用于便携式医疗电子设备的低压低功耗电源管理关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代集成电路技术的飞速发展有力推动了便携式医疗电子设备的发展和普及。然而由于此类设备应用环境较为特殊,使得此类设备的电源设计面临诸多挑战,包括解决电池供电电源的超长时间稳定工作,以及适应新能源电池的低电压供电工作等技术瓶颈问题。
     有鉴于此,本文针对便携式医疗电子设备的电源管理,就低压低功耗高效率电源系统的设计技术展开研究,论文的主要内容和创新包括:
     1、新能源技术领域研究的发展和它的特点,为便携式医疗电子设备技术瓶颈的突破带来了转机。然而新能源电池(如太阳能光伏电池和温差热电池)应用中的一个难题是其过低的输出电压。对此,论文提出超低电源电压下的直流转换技术研究,采用亚阈值方案给出一个可在接近器件阈值电压的低压电源下正常工作的升压电路设计,并提供升压转换。该方案实现的特点是无需借助特殊工艺,在满足超低电源电压工作的同时,降低了制造成本。
     在设计中借助环形振荡器以及多级片上电荷泵的帮助,升压转换器控制电路获得升压转换的初始能量;经过优化的超低功耗电压检测模块不但有效控制了整体电路的面积成本,其功耗也在可以接受的范围之内。在控制方面,升压转换器引入了开环恒定导通时间控制器,最大限度降低其控制电路的复杂度,降低了整体功耗。所设计的电路最终经过流片测试,验证了设计目标。
     2、在对能耗要求苛刻的便携式医疗电子设备应用中,降低电源管理系统本身功耗具有重要意义。对此论文采用基于突发模式临界导通COT控制方式,在保证电源管理系统性能的同时有效降低了控制电路的复杂度,从而有利于减小功耗。功率级的建模分析帮助实现了芯片面积和功耗、效率之间的最佳平衡。针对该系统设计的亚阈值状态基准电路和电压迟滞窗口比较电路,有效控制了电路的整体功耗,保证了系统转换效率。相关的流片测试结果验证了所提出方案的可行性。
     3、与电感型转换电路相比,电荷泵的优势在于其更小的体积和更低的成本,特别适合应用于便携式医疗电子设备等场合。无电感设计也使得电荷泵在EMI方面更具优势。为此,本论文提出一种用于电荷泵的变频调制控制方式,利用负反馈结构控制电荷泵的开关频率,实现对电荷泵输出的调制。为了保证系统参数设计的合理性,论文对电荷泵功率级进行了详细的数学模型分析。最终该方案以一个交叉耦合结构两倍升压电荷泵进行了流片验证。测试结果显示相较传统控制方案,新的变频控制模式在纹波和效率方面都有较大优势。
With the development of modern integrated circuit technology, the cost of electronic devices has been cutting down and the system integration level has been constantly improved. This has become a strong impetus to the development and popularization of portable medical electronic equipment. However, the power management system design also faces many critical challenges as people require more power performance for environment-&-application-specific systems. Designing a long-lifetime stable working battery powered system and accommodating the system to new energy technology batteries which provides very low voltage would be important for these days' engineers.
     In view of this, this paper focuses on several critical issues in developing low-power high efficient power management systems in portable medical electronic devices. The main contents and innovations include:
     1. The development of new energy technologies and portable medical devices has broken the bottleneck of portable medical electronic equipment technology. However the output voltage of solar cells and thermal batteries is too low. In this regard, this thesis proposed an ultra-low voltage DC-DC conversion technology to realize a boost converter which is powered by a sub-threshold voltage source and is able to boost the input voltage into a usable output voltage level. The boost converter obtains the start-up energy with the help of an on-chip ring-oscillator and a multi-stage charge pump. A voltage detector is designed with optimized power consumption and area. An open-loop COT controller is used to simplify the control circuit. The system is verified by simulation and experimentation.
     2. Overall power consumption of the power management system is particularly important in the portable medical electronic equipment applications where total power consumption is very low. This thesis proposed a COT controller based on a critical conduction mode to reduce the complexity and power consumption of the controller while maintaining its performance. A power stage model is used to seek a best tradeoff between chip area, power consumption and efficiency. The specially designed sub-threshold voltage reference circuit and hysteretic voltage comparator help to control total power cost. The system is verified by simulation and experimentation.
