基于全基因组重测序技术分析水稻和菰渐渗系的基因组变异
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
种间杂交(inter-specific hybridization)在植物进化过程中发挥了重要作用。杂交后代中所产生的基因组冲击(genomic shock)能诱导其在遗传水平产生突变,而新产生的遗传变异将会直接或间接地导致杂交后代产生新的表型,以最终通过增加杂交后代的适应度(fitness)以更好地适应变化的环境。
     为了从全基因水平探讨种间杂交诱导遗传变异的规律,并在此基础上揭示新产生的变异导致杂交后代表型改变的分子机制,本研究采用基因组重测序技术对栽培水稻松前(Oryza sativa ssp. japonica cv. Matsumae)及其菰渐渗系RZ35进行了高通量测序。数据分析显示,本实验中共产生了1.31亿的reads,共计117.9亿个碱基对。这些reads分别覆盖了13.2倍松前的基因组和21.9倍RZ35的基因组。在进一步的分析中,通过比对渐渗系RZ35和其母本松前的基因组,我们鉴定出了41724个纯合单核苷酸多态性(single nucleotide polymorphisms, SNPs)和17839个纯合小片段插入缺失位点(insertion/deletion, INDEL)。通过对SNPs在基因组中的分布情况进行统计显示,这些SNPs趋向于集中分布于染色体上的不同区域,从而形成了一些高突变区(high mutation regions, HMRs)。此外,通过与水稻驯化相关区域进行对比分析发现,其中有11个HMRs与驯化相关区域重叠,该结果显示这些区域可能更容易受到种间杂交的诱导。
     基于以上结果,我们对所获得的SNPs进行功能分析发现有3797个SNPs为非同义(nonsynonymous)突变,这些SNPs广泛分布于2250个基因中。为了近一步验证这些突变基因对RZ35表型改变的贡献,我们将这些基因定位了到各个代谢途径(pathway)中。分析结果表明,部分突变基因集中分布在几个与植物抗逆相关的途径中,例如糖酵解途径、脂肪酸合成途径、苯丙氨酸合成途径等。该结果证明种间杂交所诱导的突变可以诱导杂交后代产生新的表型变异,而这些表型变异增加了植物本身对逆境的抗性。
     此外,我们还对RZ35全基因组范围内转座子激活进行了分析。结果表明,相对于SNPs在RZ35染色体上集中分布的而言,本实验中所鉴定的11个转座子家族在不同染色体上随机产生了63次转座激活,例如mPing、Osr29、Tos17等。为了进一步验证转座子激活对RZ35基因功能的影响,我们对被激活的转座子所在的具体区域进行了分析,发现部分转座子插入到基因结构区及其上游1kb范围内。例如,一个mPing转座子插入到LOC_Os05g11130基因的内含子中。该结果表明种间杂交所诱导的转座子激活可能会导致部分基因的功能发生改变,并可能导致杂交后代的表型也随之发生改变。
     为了验证新产生的表型是否对杂交后代适应环境有贡献,我们对松前和RZ35进行了稻瘟病菌(Magnaporthe grisea)接种实验。该实验结果显示,RZ35具有相对高的抗稻瘟病表型。通过对多个抗稻瘟病主效基因的表达量进行qRT-PCR检测发现,在RZ35中的Pid3/Pi25的表达水平明显上调。此外,我们发现在该基因的编码区发生了一个非同义突变(由丝氨酸突变成酪氨酸)。因此,我们推测该突变可能是导致RZ35具有高抗稻瘟病特性的主要原因之一。
     综上所述,本文研究结果证明有性不亲和植物种间杂交(通过发生染色质小片段渐渗)诱导RZ35产生了大量的遗传变异,而部分遗传变异导致了一些新表型的产生,并以此提高杂交后代的适应度。因此,本研究不仅证实了有性不亲和植物种间杂交对植物进化可能存在较大的贡献,同时也表明了其也是一种潜在和高效的作物遗传改良方法。
Hybridization between genetically diverged organisms is an important avenuethat drives plant genome evolution. The possible outcomes of hybridization would bethe occurring of genomic shock‘‘which could evoke the genetic variation in thederived hybrids. The new induced variations may result in phenotypic noveltiesdirectly or indirectly, and eventually increase the fitness of the resulted hybrids.
