae[J].Appl Environ Microbiol,1997,63:128-132.
    [45]Valadi H,Larsson C,Gustafsson L.Improved ethanol production by glycerol-3-phosphate dehydrogenase mutant of Saccharomyces cerevisiae[J].Appl Microbiol Biotechnol,1998,50(4):434-439.
    [46]NissenT L,Kielland-Brandt M C,Nielsen J,et al.Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation[J].Metab Eng,2000,2(1):69-77.
    [47]Kong Q X,Gu J G,Cao L M,et al.Improved production of ethanol by deleting FPSland over-expressing GLT1 in Saccharomyces cerevisiae[J].Biotechnol Lett,2006,28:2033-2038.
    [48]Alexandre H,Rousseaux I,Charpentier C.Relationship between ethanol tolerance,lipid composition and plasma membrane fluidity in Saccharomyces cerevisiae and Kloeckera apiculata[J].FEMS Microbiol Lett,1994,124:17-22.
    [49]Kajiwara S,Suga K,Sone H,et al.Improved Ethanol Tolerance and Fermentation of Saccharomyces cerevisiae by Alteration of Fatty Acid Content in Membrane Lipids via Metabolic Engineering[J].Biotechnol Lett,2000,22(23):1839-1843.
    [50]Chen W,Hughes D E,Bailey J E.Intracellular expression of Vitreoscilla hemoglobin alters the aerobic metabolism of Saccharomyces cerevisiae[J].Biotechnol Prog,1994,10:308-313.
    [51]Larsson S,Cassland P,Jonsson L J.Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase[J].Appl Environ Microbiol,2001,67:1163-1170.
    [52]Takagi H,Sakai K,Morida K,et al.Proline accumulation by mutation or disruption of the proline oxidase gene improves resistance to freezing and desiccation stresses in Saccharomyces cerevisiae[J].FEMS Microbiol Lett,2000,184:103-108.
    [53]Ghosh P,Ghose T K.Bioethanol in India:recent past and emerging future[J].Adv Biochem Eng/Biotechnol,2003,85:1-27.
    [54]Shahbazi A,Li Y,Mims M R.Application of sequential aqueous steam treatments to the fractionation of softwood[J].App Biochem Biotechnol,2005,15:973-987.
    [55]Laser M,Schulman D,Allen S G,et al.A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol[J].Bioresour Technol,2002,81:33-44.
    [56]Schell D J,Farmer J,Newman M,et al.Dilutesulfuric acid pre-treatment of corn stover in pilot-scale reactor.Investigation of yields,kinetics,and enzymatic digestibilities of solids[J].App Biochem Biotechnol,2003,105(1-3):69-85.
    [57]Rodri'guez-Chong A,Ram(?)rez J A,Garrote G,et al.Hydrolysis of sugar cane bagasse using nitric acid:a kinetic assessment[J].J Food Eng,2004,61(2):143-152.
    [58]Kang S W,Park Y S,Lee J S,et al.Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass[J].Bioresour Technol,2004,91:153-156.
    [59]Aden A,Ruth M,Ibsen K,et al.Lignocellulosic biomass to ethanol process design and economics utilizing cocurrent dilute acid prehydrolysis and enzymatic hydrolysis for corn stover[R].National Renewable Energy Laboratory:2002.
    [60]Wooley R,Ruth M,Sheehan J,et al.Lignocellulosic biomass to ethanol process design and economics utilizing cocurrent dilute acid prehydrolysis and enzymatic hydrolysis.Current and futuristic scenarios[R].National Renewable Energy Laboratory:1999.
    [61]陈洪章,邱卫华.秸秆发酵燃料乙醇关键问题及其进展[J].化学进展,2007,19(7/8):1116-1121.
    [62]Steele B,Raj S,Nghiem J,et al.Enzyme recovery and recycling following hydrolysis of ammonia fiber explosion treated corn stover[J].App Biochem Biotechnol,2005,124(1):901-910.
    [63]Castanon M,Wilke C R.Effects of the surfactant tween 80 on enzymatic hydrolysis of newspaper[J].Biotechnol Bioeng,1981,23(6):1365-1372.