     3. Charge pumps are known for their small size and low cost and low EMI because of its non-inductor nature. This thesis proposed a variable frequency control technology with feedback for charge pumps to achieve high efficiency and low output voltage ripple. An detailed model for the charge pump power stage is given to guide the system design. The simulation and testing results showed that the new control technique have a great advantage compared to conventional charge pump control schemes.
引文
[1]http://health.sohu.com/20110824/n317201559.shtml
    [2]段旭芳,谢大志,医疗器械行业发展和投资策略研究.华南理工大学学报(社会科学版),2012.14(5).
    [3]徐淼,中国医疗器械市场持续发酵引各方关注.中国商情报,2012.002.
    [4]http://databeans.net
    [5]http://www.chinairn.com/
    [6]中华人民共和国国家标准http://wenku.baidu.com/view/1669d03443323968011c92al.html
    [7]Jinrong Qian, Lingyin Zhao,2005, Circuit Design and Power Loss Analysis of a Synchronous Swit ching Charger with Integrated MOSFETs for Li-Ion Batteries. [Accessed:16/07/2009], Available: http://focus.ti.com.cn/
    [8]Jose Formenti and Robert Martinez,2004, Design Trade Oflfs for Switch-Mode Battery Chargers. [Accessed:16/07/2009], Available:http://focus.ti.com/lit/ml/slyp089/slyp089.pdf
    [9]Miwa, H., Sung-Yeul Park, et al., Low cost Universal Battery Charger for Wide Range Input Voltage and Wide Range Output Voltage in Portable Applications. IEEE Power Electronics Specialists Conference, 2008, pp.4699-4704.
    [10]Wang, Guoxing, Wentai Liu, Mohanasankar Sivaprakasam, and Gurhan Alper Kendir. "Design and analysis of an adaptive transcutaneous power telemetry for biomedical implants." Circuits and Systems I: Regular Papers, IEEE Transactions on 52, no.10 (2005):2109-2117.
    [11]Wang, G., Liu, W., Sivaprakasam, M.,& Kendir, G. A. (2005). Design and analysis of an adaptive transcutaneous power telemetry for biomedical implants. Circuits and Systems 1:Regular Papers, IEEE Transactions on,52(10),2109-2117.
    [12]Si, P., Hu, A. P., Malpas, S.,& Budgett, D. (2008). A frequency control method for regulating wireless power to implantable devices. Biomedical Circuits and Systems, IEEE Transactions on,2(1),22- 29.
    [13]Hirai, J., Kim, T. W.,& Kawamura, A. Practical study on wireless transmission of power and information for autonomous decentralized manufacturing system. Industrial Electronics, IEEE Transactions on,1999,46(2),349-359.
    [14]Si, P., Hu, A. P., Hsu, J. W., Chiang, M., Wang, Y., Malpas, S.,& Budgett, D. (2007, May). Wireless power supply for implantable biomedical device based on primary input voltage regulation. In Industrial Electronics and Applications,2007. ICIEA 2007.2nd IEEE Conference on (pp.235-239). IEEE.
    [15]Lee, S. Y., Hsieh, C. H.,& Yang, C. M. (2012). Wireless front-end with power management for an implantable cardiac microstimulator. Biomedical Circuits and Systems, IEEE Transactions on,6(1),28-38.
    [16]Kurs, A., Karalis, A., Moffatt, R., Joannopoulos, J. D., Fisher, P.,& Soljacic, M. (2007). Wireless power transfer via strongly coupled magnetic resonances, science,317(5834),83-86.
    [17]Ramadass, Yogesh K., and Anantha P. Chandrakasan. "Minimum energy tracking loop with embedded DC-DC converter enabling ultra-low-voltage operation down to 250 mV in 65 nm CMOS." Solid-State Circuits, IEEE Journal of 43, no.1 (2008):256-265.
    [18]Bertacchini, A., S. Scorcioni, M. Cori, L. Larcher, and P. Pavan. "250mV input boost converter for low power applications." In Industrial Electronics (ISIE),2010 IEEE International Symposium on, pp. 533-538. IEEE,2010.