     To address the molecular mechanism of how the inter-specific hybridizationcauses the genetic variation and to what extent it leads to the phenotypical novelties atwhole genome level, we re-sequenced the genomes of Oryza sativa ssp. japonica cv.Matsumae and one of its derived introgressant RZ35that was obtained from anintrogressive hybridization between Matsumae and Zizania latifolia Griseb.According to the results, our study generated a total of131millions90base pair (bp)paired-end reads which covered13.2and21.9folds of the Matsumae and RZ35genomes, respectively. In addition, a total of41,724homozygous single nucleotidepolymorphisms (SNPs) and17,839homozygous insertions/deletions (INDELs) wereidentified in RZ35. Notably, we found that these SNPs tended to occur in thechromosome as clusters and thus a number of high mutation regions (HMRs) wereidentified in our study. Interestingly, we found that11HMRs were located within thedomesticated related regions, implying that the HMRs may fragile and hence labile tomutations as a result of introgressive hybridization.
     In addition, our results revealed that3,797SNPs were nonsynonymous mutationswhich randomly distributed in2,250genes. To further investigate how these mutatedgenes contributed to phenotypic novelties of RZ35, we submitted these genes intoKEGG and identified that some of these mutated genes were concentrated in severalphysiologically important pathways including glycolysis/gluconeogenesis, fatty acidbiosynthesis and phenylpropanoid biosynthesis pathways. The results yield theconclusion that inter-specific hybridization has indeed resulted in the phenotypicnovelties that enhance the abilities of plant to tolerance the stresses.
     In addition to the observed genetic variation, rampant mobilization oftransposable elements (TEs) was also identified in the RZ35genome. Notably, a totalof63mobilization events representing11TE families were found including mPing,Osr29, Tos17and so on. To further examine how the mobilization of TEs affects thefunctions of genes, we analyzed the locations of each TE insertions. For example, we found that a member of mPing family was inserted in the intron regions ofLOC_Os05g11130. It indicates that inter-specific hybridization can cause theactivation of TEs and some of which may result the alterations in gene function andeventually lead to phenotypic novelties of resulted hybrids.
     To examine how the phenotypic novelties contributed to the fitness of hybrids,we performed the inoculation experiment between Matsumae and RZ35usingMagnaporthe grisea. Results from pathogen inoculation revealed that RZ35exhibitedenhanced resistance to blast relative to cv. Matsumae. Notably, one nonsynonymousmutation was identified in Pid3/Pi25. This finding coupled with the results ofreal-time quantitative (q) RT-PCR illustrated that it may be responsible for theenhanced resistance to rice blast in RZ35.
     Our results demonstrated that introgressive hybridization by alien pollens of evena sexually incompatible species may represent a potent means to generate novelgenetic diversities, and which may have played relevant roles in plant evolution andcan be manipulated for crop improvements.
引文
1. Arnold M, Hamrick J, Bennett B (1993) Interspecific pollen competition and reproductiveisolation in Iris. Journal of Heredity84:13-16.
    2. Carney SE, Cruzan MB, Arnold ML (1994) Reproductive interactions between hybridizingirises: analyses of pollen-tube growth and fertilization success. American Journal of Botany:1169-1175.
    3. Ellstrand NC, Whitkus R, Rieseberg LH (1996) Distribution of spontaneous plant hybrids.Proceedings of the National Academy of Sciences93:5090-5093.
    4. Harlan JR (1975) On. Winge and a prayer: the origins of polyploidy. The Botanical Review41:361-390.
    5. Roberts HF (1929) Plant hybridization before Mendel.
    6. Templeton AR (1981) Mechanisms of speciation--a population genetic approach. Annual reviewof Ecology and Systematics12:23-48.
    7. ZIRKLE C (1935) The beginnings of plant hybridization. Morris Arboretum Monographs. I.
    8. Anderson E (1936) An experimental study of hybridization in the genus Apocynum. Annals ofthe Missouri Botanical Garden23:159-168.
    9. Grant V. The regulation of recombination in plants;1958. Cold Spring Harbor Laboratory Press.pp.337-363.
    10. Müntzing A (1930) Outlines to a genetic monograph of the genus Galeopsis. Hereditas13:185-341.
    11. Rieseberg LH (1997) Hybrid origins of plant species. Annual Review of Ecology andSystematics:359-389.
    12. Hilu K (1993) Polyploidy and the evolution of domesticated plants. American Journal ofBotany:1494-1499.
    13. Rieseberg LH, Willis JH (2007) Plant speciation. Science317:910-914.
    14. Stebbins G L. Chromosomal evolution in higher plants [J].1971.
    15. Wong S, Butler G, Wolfe KH (2002) Gene order evolution and paleopolyploidy inhemiascomycete yeasts. Proceedings of the National Academy of Sciences99:9272-9277.
    16. Fritz RS, Moulia C, Newcombe G (1999) Resistance of hybrid plants and animals toherbivores, pathogens, and parasites. Annual Review of Ecology and Systematics:565-591.