    [64]Haakana H,Miettinen-Oinonen A,Joutsjoki V,et al.Cloning ofcellulase genes from Melanocarpus albomyces and their efficient expression in Trichoderma reesei[J].Enzyme Microbiol Technol,2004,34:159-167.
    [65]Claassen P A M,van Lier J B,L(?)pez Contreras A M,et al.Utilisation of biomass for the supply of energy carriers[J].App Microbiol Biotechnol,1999,52:741-755.
    [66]鲍晓明,高东,王祖农.木糖代谢工程菌的研究进展[J].生物工程学报,1998,14:355-358.
    [67]Ho N W Y,Chen Z and Brainard A.Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose[J].Appl Environ Microbiol,1998,64:852-1859.
    [68]Jeon YJ,Svenson CJ,Rogers PL.Over-expression of xylulokinase in a xylose-metabolising recombinant strain of Zymomonas mobilis[J].FEMS Microbiol Lett,2005,244(1):85-92.
    [69]陈洪章,王岚.生物质能源转化技术与应用[J].生物质化学工程,2008,42(4):67-72.
    [70]Chen H Z,Xu J,Li Z H.Temperature cycling to improve the ethanol production with solid state simultaneous saccharification and fermentation[J].App Biochem Microbiol,2007,43(1):57-60.
    [71]王新国.一种新兴的经济作物-菊芋[J].科学种养,2008,4:18.
    [72]Vandamme E J,Derycke D G.Microbial inulinases:Fermentation process,properties and applications [J].Adv Appl Microbiol,1983,29:139-176.
    [73]Chi Z M,Chi Z,Zhang T,et al.Inulinase-expressing microorganisms and applications of inulinases[J].Appl Biochem Biotechnol,2009,82(2):211-220.
    [74]Pandey A,Soccol C R,Selvakumar P,et al.Recent developments in microbial inulinases:Its production,properties and industrial applications.Appl Biochem Biotechnol,1999,81:35-52.
    [75]王建华,刘艳艳,姚斌等.高产菊粉酶酵母筛选、发酵和酶学性质研究[J].生物工程学报,2000,16(1):60-64.
    [76]Ongen-Baysal G,Sukan S S,Vassilev N.Production and properties of inulinase from Aspergillus niger [J].Biotechnol Lett,1994,16:275-280.
    [77]李晓峰,张苓花,王运.菊粉酶酵母菌株的筛选及鉴定[J].大连轻工学院学报,2002,21(3):202-206.
    [78]Nakamura T,Kurokawa T,Nakatsu S.Crystallization and general properties of an extra cellular inulinase from Aspergillus Sp[J].Nippon Nogei Kagakku Kaishi,1978,52(4):15-166.
    [79]Ododera S,and Shiomi N.Purification and substrate specificity of endotype inulinase from Penicillium purpurogerum[J].Agric Biol Chem,1988,53(10):2569-2576.
    [80]Nakamura T,Shitara A,and Matsuda S.Production,purification and properties of an endo-inulinase of Penicillium spTN-88 that liberates inulinase[J].J Ferment Bioeng,1997,84(4):313-318.
    [81]Fontana J D,Baron M.Microbial inulinase secretion using chemically modified inulins[J].Applied Biochem Biotechnol,1994,14(45):257-268.
    [82]Gupta A K,Singh D P.Production,purificationand immobilizationof inulinase from Kluveromyces fragilis[J].J Chem Tech Biotechnol,1994,59:377-385.
    [83]Dong H K,Yong J C,Seung K S,et al.Production of inulo-oligosaccharides using endo-inulinase from a Pseudomonas sp[J].Biotechnol Lett,1997,19(4):369-371.
    [84]王建华.微生物菊粉酶基因结构、酶性质与应用研究进展[J].天然产物研究与开发,2000,13(1):83-90.
    [85]Ohta K,Akimoto H,Matusda S,et al.Molecular cloning and sequences analysis of two endoinulinase genes from Aspergilus niger[J].Biosci Biotechnol Biochem,1998,62:1731-1738.