    [19]Wang, Alice, and Anantha Chandrakasan. "A 180-mV subthreshold FFT processor using a minimum energy design methodology." Solid-State Circuits, IEEE Journal of 40, no.1 (2005):310-319.
    [20]Chandrakasan, Anantha P., Naveen Verma, and Denis C. Daly. "Ultralow-power electronics for biomedical applications." Annu. Rev. Biomed. Eng.10 (2008):247-274.
    [21]Cao, Xinping, Wen-Jen Chiang, Ya-Chin King, and Yi-Kuen Lee. "Electromagnetic energy harvesting circuit with feedforward and feedback DC-DC PWM boost converter for vibration power generator system." Power Electronics, IEEE Transactions on 22, no.2 (2007):679-685.
    [22]Shiming, Han, Wu Xiaobo, and Liu Yang. "High-efficiency synchronous dual-output switched-capacitor dc-dc converter with digital state machine control." In Proceedings of the 2007 international symposium on Low power electronics and design, pp.292-297. ACM,2007.
    [23]Starzyk, Janusz A., Ying-Wei Jan, and Fengjing Qiu. "A DC-DC charge pump design based on voltage doublers." Circuits and Systems I:Fundamental Theory and Applications, IEEE Transactions on 48, no.3 (2001):350-359.
    [24]Bayer, Erich, and Hans Schmeller. "Charge pump with Active Cycle regulation-closing the gap between linearand skip modes." In Power Electronics Specialists Conference,2000. PESC 00.2000 IEEE 31st Annual, vol.3, pp.1497-1502. IEEE,2000.
    [25]F. Su,W. H. Ki and C. Y. Tsui, "Regulated switched-capacitor doubler with interleaving control for continuous output regulation," IEEE J. of Solid-State Circ, Vol.44, No.4, pp.1112-1120, Apr.2009.
    [26]Su, Feng, and Wing-Hung Ki. "Component-efficient multiphase switched-capacitor DC-DC converter with configurable conversion ratios for LCD driver applications." Circuits and Systems Ⅱ: Express Briefs, IEEE Transactions on55, no.8 (2008):753-757.
    [27]Su, Feng, and W-H. Ki. "Design strategy for step-up charge pumps with variable integer conversion ratios." Circuits and Systems Ⅱ:Express Briefs, IEEE Transactions on 54, no.5 (2007):417-421.
    [28]Su, Feng, and Wing-Hung Ki. "An integrated reconfigurable SC Power converter with hybrid gate control scheme for mobile display driver applications." In Solid-State Circuits Conference,2008. A-SSCC'08. IEEE Asian, pp.169-172. IEEE,2008.
    [29]A low voltage high efficiency and high power density DC/DC converter
    [30]Akagi, Hirofumi, Hiroshi Hasegawa, and Takafumi Doumoto. "Design and performance of a passive EMI filter for use with a voltage-source PWM inverter having sinusoidal output voltage and zero common-mode voltage." In Power Electronics Specialists Conference,2002. pesc 02.2002 IEEE 33rd Annual, vol.3, pp.1543-1550. IEEE,2002.
    [31]Gonzalez, David, Josep Balcells, Alfonso Santolaria, J-C. Le Bunetel, Javier Gago, Didier Magnon, and Stephane Brehaut. "Conducted EMI reduction in power converters by means of periodic switching frequency modulation." Power Electronics, IEEE Transactions on 22, no.6 (2007):2271-2281.
    [32]Manoli, Yiannos. "Energy harvesting—From devices to systems." In ESSCIRC,2010 Proceedings of the, pp.27-36. IEEE,2010.
    [33]G. A. Rincon-Mora and P. E. Allen, A low-voltage, low quiescent current, low drop-out regulator. IEEE J. Solid-State Circuits,1998,33 (01), pp.36-44.
    [34]K. N. Leung and P. K. T. Mok, A capacitor-free CMOS low-dropout regulator with damping-factor-control frequency compensation. IEEE J. Solid-State Circuits,2003,38(10), pp.1691-1702.
