阻燃剂的表面改性及聚磷酸铵阻燃聚丙烯的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚丙烯(PP)是一种在生产和生活中常见的重要塑料,广泛应用于产品包装、汽车附件、电子产品、室内装修、绝缘材料和建筑材料等领域。但由于聚丙烯易燃,且燃烧时释放出大量的烟雾及有毒气体而使其应用范围受到了很大限制,特别是在汽车制造和电子产品领域。因此赋予PP良好的阻燃性能对于扩大其应用范围具有重要意义。
     采用硅烷偶联剂KH-550对阻燃剂进行表面改性,以提高其在PP基体中的分散性和相容性。采用机械球磨法对原始粒径较大的氢氧化镁(约2μm)和氢氧化铝(约10μm)进行表面改性,分析讨论了改性对阻燃剂粒径大小、形貌及分散性的影响。结果表明:球磨改性更有利于粉体的细化和分散;当介质为酸性条件时,KH-550对氢氧化物粉体的改性效果最佳,并对反应机理进行了分析和探讨。因聚磷酸铵(APP)阻燃剂的平均粒径(<1μm)较小而采用常规方法对其进行表面改性,改性后的APP其分散性、热稳定性及与有机相的相容性都得到了很大的提高。
     通过比较不同阻燃剂的改性效果和对聚丙烯燃烧特点的分析,选用APP作为阻燃剂将其应用于聚丙烯,获得阻燃聚丙烯(APP/PP)复合材料。采用X射线衍射仪(XRD)、场发射扫描电镜(FESEM)、热重-差热分析仪(TGA-DTA)、熔体流动速率仪(MFR)和极限氧指数仪(LOI)分别对阻燃复合材料的晶体结构、断面形貌、热稳定性、结晶行为、熔体流动速率和阻燃性能进行了分析测试,并测定了复合材料的力学性能。
     研究结果表明:随着APP添加量的增加,复合材料的热力学稳定性增加,MFR值先降低后增加;APP的添加对PP基体有异相成核作用,当添加量达到13%后,这种异相成核作用更加明显,使得复合材料的力学性能不会随APP添加量的增大而继续下降,同时还增强了APP与PP基体间的界面结合;复合材料的阻燃性能和热稳定性亦随之提高,当添加量为20%时,LOI值达到30%;阻燃复合材料在燃烧时实现自熄,APP起到了催化成炭和防融滴的作用;表面改性后的APP提高了阻燃复合材料的拉伸强度、冲击强度和断裂伸长率。
     综上所述,APP不但可以同时作为酸源和气源,还兼具催化成碳的作用,与三相膨胀阻燃体系相比,APP单独使用不仅提高了PP的阻燃效率,同时还可降低生产成本、优化工艺条件。
As an important plastic in our life, polypropylene (PP) are widely used in such fields as electric casings, cars, electronics, interior decorations, insulation materials, architectural materials and so on. However, it is easy to flame, accompanying the emission of thick smoke and poisonous gases, which restricts its application range, especially for the automotive manufacture and the electronic industry. Therefore, it is important and necessary to improve the fire retardant behavior of PP so as to expand its applications.
     Magnesium hydroxide (about 2μm) and aluminum hydroxide (about 10μm) flame retardant powders in large sizes were modified with silane coupling agent KH-550 by mechanical ball-milling. The effects of surface modification on the particle size, morphology and dispersibility were discussed. The results showed that the mechanical ball-milling was more conducive to the size refinement and dispersibility of particles, and the optimum modification condition was achieved in acidic medium. The reaction mechanism was analyzed and discussed too. In view of ammonium polyphosphate (APP) in relatively small size (<1μm), the conventional surface modification was carried out on APP particles. The dispersability, compatibility and thermal stability of modified APP were greatly enhanced.
     By comparison of the modification effects of different flame retardants, APP was finally choosed to be added in PP. The flame retardant APP/PP composite was obtained. X-ray diffraction (XRD), field-emission scanning electron microscope (FESEM), thermo gravimetric-differential thermal analysis (TGA-DTA), melting flow rate (MFR) and Limiting oxygen index (LOI) were used to analysis and characterize APP/PP composites in terms of the crystal structures, section morphologies, thermal stability, crystallization behavior, melt flow rate and the flame retardant performance. The mechanical properties of composite were also tested. The results indicated that the thermal stability of APP/PP composites was increased with the addition of APP, with a result of MFR decreasing at first and then increasing. The interfacial binding force between APP and the matrix had been improved due to heterogeneous nucleation of APP, which also inhibited the drop of the mechanical properties of composites when APP loading greater than 13%. With the increase of APP loading, the LOI value and the thermal stability of the composites obviously increased. When APP loading was up to 20 wt.%, the LOI value reached 30%. The composites could be self-extinguished after ignited, due to the char formation and droplet resistance of APP. The modified APP brought good mechanical properties to the composites, with the tensile strength, impact strength and elongation all improved.