    [86]Onodera S,Shiomi N.Purification and subsite affinities of exo-inulinase from Penicillium trebinskii [J].Biosci Biotech Biochem,1992,56:1443-1447.
    [87]Rouwenhorst R J,Hensing M,Verbakel J,et al.Structure and properties of the extracellular inulinase of Kluyveromyces marxianus CBS6556[J].Appl Environ Microbiol,1990,56:3337-3345.
    [88]Ongen-Baysal G,Sukan S S.Production of inulinase mixedculture of Aspergillius niger and Kluyveromyces marxianus[J].Biotechnol Lett,1996,18:1431-1434.
    [89]魏文铃,郑中辉,郑志成等.克鲁维酵母Y-85合成菊粉酶最适条件的研究[J].微生物学报,1998,38:208-212.
    [90]Kwon S J,Yoo J Y,Lee J S.Isolation of intracellular inulinase-producing bacterirum and culture condition for inulinase production[J].Food Sci Biotechnol,1999,8:24-29.
    [91]王建华.黑曲霉菊粉酶内切酶基因和表达该基因的重组毕赤酵母菌株:中国,CN1594542[P].2005.
    [92]Ashok P,Carlos R S.Recent developments in microbial inulinases[J].App Biochem and Biotechnol,1999,81:35-52.
    [93]吕红,李育阳,袁汉英.一种含有菊粉酶外切酶基因序列的基因工程菌株极其用于制备菊粉外切酶的方法:中国,CN101063089A[P].2007.
    [94]Laloux O,Cassart J P,Delcour J,et al.Cloning and sequencing of the inulinase gene of Khyveromyces marxiarzus var.marxianus ATCC 12424[J].FEBS,1991,289(1):64-68.
    [95]Perez J A,Rodriguez J,Rodriguez L,et al.Cloning and sequence analysis of the invertase gene INVI from the yeast Pichia anomala[J].Curr Genet,1996,29:234-240.
    [96]Georis I,Cassart J P,Breunig K D,et al.Glucose repression of the Kluyveromyces lactis invertase gene K1INV1 does not requires Mig1p[J].Mol General Genet,1999,261:862-870.
    [97]Wen T Q,Liu F,Huo k K,et al.Cloning and analysis of the inulinase gene from Kluyveromyces cicerisporus CBS4857[J].World J Microbiol Biotechnol,2003,19:423-426.
    [98]Favala T E,Allais J,Baratti J.Kenetica of batch fermentations for ethanol production with Zymomonas mobilis growing on Jerusalem artichoke juice[J].Biotechnol Bioeng,1986,ⅩⅧ:850-856.
    [99]Allais J J,Torres E F,Baratti J.Continus production of ethanol with Zymomonas mobilis growing on Jerusalem artichoke juice[J].Biotechnol Bioeng,1987,ⅩⅩⅩⅨ:778-782.
    [100]Kazuyoshi O,Shigeyuki H,Toyohiko N.Production of high concentrations of ethanol from Inulin by simultaneous saccharification and fermentation using Aspergillus niger and Saccharomyces cerevisiae [J].Appl Environ Microbiol,1993,59(3):729-733.
    [101]Toyohiko N,Yasuko O,Shigeyuki H,et al.Ethanol production from Jerusalem artichoke tubers by Aspergillus niger and Saccharomyces cerevisiae[J].J Ferment Bioeng,1996,81(6):564-566.
    [102]Katarzyna S,Jacek N,Zbigniew C.Use of Zymomonas mobilis and Saccharomyces cerevisiae mixed with Kluyveromyces fragilis for improved ethanol production from Jerusalem artichoke tubers[J].Biotechnol Letters,2004,26:845-848.
    [103]Ge X Y,Zhang W G.A shortcut to the production of high ethanol concentration from Jerusalm artichoke tubers[J].Food Technol Biotechnol,2005,43(3):241-246.
    [104]Margaritis A,Bajpai P.Ethanol production from Jerusalem artichoke tubers(Helianthus tuberosus)using Kluyveromyces marxianus and Saccharomyces rosei[J].Biotechnol Bioeng,1982,ⅩⅩⅣ:941-953.