    17. Leitch A, Leitch I (2008) Genomic plasticity and the diversity of polyploid plants. Science320:481-483.
    18. Soltis P (2013) Hybridization, speciation and novelty. Journal of Evolutionary Biology26:291-293.
    19. Whitham TG, Martinsen GD, et al.(1999) Plant hybrid zones affect biodiversity: tools for agenetic-based understanding of community structure. Ecology80:416-428.
    20. Allard R, Garcia P, Saenz-de-Miera L, de la Vega MP (1993) Evolution of multilocus geneticstructure in Avena hirtula and Avena barbata. Genetics135:1125-1139.
    21. Goff SA, Ricke D, et al.(2002) A draft sequence of the rice genome (Oryza sativa L. ssp.japonica). science296:92-100.
    22. Levy AA, Feldman M (2002) The impact of polyploidy on grass genome evolution. Plantphysiology130:1587-1593.
    23.邢少辰,周开达,蔡玉红等.植物远缘杂交的研究[J].吉林农业科学,2000,25(4):18-21.
    24.伏军,徐庆国,唐湘如,程尧楚,周文新.水稻超高产育种新技术探索[J].湖南农业大学学报;1995年06期
    25. Hegarty MJ, Hiscock SJ (2008) Genomic clues to the evolutionary success of polyploid plants.Current Biology18: R435-R444.
    26.李自超,王象坤,王剑平,黄燕红.美国稻在水稻杂种优势利用中的地位[J].华北农学报,1995,01:22-28.
    27.王德正,焦德茂,吴爽,李霞,李莉,迟伟,王守海,李成荃,罗彦长,汪秀峰.转玉米pepc基因的杂交水稻亲本的选育[J].中国农业科学,2002,10:1165-1170.
    28.翟成凯,孙桂菊,陆琮明,蒋兆坤,张小强.中国菰资源及其应用价值的研究[J].资源科学,2000,06:22-26.
    29.翟成凯,姚修仁,刘笃宽,钱学射菰米的营养成分分析[J].营养学报1992(02)
    30.王晓丽,马建,孙长占,历艳志,马景勇.菰在水稻育种中的研究进展[J].吉林农业科学,2006,01:35-36+49
    31. Liu B, Zhao R, Piao H, Zhao F, Zhao J (1999) Production and molecular characterization ofrice lines with introgressed traits from a wild species Zizania latifolia (Griseb.)[Oryza sativaL.]. Journal of Genetics&Breeding53.
    32. Brennan AC, Bridle JR, Wang AL, Hiscock SJ, Abbott RJ (2009) Adaptation and selection inthe Senecio (Asteraceae) hybrid zone on Mount Etna, Sicily. New Phytologist183:702-717.
    33. Chen ZJ (2007) Genetic and epigenetic mechanisms for gene expression and phenotypicvariation in plant polyploids. Annual review of plant biology58:377.
    34. Comai L (2000) Genetic and epigenetic interactions in allopolyploid plants. Plant molecularbiology43:387-399.
    35. Gaeta RT, Pires JC, Iniguez-Luy F, Leon E, Osborn TC (2007) Genomic changes inresynthesized Brassica napus and their effect on gene expression and phenotype. The PlantCell Online19:3403-3417.
    36. Ozkan H, Levy AA, Feldman M (2001) Allopolyploidy-induced rapid genome evolution in thewheat (Aegilops–Triticum) group. The Plant Cell Online13:1735-1747.
    37. Salmon A, Ainouche ML, Wendel JF (2005) Genetic and epigenetic consequences of recenthybridization and polyploidy in Spartina (Poaceae). Molecular Ecology14:1163-1175.
    38. Shaked H, Kashkush K, Ozkan H, Feldman M, Levy AA (2001) Sequence Elimination andCytosine Methylation Are Rapid and Reproducible Responses of the Genome to WideHybridization and Allopolyploidy in Wheat. The Plant Cell Online13:1749-1759.
    39. Liu B, Wendel JF (2002) Non-Mendelian phenomena in allopolyploid genome evolution.Current Genomics3:489-505.
    40. Anderson RP (1999) Preliminary review of the systematics and biogeography of the spinypocket mice (Heteromys) of Colombia. Revista de la Academia Colombiana de CienciasExactas, Físicas y Naturales23.
    41. Genoways (1993) Biology of the Heteromyidae: Spec. Publ. Am. Soc. Mammal.
    42. Sakai S, Kato M, Inoue T (1999) Three pollination guilds and variation in floral characteristicsof Bornean gingers (Zingiberaceae and Costaceae). American journal of botany86:646-658.