    [35]C.-C. Wang and J.-C. Wu, Efficiency improvement in charge pump circuits. IEEE J. Solid-State Circuits,1997,32(06), pp.852-860.
    [36]Atwood B, W.B.a.P.K.S.J., Smart Dust mote forerunners.2001.
    [37]Fry D N, H.D.E., Munro J K, Oakes L C, and Maston and M. J, Compact Portable Electric Power Sources. Report, Oak Ridge National Laboratory, ORNL/TM-13360,1997.
    [38]Mitcheson, Paul D., Eric M. Yeatman, G. Kondala Rao, Andrew S. Holmes, and Tim C. Green. "Energy harvesting from human and machine motion for wireless electronic devices." Proceedings of the IEEE 96, no.9 (2008):1457-1486.
    [39]Leonov, Vladimir, Tom Torfs, Ruud JM Vullers, Jiale Su, and Chris Van Hoof. "Renewable energy microsystems integrated in maintenance-free wearable and textile-based devices:the capabilities and challenges." In Industrial Technology (ICIT),2010 IEEE International Conference on, pp.967-972. IEEE, 2010.
    [40]EF Crawley, J.D.L., Use of piezoelectric actuators as elements of intelligent structures. AIAA journal 1987.25(10):p.1373-1385.
    [41]AD, J., Works in Progress-Energy Harvesting Projects. IEEE Pervasive Computing,2005:p.69-71
    [42]Howells, C.A., Piezoelectric energy harvesting. Energy Conversion and Management,2009.50(7):p. 1847-1850.
    [43]Wang, L., and F. G. Yuan, Energy harvesting by magnetostrictive material (MsM) for powering wireless sensors in SHM. The 14th International Symposium on:Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring,2007:p.652941-652941.
    [44]Meninger, Scott, Jose Oscar Mur-Miranda, Rajeevan Amirtharajah, Anantha Chandrakasan, and Jeflrey H. Lang. "Vibration-to-electric energy conversion." Very Large Scale Integration (VLSI) Systems, IEEE Transactions on 9, no.1 (2001):64-76.
    [45]Amirtharajah, Rajeevan, Scott Meninger, Jose Oscar Mur-Miranda, Anantha Chandrakasan, and Jeffrey Lang. "A micropower programmable DSP powered using a MEMS-based vibration-to-electric energy converter." In Solid-State Circuits Conference,2000. Digest of Technical Papers. ISSCC.2000 IEEE International, pp.362-363. IEEE,2000.
    [46]Roundy, Shad, Paul K. Wright, and Kristofer SJ Pister. "Micro-electrostatic vibration-to-electricity converters." Fuel Cells (methanol) 220 (2002):22.
    [47]Sterken, Tom, Paolo Fiorini, Kris Baert, Gustaaf Borghs, and Robert Puers. "Novel design and fabrication of a MEMS electrostatic vibration scavenger."Proc. PowerMEMS (2004):18-21.
    [48]Sterken, Tom, P. Fiorini, G. Altena, Chris Van Hoof, and Robert Puers. "Harvesting energy from vibrations by a micromachined electret generator." In Solid-State Sensors, Actuators and Microsystems Conference,2007. TRANSDUCERS 2007. International, pp.129-132. IEEE,2007.
    [49]Miao, P., P. D. Mitcheson, A. S. Holmes, E. M. Yeatman, T. C. Green, and B. H. Stark. "MEMS inertial power generators for biomedical applications. "Microsystem Technologies 12, no.10-11 (2006): 1079-1083.
    [50]Mizuno, Makoto, and Derek G. Chetwynd. "Investigation of a resonance microgenerator." Journal of Micromechanics and Microengineering 13, no.2 (2003):209.
    [51]El-Hami, M., P. Glynne-Jones, N. M. White, M. Hill, Stephen Beeby, E. James, A. D. Brown, and J. N. Ross., Design and fabrication of a new vibration-based electromechanical power generator. Sensors and Actuators A:Physical 2001.92(1):p.335-342.
    [52]Dorofte, Cristinel, Uffe Borup, and Frede Blaabjerg. "A combined two-method MPPT control scheme for grid-connected photovoltaic systems." In Power electronics and applications,2005 European conference on, pp.10-pp. IEEE,2005.