    [105]Duvnjak Z,Kosaric N,Kliza S.Production of alcohol from Jerusalem artichokes by Yeasts[J].Biotechnol Bioeng,1982,ⅩⅩⅣ:2297-2308.
    [106]Barthomeuf C,Regerat F,Pourrat H.High-yield ethanol production from Jerusalem artichoke tubers.World J Microbiol Biotechnol,1991,7:490-493.
    [107]Bajpal P,Margaritis A.The effect of temperature and pH on ethanol production by free and immobilized cells of Kluyveromyces marxianus grown on Jerusalem artichoke extract.Biotechnol Bioeng,1987,(ⅩⅩⅩ):306-313.
    [108]Van den Brock P J,De Bruijne A W,Van Steveninck J.The role of ATP in the control of H~+-galactoside symport in the yeast Kluyveromyces marxianus[J].Biochem J,1987,242:729-734.
    [109]Carvalho-Silva M,Spencer-Martins I.Modes of lactose uptake in the yeast species Kluyveromyces marxianus[J].Antonie van Leeuwenhoek,1990,57:77-81.
    [110]Gasnier B.Characterization of low and high-affinity glucose transports in the yeast Kluyveromyces marxianus[J].Biochem Biophys Acta,1987,903:425-433.
    [111]De Bruijne A W,Schuddemat J,van den Brock P J A,et al.Regulation of sugar transport systems of Kluyveromyces marxianus:the role of carbohydrates and their catabolism[J].Biochem Biophys Acta,1988,939:569-576.
    [112]Postma E,van der Brock P J A.Continuous-culture study of the regutation of glucose and fructose transport in Kluyveromyces marxianus CBS 6556[J].J Bacteriol,1990,172:2871-2876.
    [113]Van Leeuwen C C,Postma E,van den Brock P J,et al.Proton-motive force-driven D-galactose transport in plasma membrane vesicles from the yeast kluyveromyces marxianus[J].J Biol Chem,1991,266:12146-12151.
    [114]Fonseca A,Spencer-Martins I,van Uden N.Transport of lactic acid in Kluyveromyces marxianus:evidence for a monocarboxylate uniport[J].Yeast,1991,7:775-780.
    [115]Stambuk B U,Franden M A,Singh A,et al.D-Xylose transport by Candida succiphila and Kluyveromyces marxianus[J].Appl Biochem Biotechnol,2003,108:255-263.
    [116]Nguyen T H,Fleet G H,Rogers P L.Composition of the cell walls of several yeast species[J].Appl Microbiol Biotechnol,1998,50:206-212.
    [117]Yoda K,Ko J H,Nagamatsu T,et al.Molecular characterization of a novel yeast cell-wall acid phosphatase cloned from Kluyveromyces marxianus[J].Biosci Biotechnol Biochem,2000,64:142-148.
    [118]Gustavo G F,Andreas K G E H.Physiology of the Yeast Kluyveromyces marxianus during batch and chemostat cultures with glucose as the sole carbon source[J].FEMS Yeast Res,2007,7(3):422-435.
    [119]Gustavo G F,Elmar H,Christoph W,et al.The yeast Kluyveromyces marxianus and its biotechnological potential[J].Appl Microbiol Biotechnol,2008,79:339-354.
    [120]Banat I M,Nigam P,Singh D,et al.Ethanol production at elevated temperatures and alcohol concentrations:PartI-Yeasts in general[J].World J Microbiol Biotechnol,1998,14:809-821.
    [121]Anderson P J,McNeil K,Watson K.High-efficiency carboidrate fermentation to ethanol at temperatures above 40℃ by Kluyveromyces marxianus var marxianus isolated from sugar mills[J].Appl Environ Microbiol,1986,51:1314-1320.
    [122]Ballesteros I,Ballesteros M,Cabanas A,et al.Selection of thermotolerant yeasts for simultaneous saccharification and fermentation(SSF) of cellulose to ethanol[J].Appl Biochem Biotechnol,1991,28:307-315.
    [123]Hughes D B,Tudrosaen N J,Moye C J.The effect of temperature on the kinectics of ethanol production by a thermotolerant strain of Kluyveromyces marxianus[J].Biotechnol Lett,1984,6:1-6.