     In summary, APP could be used as an acid source and a gas supplier at the same time, combined with promoting char formation. Compared with three-phase intumescent flame retardant system, the exclusive use of APP as flame retardant enhanced the flame retardant efficiency, and decreased the production cost and simplified the processing condition.
引文
[1]欧育湘,陈宇,王筱梅.阻燃高分子材料[M].北京:国防工业,2001.
    [2]彭治汉.材料阻燃新技术新品种[M].北京:化学工业出版社,2004.
    [3]郑艳明,李慧勇,席绍峰.阻燃高分子材料的发展[J].科技信息,2008,24:652.
    [4]朱庆松,王利生.阻燃聚酯纤维的现状和发展[J].高分子材料科学与工程,2000,1(16):5-7.
    [5]陈颖,王立岩.磷系阻燃聚酯纤维的研制[J].大连轻工业学院学报,2004,23(2):140-143.
    [6]李令尧,陈国华,张胜.棉和聚酰胺织物阻燃整理的研究进展[J].2009,8:1-6. 太原理工大学硕士研究生学位论文
    [7]欧育湘.无卤阻燃PA最新研究进展[J].高分子材料科学与工程,2005,21(3):1-5.
    [8]欧育湘,李向梅.生态友好型阻燃聚酰胺[J].高分子材料科学与工程,2010,11(26):151-155.
    [9]L. Song, Y. Hu, Z.H. Lin. Preparation and properties of halogen-free flame-retarded polyamide 6/organoclay nanocomposite[J]. Polymer Degradation and Stability,2004, 86(3):535-540.
    [10]王建丰,王新龙.阻燃聚酰胺的研发进展[J].塑料助剂,2005,6:6-9.
    [11]陈玲红,欧宗和.聚碳酸酯用环保型无卤阻燃剂的研究进展[J].上海塑料,2009,4:14-16.
    [12]欧育湘,赵毅,韩廷解,等.无卤阻燃聚碳酸酯新进展[J].工程塑料的应用,2009,37(1):79-83.
    [13]刘渊,贾润礼,柳学义.聚磷酸铵阻燃聚乙烯的研究[J].塑料,2007,36(3):24-26.
    [14]田计青,贾润礼.聚乙烯复合阻燃体系的研究及应用进展[J].塑料助剂,2006,6:6-10.
    [15]朱新军,吴卫东,张胜.聚乙烯阻燃研究进展[J].中国塑料,2008,22(5):1-7.
    [16]叶诗茂.阻燃聚氨酯软质泡沫塑料综述[J].消防技术与产品信息,2003,4:75-77.
    [17]袁开军,江治,李疏芬,等.聚氨酯的阻燃性机理研究进展[J].高分子材料科学与工程,2006,22(5):1-4.
    [18]刘新建,李青山,罗进成.阻燃聚氨酯软质泡沫塑料研究进展[J].塑料科技,2005,6(17):52-56.
    [19]孟现燕,唐建华,叶玲,等.聚氨酯泡沫塑料阻燃研究现状[J].化学工程与装备,2008,5:63-67.
    [20]李向梅,杨荣杰.本质阻燃高分子研究进展[J].中国塑料,2005,19(10):9-16.
    [21]康兴川,蔡涛,金滟.聚合物成炭阻燃新进展[J].合成树脂及塑料,2004,21(5):72-75.
    [22]易岚,陈俊,叶华.含硅阻燃剂的研究进展[J].化工新型材料,2009,37(1):8-10.
    [23]欧育湘,李昕.本质阻燃高聚物[J].高分子材料科学与工程,2000,16(6):1-4.
    [24]F. Laoutid, L. Bonnaud, M. Alexandre, et al. New prospects in flame retardant polymer materials:From fundamentals to nanocomposites[J]. Materials Science and Engineering R,2009,36(3):100-105.
    [25]A.B. Shehata. A new cobalt chelate as flame retardant for polypropylene filled with magnesium hydroxide[J]. Polymer Degradation and Stability,2004,85(1):577-587.