    43. Schiestl FP, Johnson SD (2013) Pollinator-mediated evolution of floral signals. Trends inEcology&Evolution.
    44. Wilson DE (2005) Mammal Species of the World: A Taxonomic and Geographic Reference:JHU Press.
    45. Husband BC (2000) Constraints on polyploid evolution: a test of the minority cytotypeexclusion principle. Proceedings of the Royal Society of London Series B: Biological Sciences267:217-223.
    46. Levin DA (1975) Minority cytotype exclusion in local plant populations. Taxon:35-43.
    47. Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annual Review of Genetics34:401-437.
    48. Boyko A, Kovalchuk I (2011) Genetic and epigenetic effects of plant–pathogen interactions:an evolutionary perspective. Molecular Plant4:1014-1023.
    49. Dowen RH, Pelizzola M, et al.(2012) Widespread dynamic DNA methylation in response tobiotic stress. Proceedings of the National Academy of Sciences109: E2183-E2191.
    50. Holeski LM, Jander G, Agrawal AA (2012) Transgenerational defense induction and epigeneticinheritance in plants. Trends in Ecology&Evolution.
    51. Wang H, Chai Y, et al.(2009) Molecular characterization of a rice mutator-phenotype derivedfrom an incompatible cross-pollination reveals transgenerational mobilization of multipletransposable elements and extensive epigenetic instability. BMC Plant Biology9:63.
    52. Zou J, Fu D, Gong H, et al.(2011) De novo genetic variation associated with retrotransposonactivation, genomic rearrangements and trait variation in a recombinant inbred line populationof Brassica napus derived from interspecific hybridization with Brassica rapa. The PlantJournal68:212-224.
    53. Han F, Fedak G, Ouellet T, Liu B (2003) Rapid genomic changes in interspecific andintergeneric hybrids and allopolyploids of Triticeae. Genome46:716-723.
    54. Song K, Lu P, Tang K, Osborn TC (1995) Rapid genome change in synthetic polyploids ofBrassica and its implications for polyploid evolution. Proceedings of the National Academy ofSciences92:7719-7723.
    55. Matzke M, Scheid OM, Matzke A (1999) Rapid structural and epigenetic changes in polyploidand aneuploid genomes. Bioessays21:761-767.
    56. Liu B, Vega J, Feldman M (1998) Rapid genomic changes in newly synthesized amphiploidsof Triticum and Aegilops. II. Changes in low-copy coding DNA sequences. Genome41:535-542.
    57. Liu B, Vega J, Segal G, et al.(1998) Rapid genomic changes in newly synthesized amphiploidsof Triticum and Aegilops. I. Changes in low-copy noncoding DNA sequences. Genome41:272-277.
    58.王超,张宗申,王建波.植物多倍体起源与分子进化研究进展[J].武汉植物学研究,2000,04:339-343.
    59. Wolffe AP, Matzke MA (1999) Epigenetics: regulation through repression. science286:481-486.
    60. Geiman TM, Robertson KD (2002) Chromatin remodeling, histone modifications, and DNAmethylation—how does it all fit together? Journal of cellular biochemistry87:117-125.
    61. Pikaard CS, Lawrence RJ (2002) Uniting the paths to gene silencing. Nat Genet32:340-341.
    62. Kashkush K, Feldman M, Levy AA (2002) Gene loss, silencing and activation in a newlysynthesized wheat allotetraploid. Genetics160:1651-1659.
    63. Lee H-S, Chen ZJ (2001) Protein-coding genes are epigenetically regulated in Arabidopsispolyploids. Proceedings of the National Academy of Sciences98:6753-6758.
    64. McClintock B (1983) The significance of responses of the genome to challenge. PhysiologyOr Medicine Literature Peace Economic Sciences:180.
    65. Madlung A, Masuelli RW, Watson B, et al.(2002) Remodeling of DNA methylation andphenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids. Plantphysiology129:733-746.
    66. FEUILLET C, KELLER B (2002) Comparative genomics in the grass family: molecularcharacterization of grass genome structure and evolution. Annals of botany89:3-10.
    67. Kashkush K, Feldman M, Levy AA (2002) Transcriptional activation of retrotransposons altersthe expression of adjacent genes in wheat. Nature genetics33:102-106.
    68. SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL (1998) The paleontology ofintergene retrotransposons of maize. Nature Genetics20:43-45.
    69. SanMiguel P, Tikhonov A, Jin Y-K, et al.(1996) Nested retrotransposons in the intergenicregions of the maize genome. Science274:765-768.