    [124]Banat I M,Nigam P,Marchant R.Isolation of thermotolerant.fermentative yeasts growing at 52℃ and producing ethanol at 45℃ and 50 ℃[J].World J Microbiol Biotechnol,1992,8:259-263.
    [125]Rosa F M,Sa-Correia I.Ethanol tolerance and activity of plasma membrane ATPase in Kluyveromyces marxianus and Saccharomyces cerevis/ae[J].Enzyme Microb Technol,1992,14:23-27.
    [126]Hacking A J,Taylor I W F,Hanas CM.Selection of yeasts able to produce ethanol from glucose at 40℃[J].Appl Microbiol Biotechnol,1984,19:361-363.
    [127]Anderson P J,McNeil K,Watson K.High-efficiency carboidrate fermentation to ethanol at temperatures above 40℃ by Kluyveromyces marxianus var marxianus isolated from sugar mills[J].Appl Environ Microbiol,1986,51:1314-1320.
    [128]Sakanaka K,Yan W,Kishida M,et al.Breeding a fermentative yeast at high temperature using protoplast fusion[J].J Ferment Bioeng,1996,81:104-108.
    [129]Duvnjak Z,Houle C,Mok K L.Production of ethanol and biomass from various carbohydrates by Kluyveromyces fragilis[J].Biotechnol Lett,1987,9:343-346.
    [130]Margaritis A,Bajpai P.Direct fermentation of D-xylose to ethanol by Kluyveromyces marxianus strains[J].Appl Environ Microbiol,1982,44:1039-1041.
    [131]Wilkins M R,Mueller M,Eichling S,et al.Fermentation of xylose by the thermotolerant yeast strains Kluyveromyces marxianus IMB2,IMB4,and IMB5 under anaerobic conditions[J].Process Biochem,2008,43:346-350.
    [132]Barron N,Marchant R,McHale L,et al.Studies on the use of a thermotolerant strain of Kluyveromyces marxianus in simultaneous saccharification and ethanol formation from cellulose[J].Appl Microbiol Biotechnol,1995,43:518-520.
    [133]Barron N,Marchant R,McHale L,et al.Ethanol production from cellulose at 45℃ using a batch-fed system containing alginate-immobilized Kluyveromyces marxianus IMB3[J].World J Microbiol Biotechnol,1996,12:103-104.
    [134]Hong J,Wang Y,Kumagai H,et al.Construction of thermotolerant yeast expressing thermostable cellulase genes[J].J Biotechnol,2007,130:114-123.
    [135]Ballesteros M,Oliva J M,Manzanares P,et al.Ethanol production from paper material using a simultaneous saccharification and fermentation system in a fed batch basis[J].World J Microbiol Biotechnol,2002,18:559-561.
    [136]Ferrari M D,Loperena L,Varela H.Ethanol production from concentrated whey permeate using a fed-batch culture of Kluyveromyces fragilis[J].Biotechnol Lett,1994,16:205-210.
    [137]Barron N,Marchant R,McHale L,et al.Ethanol production from cellulose at 45℃ using a batch-fed system containing alginate-immobilized Kluyveromyces marxianus IMB3[J].World J Microbiol Biotechnol,1996,12:103-104.
    [138]Banat I M,Singh D,Marchant R.The use of a thermotolerant fermentative Kluyveromyces marxianus IMB3 yeast strain for ethanol production[J].Acta Biotechnol,1996,16:215-223.
    [139]Tin C S F,Mawson A J.Ethanol production from whey in a membrane recycle bioreactor[J].Proc Biochem,1993,28:217-221.
    [140]Gough S,Barron N,Zubov A L,et al.Production of ethanol from molasses at 45℃ using Kluyveromyces marxianus IMB3 immobilized in calcium alginate gels and poly(vinyl alcohol) cryogel[J].Bioproc Eng,1998,19:87-90.
    [141]Brady D,Nigam P,Marchant R,et al.The effect of Mn~(2+) on ethanol production from lactose using Kluyveromyces marxianus IMB3 immobilized in magnetically responsive matrices[J].Bioproc Eng,1997,17:31-34.