    [26]X.S. Chen, Z. Z. Yu, W. Liu, et al. Synergistic effect of decabromodiphenyl ethane and montmorillonite on flame retardancy of polypropylene[J]. Polymer Degradation and Stability,2009,94(9):1520-1525.
    [27]Q. Wu, B.J. Qu. Synergistic effects of silicotungistic acid on intumescent flame-retardant polypropylene[J]. Polymer Degradation and Stability,2001,74(2):255-260.
    [28]P. Zhang, L. Song, H.D. Lu, et al. Synergistic effect of nanoflaky manganese phosphate on thermal degradation and flame retardant properties of intumescent flame retardant polypropylene system[J]. Polymer Degradation and Stability,2009,94(2):201-206.
    [29]E.E. Ferg, N. Rust. The effect of Pb and other elements found in recycled polypropylene on the manufacturing of lead-acid battery cases[J]. Polymer Testing,2007,26(8):1001-1005.
    [30]A. Hornung, S. Donner, A. Balabanovich, et al. Polypropylene as a reductive agent for dehalogenation of brominated organic compounds[J]. Journal of Cleaner Production, 2005,13(5):525-527.
    [31]H. Demir, D. Balkose, S. Ulku. Influence of surface modification of fillers and polymer on flammability and tensile behaviour of polypropylene-composites[J]. Polymer Degradation and Stability,2006,91(5):1079-1083.
    [32]Y. Liu, Z.Q. Feng, Q. Wang. The investigation of intumescent flame-retardant polypropylene using a new macromolecular charring agent polyamide 11[J]. Polymer Composites,2009,30(2):221-225.
    [33]王保正.聚丙烯用阻燃剂及阻燃聚丙烯[J].塑料,2004,33(1):54-59.
    [34]周文英,艾涛,安群力.聚丙烯阻燃剂研究[J].消防技术与产品信息,2007,5:28-32.
    [35]欧育湘,许冬梅.国际环保法规中的溴系阻燃剂动态[J],塑料助剂,2009,1:13-16
    [36]于莉,程坚信,王艳飞.聚丙烯阻燃化的研究进展及发展趋势[J].合成树脂与塑料,2003,20(3):55-57.
    [37]李志强,向兰,魏飞.阻燃级氢氧化镁的阻燃消烟机理及制备方法[J].海湖盐与化工,2003,33(2):1-3,7.
    [38]倪子璀.卤素阻燃剂阻燃机理的讨论及研究[J].广东化工,2003,3:27-29.
    [39]王晓栋.环保型阻燃剂的研究进展[J].化学工程师,2006,126(3):33-35.
    [40]周亨近.阻燃技术的现状和发展[J].国外塑料,1995,1:9-17.
    [41]赵贞,张文龙,陈宇.偶联剂的研究进展和应用[J].塑料助剂,2007,3:4-10.
    [42]殷榕灿,张文保.硅烷偶联剂的研究进展[J].中国科技信息,2010,10:44-46.
    [43]M. Williams, C.A. Pineda-Vargas, E.V. Khataibe. Surface functionalization of porous ZrO2-TiO2 membranes using-aminopropyltriethoxysilane in palladium electroless deposition[J]. Applied Surface Science,2008,254:3211-3219.
    [44]X.F. Chen, C.L. Guo, N. Zhao. Preparation and characterization of the sol-gel nano-bioactive glasses modified by the coupling agent gamma-aminopropyltriethoxysilane[J]. Applied Surface Science,2008,255:466-468.
    [45]T.Z. Fu, J. Wang, J. Ni. Sulfonated poly (ether ether ketone)/aminopropyltri ethoxysilane/phosphotungstic acid hybrid membranes with non-covalent bond: Characterization, thermal stability and proton conductivity[J]. Solid State Ionics,2008, 179:2265-2273.
    [1]代培刚,刘志鹏,陈英杰,等.无机阻燃剂发展现状[J].广东化工,2008,35(7):62-64.
    [2]Y. Liu, Z.Q. Feng, Q. Wang. The investigation of intumescent flame-retardant polypropylene using a new macromolecular charring agent polyamide 11[J]. Polymer Composites,2009,30(2):221-225.
    [3]S.A. Ahmad-Ramazani, A. Rahimi, M. Frounchi, et al. Investigation of flame retardancy and physical-mechanical properties of zinc borate and aluminum hydroxide propylene composites[J]. Materials and Design,2008,29(5):1051-1056.