    [53]崔岩,蔡炳煌,李大勇,et al.太阳能光伏系统MPPT控制算法的对比研究[J].太阳能学报.2006,27(6):535-539.
    [54]Bodur, Mehmet, and Muammer Ermis. "Maximum power point tracking for low power photovoltaic solar panels." In Electrotechnical Conference,1994. Proceedings.,7th Mediterranean, pp.758-761. IEEE, 1994.
    [55]Koutroulis, Eftichios, Kostas Kalaitzakis, and Nicholas C. Voulgaris. "Development of a microcontroller-based, photovoltaic maximum power point tracking control system." Power Electronics, IEEE Transactions on 16, no.1 (2001):46-54.
    [56]Hua, Chihchiang, and Chihming Shen. "Comparative study of peak power tracking techniques for solar storage system." In Applied Power Electronics Conference and Exposition,1998. APEC'98. Conference Proceedings 1998., Thirteenth Annual, vol.2, pp.679-685. IEEE,1998.
    [57]Sugimoto, Hidehiko, and Huian Dong. "A new scheme for maximum photovoltaic power tracking control." In Power Conversion Conference-Nagaoka 1997., Proceedings of the, vol.2, pp.691-696. IEEE, 1997.
    [58]Zhang, L., A. Al-Amoudi, and Yunfei Bai. "Real-time maximum power point tracking for grid-connected photovoltaic systems." In Power Electronics and Variable Speed Drives,2000. Eighth International Conference on (IEE Conf. Publ. No.475), pp.124-129. IET,2000.
    [59]Kishi, M., H. Nemoto, T. Hamao, M. Yamamoto, S. Sudou, M. Mandai, and S. Yamamoto. "Micro thermoelectric modules and their application to wristwatches as an energy source." In Thermoelectrics, 1999. Eighteenth International Conference on, pp.301-307. IEEE,1999.
    [60]Leonov, Vladimir, Tom Torfs, Paolo Fiorini, and Chris Van Hoof. "Thermoelectric converters of human warmth for self-powered wireless sensor nodes."Sensors Journal, IEEE7, no.5 (2007):650-657.
    [61]Leonov, Vladimir, Paolo Fiorini, Sherif Sedky, Tom Torfs, and Christiaan Van Hoof. "Thermoelectric MEMS generators as a power supply for a body area network." In Solid-State Sensors, Actuators and Microsystems,2005. Digest of Technical Papers. TRANSDUCERS'05. The 13th International Conference on, vol.1, pp.291-294. IEEE,2005.
    [62]Leonov, Vladimir, Paolo Fiorini, Sherif Sedky, Hoof Chris Van, and Kris Baert. "Method of manufacturing a thermoelectric generator and thermoelectric generator thus obtained." European Patent EP 1612870, issued January 4,2006.
    [63]Sun, Y. M., and X. B. Wu. "Subthreshold voltage startup module for stepup DC-DC converter." Electronics letters 46, no.5 (2010):373-374.
    [64]Mingyang Chen; Menglian Zhao; Qing Liu; Xiaobo Wu, "Start-up module for low voltage energy harvesting systems," Electron Devices and Solid State Circuit (EDSSC),2012 IEEE International Conference on, vol., no., pp.1,3,3-5 Dec.2012
    [65]Roy, Kaushik, Jaydeep P. Kulkarni, and Myeong-Eun Hwang. "Process-tolerant ultralow voltage digital subthreshold design." In Silicon Monolithic Integrated Circuits in RF Systems,2008. SiRF 2008. IEEE Topical Meeting on, pp.42-45. IEEE,2008.
    [66]Wang, Alice, and Anantha Chandrakasan. "A 180-mV subthreshold FFT processor using a minimum energy design methodology." Solid-State Circuits, IEEE Journal of 40, no.1 (2005):310-319.
    [67]Calhoun, Benton H., and Anantha Chandrakasan. "Analyzing static noise margin for sub-threshold SRAM in 65nm CMOS." In Solid-State Circuits Conference,2005. ESSCIRC 2005. Proceedings of the 31st European, pp.363-366. IEEE,2005.