    70. Belyayev A, Raskina O, Korol A, Nevo E (2000) Coevolution of A and B genomes inallotetraploid Triticum dicoccoides. Genome43:1021-1026.
    71. Zhao X-p, Si Y, Hanson RE, et al.(1998) Dispersed repetitive DNA has spread to newgenomes since polyploid formation in cotton. Genome Research8:479-492.
    72. Kidwell MG, Lisch D (1997) Transposable elements as sources of variation in animals andplants. Proceedings of the National Academy of Sciences94:7704-7711.
    73. Gerstel D (1967) Phenotypic and chromosomal abnormalities associated with the introductionof heterochromatin from Nicotiana otophora into N. tabacum. Genetics56:483.
    74. Liu B, Wendel JF (2000) Retrotransposon activation followed by rapid repression inintrogressed rice plants. Genome43:874-880.
    75. McClintock B. Chromosome organization and genic expression;1951. Cold Spring HarborLaboratory Press. pp.13-47.
    76. Gupta M, Shepherd NS, Bertram I, Saedler H (1984) Repetitive sequences and theirorganization on genomic clones of Zea mays. The EMBO journal3:133.
    77. Shepherd NS, Schwarz-Sommer Z, Vel Spalve JB, et al.(1984) Similarity of the Cin1repetitive family of Zea mays to eukaryotic transposable elements.
    78. Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where genetics meetsgenomics. Nature Reviews Genetics3:329-341.
    79. Lander ES, Linton LM, Birren B, et al.(2001) Initial sequencing and analysis of the humangenome. Nature409:860-921.
    80. Meyers BC, Tingey SV, Morgante M (2001) Abundance, distribution, and transcriptionalactivity of repetitive elements in the maize genome. Genome Research11:1660-1676.
    81. Vicient CM, Suoniemi A, Anamthawat-Jónsson K, et al.(1999) Retrotransposon BARE-1andits role in genome evolution in the genus Hordeum. The Plant Cell Online11:1769-1784.
    82. Biémont C, Vieira C (2006) Genetics: junk DNA as an evolutionary force. Nature443:521-524.
    83. Casacuberta JM, Santiago N (2003) Plant LTR-retrotransposons and MITEs: control oftransposition and impact on the evolution of plant genes and genomes. Gene311:1-11.
    84. Boeke J, Corces VG (1989) Transcription and reverse transcription of retrotransposons.Annual Reviews in Microbiology43:403-434.
    85. Suoniemi A, Tanskanen J, Schulman AH (1998) Gypsy‐like retrotransposons are widespreadin the plant kingdom. The Plant Journal13:699-705.
    86. Vos P, Hogers R, Bleeker M, et al.(1995) AFLP: a new technique for DNA fingerprinting.Nucleic acids research23:4407-4414.
    87. Grandbastien M-A (1992) Retroelements in higher plants. Trends in Genetics8:103-108.
    88. Gabriel A, Boeke JD (1993)14Retrotransposon Reverse Transcription. Cold Spring HarborMonograph Archive23:275-328.
    89. Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annual Review of Genetics33:479-532.
    90. Bevan M, Bancroft I, Bent E, et al.(1998) Analysis of1.9Mb of contiguous sequence fromchromosome4of Arabidopsis thaliana. Nature391:485-488.
    91. Heslop-Harrison JS, Murata M, Ogura Y, Schwarzacher T, Motoyoshi F (1999)Polymorphisms and genomic organization of repetitive DNA from centromeric regions ofArabidopsis chromosomes. The Plant Cell Online11:31-42.
    92. Sanmiguel P, Bennetzen JL (1998) Evidence that a recent increase in maize genome size wascaused by the massive amplification of intergene retrotransposons. Annals of botany82:37-44.
    93. Schwarz-Sommer Z, Leclercq L, G bel E, Saedler H (1987) Cin4, an insert altering thestructure of the A1gene in Zea mays, exhibits properties of nonviral retrotransposons. TheEMBO journal6:3873.
    94. Grandbastien M-A, Spielmann A, Caboche M (1989) Tnt1, a mobile retroviral-liketransposable element of tobacco isolated by plant cell genetics. Nature337:376-380.
    95. Smyth D, Kalitsis P, Joseph JL, Sentry JW (1989) Plant retrotransposon from Lilium henryi isrelated to Ty3of yeast and the gypsy group of Drosophila. Proceedings of the NationalAcademy of Sciences86:5015-5019.
    96. Leeton PR, Smyth DR (1993) An abundant LINE-like element amplified in the genome ofLilium speciosum. Molecular and General Genetics MGG237:97-104.
    97. Moore G, Lucas H, Batty N, Flavell R (1991) A family of retrotransposons and associatedgenomic variation in wheat. Genomics10:461-468.