    [4]Y.T. Li, B. Li, J.F. Dai, et al. Synergistic effects of lanthanum oxide on a novel intumescent flame retardant polypropylene system[J]. Polymer Degradation and Stability, 2008,93(1):9-16.
    [5]U. Atikler, H. Demir, F. Tokath, et al. Optimisation of the effect of colemanite as a new synergistic agentin an intumescent system[J]. Polymer Degradation and Stability,2006, 91(2):1563-1570.
    [6]X.L. Chen, C.M. Jiao. Synergistic effects of hydroxyl silicone oil on intumescent flame retardant polypropylene system[J]. Journal of Polymer Research,2009,16(5):537-543.
    [7]P.G. Song, H. Liu, Y. Shen, et al. Fabrication of dendrimer-like fullerene (C-60)-decorated oligomeric intumescent flame retardant for reducing the thermal oxidation and flammability of polypropylene nanocomposites[J]. Journal of Materials Chemistry,2009, 19(9):1305-1313.
    [8]杜高翔,郑水林,李样.超细水镁石的硅烷偶联剂表面改性[J].硅酸盐学报,2005,33(5):659-664.
    [9]袁源,褚晓东,杜高翔,等.超细氢氧化镁的硅烷偶联剂表面改性[J].功能材料,2010,7(41):1186-1189.
    [10]M.L. Vadala, M. Rutnakornpituk, M.A. Zalich, et al. Block copolysiloxanes and their complexation with cobalt nanoparticles[J]. Polymer,2004,45(22):7449-7461.
    [11]L. Bokobza, J.P. Chauvin. Reinforcement of natural rubber:use of in situ generated silicas and nanofibres of sepiolite[J]. Polymer,2005,46(12):4144-4151.
    [12]陈辉强,郝培文.硅烷偶联剂表面改性沥青阻燃剂[J].土木建筑与环境工程,2009,31(3):136-141.
    [13]H.Y. Li, R.G. Wang, H.L. Hu, et al. Surface modification of self-healing poly(urea-formaldehyde) microcapsules using silane-coupling agent[J]. Applied Surface Science, 2008,255(1):1894-1900.
    [14]L.H. Cheng, L.Y. Zheng, G.R. Li, et al. Influence of particle surface properties on the dielectric behavior of silica/epoxy nanocomposites[J]. Physica B:Condensed Matter, 2008,403(17):2584-2589.
    [15]N. Xie, Q.J. Jiao, C.G. Zang, et al. Study on dispersion and electrical property of multi-walled carbon nanotubes/low-density polyethylene nanocomposites[J]. Materials and Design,2010,31(4):1676-1683.
    [16]W.C. Zhu, G.D. Li, Q. Zhang, et al. Hydrothermal mass production of MgBO2(OH) nanowhiskers and subsequent thermal conversion to Mg2B2O5 nanorods for biaxially oriented polypropylene resins reinforcement[J]. Powder Technology,2010,203(2): 265-271.
    [17]L.X. Zhang, Q.Z. Jin, J.H. Huang, et al. Modification of palygorskite surface by organo functionalization for application in immobilization of H3PW]204o[J]. Applied Surface Science,2010,256(20):5911-5917.
    [18]C.M. Liau, G.C. Lee, S.J. Hurs, et al. Effect of silane-based filler surface treatment formulation on the interfacial properties of impact modified polypropylene/magnesium hydroxide composites[J]. Composites Part A:Applied Science and Manufacturing,1998, 29(9-10):1313-1318.
    [1]陈玉坤,王万勋,郭伟男,等.红磷和炭黑在PP/LN-MH阻燃体系中的应用[J].合成树脂及塑料,2008,25(6):5-8.
    [2]Y. Liu, Z.Q. Feng, Q. Wang. The investigation of intumescent flame-retardant polypropylene using a new macromolecular charring agent polyamide 11 [J]. Polymer Composites,2009,30(2):221-225.
    [3]G.I. Titelman, Y. Gonen, Y. Keidar, et al. Discolouration of polypropylene-based compounds containing magnesium hydroxide[J]. Polymer Degradation and Stability, 2002,77:345-352.
    [4]S.A. Ahmad-Ramazani, A. Rahimi, M. Frounchi, et al. Investigation of flame retardancy and physical-mechanical properties of zinc borate and aluminum hydroxide propylene composites[J]. Materials and Design,2008,29:1051-1056.