    [142]Love G,Nigam P,Barron N,et al.Ethanol production at 45℃ using preparations of Kluyveromyces marxianus IMB3 immobilized in calcium alginate and kissiris[J].Bioproc Eng,1996,15:275-277.
    [143]Love G,Gough S,Brady D,et al.Continuous ethanol fermentation at 45℃ using Kluyveromyces marxianus IMB3.Immobilized in calcium alginate and kissiris[J].Bioprocess Eng,1998,18:187-189.
    [144]Szambelan K,Nowak J,Czarnecki Z.Use of Zymomonas mobilis and Saccharomyces cerevisiae mixed with Kluyveromyces fragilis for improved ethanol production from Jerusalem artichoke tubers[J].Biotech Lett,2004,26:845-848.
    [145]Vandamme E J,Derycke D G.Microbial inulinases:Fermentation process,properties and applications[J].Adv Appl Microbiol,1983,29:139-176.
    [146]Pandey A,Soccol C R,Selvakumar P,et al.Recent developments in microbial inulinases:Its production,properties and industrial applications[J].Appl Biochem Biotechnol,1999,81:35-52.
    [147]王光远,宋爱荣,陈冠军.产菊粉酶酵母菌株的筛选及菌种鉴定[J].微生物学杂志,2006,26(4):39-41.
    [148]赵国群,杨利博,葛世辉.产菊粉酶酵母菌株的微波诱变选育[J].中国酿造,2008,10:31-34.
    [149]梁金钟.无蒸煮无糖化一步发酵法生产燃料乙醇[J].酿酒,2005,3:60-66.
    [150]Eksteen J M,Rensburg P V,Cordero Otero R R,et al.Starch fermentation by recombinant Saccharomyces cerevisiae strains expressing the α-Amylase and glucoamylase genes from Lipomyces kononenkoae and Saccharomycopsis fibuligera[J].Biotechnol Bioeng,2003,84(6):639-646.
    [151]魏文铃,谢忠,王群等.青霉菊粉酶的产生和性质[J].工业微生物,1994,24(4):19-23.
    [152]王艳,金征宇,徐学明等.酵母菌C10产菊粉酶酶学性质的研究[J].上海水产大学学报,2004,13(1):56-59.
    [153]Miller G L.Use of dinitrosalicylic acid regent for the determination of reducing sugar[J].Anal Chem,1959,31:426-428.
    [154]王建华,刘艳艳,姚斌等.高产菊粉酶酵母筛选、发酵和酶学性质研究[J].生物工程学报,2000,16:61-64.
    [155]Xu T J,Zhao X Q,Bai F W.Continuous ethanol production using self-flocculating yeast in a cascade of fermentors[J].Enzyme Microbiol Technol,2005,37:634-640.
    [156]张介驰,于德水,奚新伟等.碳源对产紫青霉产菊粉酶的影响[J].生物技术,2001,1:28-29.
    [157]Sheng J,Chi Zh M,Li J,et al.Inulinase production by the Marine yeast Cryptococcus Aureus G7a and inulin hydrolysis by the crude inulinase[J].Process Biochem,2007,42:805-811.
    [158]Anderson P J,Mcneil K,Watson K.High-efficiency carbohydrate fermentation to ethanol at temperature above 40℃ by Kluyveromyces marxianus Var.marxianus isolated from sugar mills[J].Appl Envion Microbiol,1986,51:1314-1320.
    [159]Margaritis A,Bajpai P.Continuous ethanol production from Jerusalm artichoke tubers Ⅰ:Use of free cells of Kluyveromyces marxianus[J].Biotechnol Bioeng,1982a,24:1473-1482.
    [160]Margaritis A,Bajpai P.Continuous Ethanol production from Jerusalm artichoke Tubers Ⅱ:Use of immobilized cells of Kluyveromyces marxianus[J].Biotechnol Bioeng,1982b,24:1483-1493.
    [161]Rosa M F,Viera A M,Bartolomeu M L.Production of high concentration of ethanol from mash juice and pulp of Jerusahn artichoke tubers by Kluyveromyces fragilis[J].Enzyme Microbiol Technol,1986,8673-676.