    98. Flavell AJ, Smith DB, Kumar A (1992) Extreme heterogeneity of Ty1-copia groupretrotransposons in plants. Molecular and General Genetics MGG231:233-242.
    99. Hirochika H, Fukuchi A, Kikuchi F (1992) Retrotransposon families in rice. Molecular andGeneral Genetics MGG233:209-216.
    100. Manninen I, Schulman AH (1993) BARE-1, a copia-like retroelement in barley (Hordeumvulgare L.). Plant Molecular Biology22:829-846.
    101. Pearce SR, Li D, Flavell A, et al.(1996) TheTy1-copia group retrotransposons inViciaspecies: copy number, sequence heterogeneity and chromosomal localisation. Molecular andGeneral Genetics MGG250:305-315.
    102. Konieczny A, Voytas D, Cummings M, Ausubel F (1991) A superfamily of Arabidopsisthaliana retrotransposons. Genetics127:801-809.
    103. Schmidt T, Kubis S, Heslop-Harrison J (1995) Analysis and chromosomal localization ofretrotransposons in sugar beet (Beta vulgaris L.): LINEs andTy1-copia-like elements as majorcomponents of the genome. Chromosome Research3:335-345.
    104. Feschotte C, Swamy L, Wessler SR (2003) Genome-wide analysis of mariner-liketransposable elements in rice reveals complex relationships with stowaway miniature invertedrepeat transposable elements (MITEs). Genetics163:747-758.
    105. Feschotte C, Osterlund MT, Peeler R, Wessler SR (2005) DNA-binding specificity of ricemariner-like transposases and interactions with Stowaway MITEs. Nucleic Acids Research33:2153-2165.
    106. Parisod C, Holderegger R, Brochmann C (2010) Evolutionary consequences ofautopolyploidy. New Phytologist186:5-17.
    107. McClintock B (1942) The fusion of broken ends of chromosomes following nuclear fusion.Proceedings of the National Academy of Sciences of the United States of America28:458.
    108. Brandt J, Schrauth S, Veith A-M, Froschauer A, et al.(2005) Transposable elements as asource of genetic innovation: expression and evolution of a family of retrotransposon-derivedneogenes in mammals. Gene345:101-111.
    109. Medstrand P, Van de Lagemaat L, Dunn CA, et al.(2005) Impact of transposable elementson the evolution of mammalian gene regulation. Cytogenetic and Genome Research110:342-352.
    110. Nakayashiki H, Ikeda K, Hashimoto Y, Tosa Y, Mayama S (2001) Methylation is not the mainforce repressing the retrotransposon MAGGY in Magnaporthe grisea. Nucleic Acids Research29:1278-1284.
    111. Wessler SR (2001) Plant transposable elements. A hard act to follow. Plant Physiology125:149-151.
    112. Leprince AS, Grandbastien MA, Meyer C (2001) Retrotransposons of the Tnt1B family aremobile in Nicotiana plumbaginifolia and can induce alternative splicing of the host gene uponinsertion. Plant Molecular Biology47:533-541.
    113. Marillonnet S, Wessler SR (1997) Retrotransposon insertion into the maize waxy gene resultsin tissue-specific RNA processing. The Plant Cell Online9:967-978.
    114. Varagona MJ, Purugganan M, Wessler SR (1992) Alternative splicing induced by insertion ofretrotransposons into the maize waxy gene. The Plant Cell Online4:811-820.
    115. Jiang N, Bao Z, Zhang X, Eddy SR, Wessler SR (2004) Pack-MULE transposable elementsmediate gene evolution in plants. Nature431:569-573.
    116. He Y, Sun M, Zhu Y, Zhang L (2002) Copia-like retrotransposon in Amaranthus]. Yi chuanxue bao=Acta genetica Sinica29:461.
    117. Dong Z, Wang H, Dong Y, et al.(2013) Extensive Microsatellite Variation in Rice Induced byIntrogression from Wild Rice (Zizania latifolia Griseb.). PloS One8: e62317.
    118. Liu Z, Wang Y, Shen Y, et al.(2004) Extensive alterations in DNA methylation andtranscription in rice caused by introgression from Zizania latifolia. Plant Molecular Biology54:571-582.
    119. Shan X, Liu Z, Dong Z, et al.(2005) Mobilization of the active MITE transposons mPing andPong in rice by introgression from wild rice (Zizania latifolia Griseb.). Molecular Biology andEvolution22:976-990.
    120. Wang N, Wang H, Wang H, et al.(2010) Transpositional reactivation of the Dart transposonfamily in rice lines derived from introgressive hybridization with Zizania latifolia. BMC PlantBiology10:190.