    [5]Y.T. Li, B. Li, J.F. Dai, et al. Synergistic effects of lanthanum oxide on a novel intumescent flame retardant polypropylene system[J]. Polymer Degradation and Stability, 2008,93(1):9-16.
    [6]马志领,胡英超,杨磊,等.硼元素在膨胀型阻燃聚丙烯中的协同作用[J].中国塑料,2009,23(5):91-94.
    [7]U. Atikler, H. Demir, F. Tokath, et al. Optimisation of the effect of colemanite as a new synergistic agentin an intumescent system [J]. Polymer Degradation and Stability,2006, 91:1563-1570.
    [8]X.L. Chen, C.M. Jiao. Synergistic effects of hydroxyl silicone oil on intumescent flame retardant polypropylene system[J]. Journal of Polymer Research,2009,16(5):537-543.
    [9]瞿英俊,许向彬,赵博,等.膨胀阻燃剂/蒙脱土协同作用对聚丙烯性能的影响[J].工程塑料应用,2009,37(2):28-31.
    [10]郝冬梅,刘彦明,林倬仕,等.分子筛在无卤膨胀阻燃体系中的协效催化作用[J].工程塑料应用,2008,36(3):17-19.
    [11]P.G. Song, H. Liu, Y. Shen, et al. Fabrication of dendrimer-like fullerene (C-60)-decorated oligomeric intumescent flame retardant for reducing the thermal oxidation and flammability of polypropylene nanocomposites[J]. Journal of Materials Chemistry,2009, 19(9):1305-1313.
    [12]刘定福,梁基照.聚丙烯膨胀阻燃改性研究进展[J].塑料科技,2010,38(3):115-119.
    [13]Y. Liu, Q. Wang. Synthesis of in situ encapsulated intumescent flame retardant and the flame retardancy in polypropylene[J]. Polymer Composite,2007,28(2):163-167.
    [14]K. Wu, Z. Z. Wang, H. Liang, et al. Microencapsulation of ammonium polyphosphate: Preparation, characterization, and its flame retardance in polypropylene[J]. Polymer Composites,2008,29(8):854-860.
    [15]K. Wu, L. Song, Z. Z. Wang, et al. Microencapsulation of ammonium polyphosphate with PVA-melamine formaldehyde resin and its flame retardance in polypropylene[J]. Polymers for Advanced Technologies,2008,19(12):1914-1921.
    [16]Z.L. Ma, J.G. Gao, H.J. Niu, et al. Polypropylene-intumescent flame-retardant composites based on maleated polypropylene as a coupling agent[J]. Journal of Applied Polymer Science,2002,85(2):257-262.
    [17]Z.L. Ma, J.G. Gao, L.G. Bai. Studies of polypropylene intumescent flame retardant composites based on etched polypropylene as a coupling agent[J]. Appl. Polm. Sci., 2004,92(3):1388-1391.
    [18]马志领,崔海香,胡英超,等.硅烷偶联剂KH550在聚丙烯/二溴新戊二醇磷酸酯三聚氰胺盐复合阻燃材料中的增容作用[J].中国塑料,2009,(3):81-85.
    [19]钱丹,苑会林,张胜.熔融接枝法提高膨胀型阻燃聚丙烯的相容性和阻燃性能[J].高分子材料科学与工程,2009,25(6):92-95.
    [20]戴培邦.膨胀型阻燃剂聚丙烯阻燃复合材料的研究[J].绝缘材料,2008,41(6):18-20.
    [21]R. Uotila, U. Hippi, S. Paavola, et al. Compatibilization of PP/elastomer/microsilica composites with functionalized polyolefins:Effect on microst ructure and mechanical properties[J]. Polymer,2005,46:7923-7930.
    [22]C.X. Zhao, Y. Liu, D.Y. Wang, et al. Synergistic effect of ammonium polyphosphate and layered double hydroxide on flame retardant properties of poly(vinyl alcohol)[J]. Polymer Degradation and Stability,2008,93(7):1323-1331.
    [23]Y. Tang, Y. Hu, L. Song, et al. Preparation and combustion properties of flame retarded polypropylene-polyamide-6 alloys[J]. Polymer Degradation and Stability,2006,91(2): 234-241.
    [24]S.P. Weng. Fourier transform infrared spectrometer[M]. China:Chemical Industry Press 2010.
    [25]A.M. Shanmugharaj, K.Y. Rhee, S.H. Ryu. Influence of dispersing medium on grafting of aminopropyltriethoxysilane in swelling clay materials[J]. Journal of Colloid and Interface Science,2006,298:854-859.