    [162]Bai F W,Anderson W A,Moo-Young M.Ethanol fermentation technologies from sugar and starch feedstocks[J].Biotechnol Adv,2008,26:89-105.
    [163]Gustavo G F,Elmar H,Christoph W,et al.The yeast Kluyveromyces marxianus and its biotechnological potential[J].Appl Microbiol Biotechnol,2008,79:339-354.
    [164]Singh D,Nigam P,Banat I M,et al.Ethanol production at elevated temperatures and alcohol concentations:part Ⅱ- Use of Kluyveromyces marxianus IMB3[J].World J Microbiol Biotechnol,1998,14:823-834.
    [165]Wittmann C,Hans M,Bluemke W.Metabolic physiology of aroma-producing Kluyveromyces marxianus[J].Yeast,2002,19:1351-1363.
    [166]Ryu D D Y,Kim Y J,Kim J H.Effect of air supplement on the performance of continuous ethanol fermentation system[J].Biotechnol Bioeng,1984,26:12-16.
    [167]Pan X.发改委将出台非粮燃料乙醇收购制度和补贴办法[EB/OL].(2008-05-20).http://www.ecepif.com/zcfg/2008/0520/article_222.html
    [168]隆小华,刘兆普,刘玲等.盐生能源植物菊芋研究进展[J].海洋科学进展,2005,23:80-84.
    [169]隆小华,刘兆普.不同品种菊芋对海水处理响应的生理指标筛选[J].水土保持学报,2006,20(6):179-183.
    [170]隆小华,刘兆普,刘玲.莱州湾海涂海水灌溉菊芋的磷肥效应的研究[J].植物营养与肥料学报2005,11(2):224-229.
    [171]杨洪泽,王长海,袁文杰.不同海水浓度灌溉菊芋的营养元素测定[J].光谱学与光谱分析,2006.26:2140-2142.
    [172]黄宇彤.乙醇浓醪发酵菌种选育和发酵条件优化[D].天津:天津科技大学,2002.
    [173]Eksteen J M,Rensburg P,Cordero Otero R R,et al.Starch fermentation by recombinant Saccharomyces cerevisiae strains expressing the b-Amylase and glucoamylase genes from Lipomyces Kononenkoae and Saccharomycopsis fibuligera[J].Biotechnol Bioeng,2003,84(6):639-646.
    [174]Margaritis A,Bajpai P.Direct fermentation of D-xylose to ethanol by Kluyveromyces marxianus strains[J].Appl Environ Microbiol,1982,44:1039-1041.
    [175]Savitree L,Chutima S,Wichien Y.Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus[J].Bioresour Technol,2007,98:3367-3374.
    [176]Banat 1 M,Nigam P,Marchant R.Isolation of thermotolerant,fermentative yeasts growing at 52℃and producing ethanol at 45℃ and 50℃[J].World J Microbiol Biotechnol,1992,8:259-263.
    [177]Gustavo G F,Andreas K G E H.Physiology of the Yeast Kluyveromyces marxianus during batch and chemostat cultures with glucose as the sole carbon source[J].FEMS Yeast Res,2007,7(3):422-435.
    [178]牟建楼,王颉,张伟等.乙醇的测定方法综述[J].酿酒,2006,33(2):46-48.
    [179]原小寓,吴伟,于泓.有机酸的非抑制型离子排斥色谱法测定[J].分析测试学报,2008,27(1):76-78.
    [180]白冬梅,杜国民,赵学明等.反相高效液相色谱法测定产琥珀酸放线杆菌发酵液中的有机酸[J].分析化学,2003,12(31):1496-1499.
    [181]Shui G H,Leong L P.Separation and determination of organic acids and phenOlic compounds in fruit juices and drinks by high-performance liquid chromatography[J].J Chromatogr A,2002,977(1):89-96.
    [182]李建武,余瑞元,袁明秀.生物化学实验原理与方法[M].北京:北京大学出版社,2004.