    [68]Carlson, E.J., K. Strunz, and B.P. Otis, A 20 mV Input Boost Converter With Efficient Digital Control for Thermoelectric Energy Harvesting. Solid-State Circuits, IEEE Journal of,2010.45(4):p.741-750.
    [69]Doms, I., et al., Capacitive Power Management Circuit for Micropower Thermoelectric Generators With a 1.4 uA Controller. Solid-State Circuits, IEEE Journal of,2009.44(10):p.2824-2833.
    [70]Ramadass, Y.K.. and A.P. Chandrakasan, A BatteryLess Thermoelectric Energy Harvesting Interface Circuit With 35 mV Startup Voltage. Solid-State Circuits, IEEE Journal of,2011.46(1):p.333-341.
    [71]Jong-Pil, I., et al., A 40 mV Transformer-Reuse Self-Startup Boost Converter With MPPT Control for Thermoelectric Energy Harvesting. Solid-State Circuits, IEEE Journal of,2012.47(12):p.3055-3067.
    [72]Po-Hung, C., et al. A 80-mV input, fast startup dual-mode boost converter with charge-pumped pulse generator for energy harvesting, in Solid State Circuits Conference (A-SSCC),2011 IEEE Asian.2011.
    [73]Sun, Y.M. and X.B. Wu, Subthreshold voltage startup module for stepup DC-DC converter. Electronics Letters,2010.46(5):p.373-374.
    [74]Giustolisi, G., G. Palumbo, M. Criscione, and F. Cutri. "A low-voltage low-power voltage reference based on subthreshold MOSFETs." Solid-State Circuits, IEEE Journal of 38, no.1 (2003):151-154.
    [75]Kim, Beomsup, David N. Helman, and Paul R. Gray. "A 30-MHz hybrid analog/digital clock recovery circuit in 2-um CMOS." Solid-State Circuits, IEEE Journal of 25.6 (1990):1385-1394.
    [76]Lee, Seog-Jun, Beomsup Kim, and Kwyro Lee. "A novel high-speed ring oscillator for multiphase clock generation using negative skewed delay scheme." Solid-State Circuits, IEEE Journal of 32, no.2 (1997):289-291.
    [77]P. Chen, K.I., K. Ikeuchi, X. Zhang, K. Honda, Y. Okuma, Y. Ryu, M. Takamiya and T. Sakurai, Startup techniques for 95 mV step-up converter by capacitor pass-on scheme and Vth tuned oscillator with fixed charge programming. IEEE Journal of Solid-State Circuits,2012.47(5).
    [78]Datasheet:TMP451, http://www.ti.com.cn/product/cn/tmp451 [79] Ye, Mao, Peng Xu, Bo Yang, and Fred C. Lee. "Investigation of topology candidates for 48 V VRM." In Applied Power Electronics Conference and Exposition,2002. APEC 2002. Seventeenth Annual IEEE, vol.2, pp.699-705. IEEE,2002.
    [80]Miftakhutdinov, Rais. "An analytical comparison of alternative control techniques for powering next-generation microprocessors." In TI-Unitrode Power Supply Design Seminar.2001.
    [81]Erickson, Robert W., and Dragan Maksimovic. Fundamentals of power electronics. Springer,2001.
    [82]Law, Y. Y, J. H. Kong, Joe CP Liu, N. K. Poon, and M. H. Pong. "Comparison of three topologies for VRM fast transient application." In Applied Power Electronics Conference and Exposition,2002. APEC 2002. Seventeenth Annual IEEE, vol.1, pp.210-215. IEEE,2002.
    [83]赵梦恋,吴晓波,汤俊斐,张毅,严晓浪,阀控密封铅酸蓄电池充电控制集成电路设计.浙江大学学报(工学版),2008.42(9):p.1606-1610.
    [84]Sable, D.M., Cho, B.H.,Ridley, R.B. Elimination of the positive zero in fixed freqeuncy boost and flyback converters, in Applied Power Elect ronics Conference and Exposition,1990.1990. LA, CA, USA.
    [85]Ridley, R.B., A new, continuous-time model for current-mode control [power converters]. IEEE Transactions on Power Electronics,1991.6 (2):p.271-280.