    [26]D.K. Chattopadhyay, D.C. Webster. Thermal stability and flame retardancy of polyurethanes[J]. Progress in Polymer Science,2009,34:1068-1133.
    [27]Q. Wu, B.J. Qu. Synergistic effects of silicotungistic acid on intumescent flame-retardant polypropylene[J]. Polymer Degradation and Stability,2001,74(2):255-261.
    [1]洪浩群,何慧,丁超,等.聚丙烯/蒙脱土纳米复合材料的结构与性能[J].材料研究学报,2006,20(2):197-202.
    [2]陈招科,熊翔,李国栋.炭纤维增强TaC基复合材料的力学性能和氧化行为[J].材料研究学报,2010,24(2):201-207.
    [3]Z.P. Lv, K.J. Wang, Z.H. Qiao, et al. The influence of modified zeolites as nucleating agents on crystallization behavior and mechanical properties of polypropylene [J]. Materials & Design,2010,31(8):3804-3809.
    [4]B. Li, G.H. Hu, G.P. Cao, et al. Effect of supercritical carbon dioxide-assisted nano-scale dispersion of nucleating agents on the crystallization behavior and properties of polypropylene[J]. The Journal of Supercritical Fluids,2008,44(3):446-456.
    [5]Z.G. Yang, Z.S. Zhang, Y.J. Tao, et al. Effects of polyamide 6 on the crystallization and melting behavior of β-nucleated polypropylene[J]. European Polymer Journal,2008, 44(11):3754-3763.
    [6]R. Masirek, E. Piorkowska. Nucleation of crystallization in isotactic polypropylene and polyoxymethylene with poly(tetrafluoroethylene) particles[J]. European Polymer Journal, 2010,46(7):1436-1445.
    [7]A. Menyhard, J. Varga. The effect of compatibilizers on the crystallisation, melting and polymorphic composition of (3-nucleated isotactic polypropylene and polyamide 6 blends[J]. European Polymer Journal,2006,42(12):3257-3268.
    [8]N.Y. Ning, Q.J. Yin, F. Luo, et al. Crystallization behavior and mechanical properties of polypropylene/halloysite composites[J]. Polymer,2007,48:7374-7384.
    [9]周盾白,黄险波,贾德民.阻燃材料测试与表征方法简述[J].上海塑料,2006,6(2):39-42.
    [10]邵鸿飞,柴娟,张福军,等.阻燃材料测试与表征方法概述[J].工程塑料应用,2008,36(1):69-72.
    [11]徐桂琴.对聚合物氧指数测试值影响因素的研究[J].石化技术,1999,6(1):30-33.
    [12]H.Q. Peng, Q. Zhou, D.Y. Wang, et al. A novel charring agent containing caged bicyclic phosphate and its application in intumescent flame retardant polypropylene systems[J]. Journal of Industrial and Engineering Chemistry,2008,14(5):589-595.
    [13]P. Lv, Z.Z. Wang, K.L. Hu, et al. Flammability and thermal degradation of flame retarded polypropylene composites containing melamine phosphate and pentaerythritol derivatives[J]. Polymer Degradation and Stability,2005,90(3):523-534.
    [14]B.X. Du, Z.H. Guo, P.A. Song, et al. Flame retardant mechanism of organo-bentonite in polypropylene[J]. Applied Clay Science,2009,45(3):178-184.
    [15]Q.F. Yi, X.J. Wen, J.Y. Dong, et al. A novel effective way of comprising α β-nucleating agent in isotactic polypropylene (i-PP):Polymerized dispersion and polymer characterization[J]. Polymer,2008,49(23):5053-5063.
    [16]K. Cho, D.N. Saheb, J. Choi, et al. Real time in situ X-ray diffraction studies on the melting memory effect in the crystallization of β-isotactic polypropylene[J]. Polymer, 2002,43(4):1407-1416.
    [17]Q. Wu, B.J. Qu. Synergistic effects of silicotungistic acid on intumescent flame-retardant polypropylene[J]. Polymer Degradation and Stability,2001,74(2):255-261.
    [18]Y. Tang, Y. Hu, L. Song, et al. Preparation and combustion properties of flame retarded polypropylene-polyamide-6 alloys[J]. Polymer Degradation and Stability,2006,91(2): 234-241.
    [19]翁诗甫.傅里叶变换红外光谱分析[M].第二版,北京:北京工业出版社,2009.