    [183]Doyon G,Gaudreau G.,ST-Gelais.Simultaneous HPLC determination of organic acids,sugars and alcohols[J].Can insititute Sci Technol J,1991,24:87-94.
    [184]Martinez-anaya M A,Pitarch B,Bayarri P,et al.Microflora of the sour dough of wheat flour bread.Changes in sugars and organic acid production during fermentation of wheat doughs made with pure strains of microorganisms[J].Revista de Agroquimicay Technologia de Alimentos,1989,29:63-76.
    [185]Lefebvre D,Gabriel V,Vayssier Y and Fontagne'-Faucher C.Simultaneous HPLC Determination of Sugars,Organic Acids and Ethanol in Sourdough Process[J].Adv Food Sci,1996,18:185-200.
    [186]Chinnici F,Spinabelli U,Amati A.Simultaneous determination of arganicacids,sugars,and alcohols in musts and wines by an improved ion-exclusion HPLC method[J].J liq chromatogr related technol,2002,25(16):2551-2560.
    [187]Wang P,and Zh R.Determination of Organic Acids Exuded from Plant Roots by High Performance Liquid Chromatography[J].Chin J Chromatogr,2006,24(3):239-242.
    [188]Gustavo G F,Andreas K G,Elmar H,et al.Physiology of the Kluyveromyces marxianus during batch and chenostat cultures with glucose as the sole carbon source[J].FEMS Yeast Res,2006,46(1):1-14.
    [189]Valadi H,Larsson C,Gustafsson L,et al.Improved ethanol production by glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae[J].Appl Microbiol Biotechnol,1998,50(4):434-439.
    [190]Kong Q X,Gu J G,Cao L M,et al.Improved Producetion of ethanol by deleting FPSI and over-expressing GLTI in Saccharomyces cerevisiae[J].Biotechnol Letters,2006,28(24):2033-2038.
    [191]Valadi H,Larsson C,Gustafsson L.Improved ethanol production by glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae[J].Appl Microbiol Biotechnol,1998,50(4):434-439.
    [192]Desai S G,Guerinot M L,Lynd L R.Cloning of L-lactate dehydrogenase and elimination of lactic acid production via gene knockout in Thermoanaerobacterium saccharolyticum JW/SL-YS485[J].Appl Microbiol Biotechnol,2004,65:600-605.
    [193]Liu S Q,Nancy N,Bruce S,et al.Metabolic engineering of a Lactobacillus plantarum double ldh knockout strain for enhanced ethanol production[J].J Ind Microbiol Biotechnol,2006,33:1-7.
    [194]Shaw A J,Podkaminer K K,Desai S G,et al.Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield[J].PNAS,2008,105(37):13769-13774
    [195]Yuan W J,Zhao X Q,Ge X M,et al.Ethanol fermentation with Kluyveromyces marxianus from Jerusalem artichoke grown in salina and irrigated with a mixture of seawater and freshwater[J].J Appl Microbiol,2008,105:2076-2083.
    [196]Chen X J,Weslowski-Louvel M,Tanguy-Rougeau C,et al.A gene-cloing sustem for Kluyveromyces lactis and isolation of a choromosomal gene required killer toxin production[J].J Basic Microbiol,1988,28:211-220.
    [197]Ribeiro O,Gombert A K,Teixeira J A,et al.Application of the Cre-loxP system for multiple gene disruption in the yeast Kluyveromyces marxianus[J].J Biotechnol,2007,131:20-26.
    [198]Sambrook J,Fritsch EF,Maniatis T.Molecular cloning:a laboratory manual[M].2~(nd) ed.USA:Cold Spring Harbor Laboratory Press,Cold Spring Harbor,N.Y.1989.
    [199]徐志彦.酵母菌生活周期调节的分子遗传学[J].遗传,1990,12(4):37-39.
    [200]Baganz F,Hayes A,Marren D,Gardner D C,et al.Suitability of replacement markers for functional analysis studies in Saccharomyces cerevisiae[J].Yeast,1997,13:1563-1573.
    [201]Warren P V,James D R,Janet M S and Stillman D J.Yeast vectors for integration at the HO locus[J].Nucleic Acids Res,2001,29(12):55-59.