    [86]Lee, C.E.Mok, P.K.T., A monolithic curr ent-mode CMOS DC-DC converter with on-chip current-sensing technique. IEEE Journal of Solid-State Circuits,2004.39 (1):p.3-14.
    [87]Siu, M., Mok, P.K.T., Leung, K.N., Lam, YH.,Ki, W.-H., A voltage-mode PWM buck regulator with end-point prediction. IEEE Transactions on Circuits and Systems II:Express Briefs,2006.53(4):p.294-298.
    [88]Nguyen, V. M., and C. Q. Lee. "Tracking control of buck converter using sliding-mode with adaptive hysteresis." In Power Electronics Specialists Conference,1995. PESC'95 Record.,26th Annual IEEE, vol. 2, pp.1086-1093. IEEE,1995.
    [89]Cardoso, B.J., Moreira, A.F., Menezes, B.R.,Cortizo, P.C. Analysis of switching frequency reduction methods applied to sliding mode controlled DC-DC converters, in IEEE Applied Power Electronics Conference and Exposition.1992. Boston, MA, USA.
    [90]Song, T.-T.,Chung, H.S.-h., Boundary Control of Boost Converters Using State-Energy Plane. IEEE Transactions on Power Electronics,2008.23(2):p.551-563.
    [91]Nabeshima, T., Sato, T., Nishijima, K.,Yoshida, S. A novel control method of boost and buck-boost converters with a hysteretic PWM controller, in 2005 European Conference on Power Electronics and Applications 2005.
    [92]Tso, C.-H.,Wu, J.-C, A Ripple Control Buck Regulator With Fixed Output Frequency. IEEE Power Electronics Letters,2003.1 (3):p.61-63.
    [93]Wong, H.-T.,Vinn, C.L.,1998.Constant On-Time Architecture for Switching Regulators,US Patent 5747976.
    [94]Pullen, S.,Groom, T.J.,2006.Constant On-Time Controller for A Buck Converter,US Patent 7019504B2.
    [95]Li, Y., Lai, X., Yuan, B., Jia, X., Zhang, W.,Ye, Q., Design and implementation of a buck DC-DC controller with adaptive on-time control Chinese Journal of Semiconductors,2008.29 (7):p.1396-1402.
    [96]Cockcroft, J.D. and E.T. Walton, Production of high velocity positive ions. Proc. Roy. Soc.,A,1932. 136:p.619-630.
    [97]Dickson, J.F., On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique. Solid-State Circuits, IEEE Journal of,1976.11(3):p.374-378.
    [98]Ma, Dongsheng, and Feng Luo, Robust multiple-phase switched-capacitor DC-DC power converter with digital interleaving regulation scheme, IEEE Tran. Very Large Scale Integration (VLSI) Systems,16 (6) (2008) 611-619.
    [99]Lee, Jae-Youl, Sung-Eun Kim, Seong-Jun Song, Jin-Kyung Kim, Sunyoung Kim, and Hoi-Jun Yoo. A regulated charge pump with small ripple voltage and fast start-up, IEEE J. Solid-State Circuits,41 (2) (2006) 425-432.
    [100]Thiele, G. and E. Bayer. Current-Mode LDO with Active Dropout Optimization, in Power Electronics Specialists Conference,2005. PESC'05. IEEE 36th.2005.
    [101]Ahmadi, M.M. and G. Jullien. A full CMOS voltage regulating circuit for bioimplantable applications, in Circuits and Systems,2005.48th Midwest Symposium on.2005.
    [102]Bayer, E. and H. Schmeller. Charge pump with Active Cycle regulation-closing the gap between linearand skip modes, in Power Electronics Specialists Conference,2000. PESC 00.2000 IEEE 31st Annual.2000.
    [103]Thiele, G. and E. Bayer. Current mode charge pump:topology, modeling and control, in Power Electronics Specialists Conference,2004. PESC 04.2004 IEEE 35th Annual.2004.
    [104]Breussegem, Tom Van, and Michiel Steyaert, A 82% efficiency 0.5% ripple 16-phase fully integrated capacitive voltage doubler, IEEE 2009 Symposium on VLSI Circuits, (2009) 198-199.