    121. Wang Y-M, Dong Z-Y, Zhang Z-J, et al.(2005) Extensive de novo genomic variation in riceinduced by introgression from wild rice (Zizania latifolia Griseb.). Genetics170:1945-1956.
    122. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaftissue. Phytochemical Bulletin19:11-15.
    123. Wang Z-X, Yano M, Yamanouchi U, Iwamoto M, Monna L, et al.(1999) The Pib gene forrice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plantdisease resistance genes. The Plant Journal19:55-64.
    124. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheelertransform. Bioinformatics25:1754-1760.
    125. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automaticgenome annotation and pathway reconstruction server. Nucleic Acids Research35:W182-W185.
    126. Ossowski S, Schneeberger K, Lucas-LledóJI, et al.(2010) The rate and molecular spectrumof spontaneous mutations in Arabidopsis thaliana. Science327:92-94.
    127. Weisshaar B, Jenkins GI (1998) Phenylpropanoid biosynthesis and its regulation. CurrentOpinion in Plant Biology1:251-257.
    128. Anzenbacher P, Anzenbacherova E (2001) Cytochromes P450and metabolism of xenobiotics.Cellular and Molecular Life Sciences CMLS58:737-747.
    129. Sabot F, Picault N, El-Baidouri M, Llauro C, Chaparro C, et al.(2011) Transpositionallandscape of the rice genome revealed by paired-end mapping of high-throughputre-sequencing data. The Plant Journal66:241-246.
    130. Comai L, Tyagi AP, Winter K, Holmes-Davis R, Reynolds SH, et al.(2000) Phenotypicinstability and rapid gene silencing in newly formed Arabidopsis allotetraploids. The Plant CellOnline12:1551-1567.
    131. Ge X-H, Wang J, Li Z-Y (2009) Different genome-specific chromosome stabilities insynthetic Brassica allohexaploids revealed by wide crosses with Orychophragmus. Annals ofbotany104:19-31.
    132. He G, Zhu X, Elling AA, Chen L, Wang X, et al.(2010) Global epigenetic and transcriptionaltrends among two rice subspecies and their reciprocal hybrids. The Plant Cell Online22:17-33.
    133. Hegarty MJ, Batstone T, BARKER GL, et al.(2011) Nonadditive changes to cytosinemethylation as a consequence of hybridization and genome duplication in Senecio (Asteraceae).Molecular Ecology20:105-113.
    134. Hegarty MJ, Jones JM, Wilson ID, et al.(2005) Development of anonymous cDNAmicroarrays to study changes to the Senecio floral transcriptome during hybrid speciation.Molecular Ecology14:2493-2510.
    135. Malinska H, Tate J, Matyasek R, Leitch A, Soltis D, et al.(2010) Similar patterns of rDNAevolution in synthetic and recently formed natural populations of Tragopogon (Asteraceae)allotetraploids. BMC evolutionary biology10:291.
    136. Petit M, Guidat C, Daniel J, Denis E, Montoriol E, et al.(2010) Mobilization ofretrotransposons in synthetic allotetraploid tobacco. New Phytologist186:135-147.
    137. Rieseberg LH, Raymond O, Rosenthal DM, Lai Z, Livingstone K, et al.(2003) Majorecological transitions in wild sunflowers facilitated by hybridization. Science301:1211-
    1216.
    138. O'Neill RJW, O'Neill MJ, Graves JAM (1998) Undermethylation associated withretroelement activation and chromosome remodelling in an interspecific mammalian hybrid.Nature393:68-72.
    139. Xu X, Liu X, Ge S, Jensen JD, Hu F, et al.(2011) Resequencing50accessions of cultivatedand wild rice yields markers for identifying agronomically important genes. Naturebiotechnology30:105-111.
    140. Feltus FA, Wan J, Schulze SR, Estill JC, Jiang N, et al.(2004) An SNP resource for ricegenetics and breeding based on subspecies indica and japonica genome alignments. Genomeresearch14:1812-1819.
    141. Nordborg M, Hu TT, Ishino Y, Jhaveri J, Toomajian C, et al.(2005) The pattern ofpolymorphism in Arabidopsis thaliana. PLoS biology3: e196.
    142. Smith NG, Lercher MJ (2002) Regional similarities in polymorphism in the human genomeextend over many megabases. Trends in Genetics18:281-283.
    143. Somers D, Ravel C, Praud S, Murigneux A, Canaguier A, et al.(2006) Single-nucleotidepolymorphism frequency in a set of selected lines of bread wheat (Triticum aestivum L.).Genome49:1131-1139.
    144. Cantu D, Vanzetti L, Sumner A, Dubcovsky M, Matvienko M, et al.(2010) Small RNAs,DNA methylation and transposable elements in wheat. BMC Genomics11:408.
    145. Park S, Yu H-J, Mun J-H, Lee S-C (2010) Genome-wide discovery of DNA polymorphism inBrassica rapa. Molecular Genetics and Genomics283:135-145.
    146. Wang X-W, Zhao Q-Y, Luan J-B, Wang Y-J, Yan G-H, et al.(2012) Analysis of a nativewhitefly transcriptome and its sequence divergence with two invasive whitefly species. BMCGenomics13:529.
    147. Wakeley J (1996) The excess of transitions among nucleotide substitutions: new methods ofestimating transition bias underscore its significance. Trends in Ecology&Evolution11:158-162.
    148. Coulondre C, Miller JH, Farabaugh PJ, Gilbert W (1978) Molecular basis of base substitutionhotspots in Escherichia coli. Nature274:775-780.
    149. Batley J, Barker G, O'Sullivan H, Edwards KJ, Edwards D (2003) Mining for singlenucleotide polymorphisms and insertions/deletions in maize expressed sequence tag data. PlantPhysiology132:84-91.
    150. Lijavetzky D, Cabezas JA, Ibá ez A, Rodríguez V, Martínez-Zapater JM (2007) Highthroughput SNP discovery and genotyping in grapevine (Vitis vinifera L.) by combining are-sequencing approach and SNPlex technology. BMC Genomics8:424.
    151. Chen J-Q, Wu Y, Yang H, Bergelson J, Kreitman M, et al.(2009) Variation in the ratio ofnucleotide substitution and indel rates across genomes in mammals and bacteria. MolecularBiology and Evolution26:1523-1531.
    152. Ewens WJ (2004) Mathematical population genetics: I. Theoretical introduction: SpringerVerlag.
    153. Lang GI, Botstein D, Desai MM (2011) Genetic variation and the fate of beneficial mutationsin asexual populations. Genetics188:647-661.
    154. Loewe L, Hill WG (2010) The population genetics of mutations: good, bad and indifferent.Philosophical Transactions of the Royal Society B: Biological Sciences365:1153-1167.
    155. Akey JM, Zhang G, Zhang K, Jin L, Shriver MD (2002) Interrogating a high-density SNPmap for signatures of natural selection. Genome research12:1805-1814.
    156. Farmer EE, Weber H, Vollenweider S (1998) Fatty acid signaling in Arabidopsis. Planta206:167-174.
    157. Hu Z, Plaxton WC (1996) Purification and Characterization of Cytosolic Pyruvate Kinasefrom Leaves of the Castor Oil Plant. Archives of Biochemistry and Biophysics333:298-307.
    158. Mou Z, He Y, Dai Y, Liu X, Li J (2000) Deficiency in Fatty Acid Synthase Leads toPremature Cell Death and Dramatic Alterations in Plant Morphology. The Plant Cell Online12:405-417.
    159. Chen Y, Long L, Lin X, Guo W, Liu B (2006) Isolation and characterization of a set ofdisease resistance-gene analogs (RGAs) from wild rice, Zizania latifolia Griseb. I.Introgression, copy number lability, sequence change, and DNA methylation alteration inseveral rice–Zizania introgression lines. Genome49:150-158.
    160. Huang X, Kurata N, Wei X, Wang Z-X, Wang A, et al.(2012) A map of rice genome variationreveals the origin of cultivated rice. Nature490:497-501.
    161. Wendel JF (2000) Genome evolution in polyploids. Plant Molecular Evolution: Springer. pp.225-249.
    162. Wendel JF, Wessler SR (2000) Retrotransposon-mediated genome evolution on a localecological scale. Proceedings of the National Academy of Sciences97:6250-6252.
    163. White SE, Habera LF, Wessler SR (1994) Retrotransposons in the flanking regions of normalplant genes: a role for copia-like elements in the evolution of gene structure and expression.Proceedings of the National Academy of Sciences91:11792-11796.
    164. Wagner Jr W (1970) Biosystematics and evolutionary noise. Taxon:146-151.
    165. Arnold ML (1997) Natural hybridization and evolution: Oxford University Press, USA.
    166. Abbott R, Albach D, Ansell S, Arntzen J, Baird S, et al.(2013) Hybridization and speciation.Journal of Evolutionary Biology26:229-246.
    167. Abbott RJ, Hegarty MJ, Hiscock SJ, Brennan AC (2010) Homoploid hybrid speciation inaction. Taxon59:1375-1386.