超嗜热古菌Sulfolobus tokodaii PCNA复合体的生化性质暨Hjm与Hjc相互作用的初步鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生存在自然环境中的所有生物都会不可避免地面临各种不利于其生长的危险,例如来自于生活环境中的各种有害化学物质以及生物自身体内的有害代谢产物等等,这些因素都会对生物的基因组DNA造成损伤,而生物体内拥有完整的一套DNA修复系统,维持其基因组稳定。值得注意的是超嗜热古菌比起一般生物生活环境更加恶劣,但是仍然能活跃生存在那种极端环境中,其体内必定含有更优越的DNA损伤修复机制。此外,由于古菌DNA代谢中的各种因子与细菌相比更相似于真核生物,所以探索古菌DNA代谢奥秘,无疑也会为复杂的真核生物研究提供可靠的帮助。
     滑动夹(sliding clamp)参与DNA复制,修复以及细胞周期调控等多种DNA代谢途径,是各种生物维持生存必要的蛋白因子,可以作为一种平台与DNA代谢中的多种蛋白因子相互作用,例如DNA复制聚合酶,连接酶等。细菌中的滑动夹为DNA复制聚合酶的一个亚基称β-夹子(β-clamp),真核生物和古菌中称这一蛋白为PCNA(proliferating cell nuclear antigen)。不同生物的滑动夹虽然在序列上并不是保守的,但是结构上都是一种相似的环状复合物,中间具有一DNA通过的孔道,预示着它们发挥功能作用的方式可能是相似的。例如,几种滑动夹都需要一种辅助蛋白的参与作用,即滑动夹装载蛋白(clamp loader),细菌中为γ-复合物,而真核生物和细菌中为RFC(replication factor C,RFC)。然而,滑动夹复合物在三种生物域中也具有多样性,例如,他们寡聚状态也并不保守,细菌中的β-夹子为同源二聚体,真核生物及广古菌中PCNA为同源三聚体,而泉古菌中为异源三聚体。由于在古菌DNA修复系统中,PCNA是不可缺少的因子,因此,研究古菌的这一蛋白对于了解其特有的DNA修复机制十分有意义。
     本文主要介绍了对超嗜热古菌Sulfolobus tokodaii三个PCNA亚基间的相互作用和一些生化性质的初步研究。主要利用基因重组技术获得了来自s.tokodaii三个PCNA亚基的重组蛋白,首先利用His-pull down,酵母双杂交以及分子筛层析等蛋白互作方法,检测到体内,体外PCNA单亚基均不能形成同源聚体,PCNA1和PCNA3可形成二聚体,PCNA1,PCNA2和PCNA3形成三聚体。很有意思的是我们发现PCNA2和PCNA3也可形成三聚体,其中的成分有两种可能,即PCNA223和PCNA323。接下来我们设计实验验证其成分,主要是利用His-pull down方法,鉴定出了一种新的PCNA三聚体,其成分为PCNA323。然后结合Pull down和分子筛层析两种方法将PUNA123和PCNA323两种三聚复合体分别纯化出来,并分别检测它们对参与DNA修复的几个蛋白因子活性的影响。发现两种复合体均以相同程度抑制解旋酶StoHjm以及连接酶StoLigase活性,PCNA323较强于PCNA123刺激核酸内切酶StoHjc的活性。本实验所获得的实验数据与其他报道相比较分析,发现古菌中的PCNA亚基间相互作用关系具有一定的多样性,即使是同属泉古菌的S.solfataricus或Aeropyrum pernix中的同源PCNA都存在着差别。关于本文中鉴定出的PCNA两种三聚体复合体的具体功能,以及相互之间差异还需要进一步的实验分析.
     另外,有文章报道在S.solfataricus中PCNA可以与重组修复过程中的核酸酶Hjc(Holliday junction cleavage)具有相互作用,pyrococcus.furiosus中PCNA与Hjm具有相互作用。同时,我们发现S.tokodaii中StoHjc可以与同样参与重组修复途径的StoHjm解旋酶(Holliday junction migration)具有相互作用,根据以上信息,我们推测PCNA,StoHjc和StoHjm可能会形成一种三聚体行使某种生理功能,于是着手实验验证这种猜测。在本论文的后一部分,我们介绍了有关StoHjm和StoHjc的工作,通过分子筛层析,His-pull down和酵母双杂交证明了StoHjm可以与StoHjc之间存在相互作用,并且StoHjc抑制StoHjm的解旋酶活性。目前,虽然没有检测到StoHjm和核酸内切切酶StoHjc与PCNA之间具有相互作用,但是我们会优化实验条件继续研究。另外,为了了解StoHjm与StoHjc相互作用的分子机制,我们计划利用缺失突变方法进一步探索。
     本文初步研究了S.tokodaii中PCNA,以及Hjm和Hjc这几个蛋白的生化性质及其相互之间的关系,为深入了解S.tokodaii的修复机制提供了依据,并为进一步研究奠定了基础。
Organisms in the environments always encounter many barriers to survival, for examples, DNA damages caused by chemical agents from environments and by the byproducts of normal metabolism. So, there exist various pathways in organisms living actively in the environments to overcome these damages and stabilize genomes. Especially, hyperthermophilic archaea can flourish in habitats of extreme temperatures, without obvious difference in genetic mutation frequency from organisms living in mesophilic environments. This fact indicates the existence of a unique and effective DNA repair system in thermophilic archaea. Intriguingly, genome sequence comparison has revealed that archaeal information processing processes (DNA replication, transcription, and translation) are far more closely related to those in eukarya than bacteria, although metabolic and cell division proteins in archaea resemble those of bacteria. Therefore, it is very helpful to investigate protein factors involving in the DNA metabolism in archaea for the research on eukarya with more complicated systems and dealing with many diseases in human.
     Sliding clamps, called proliferating cell nuclear antigen (PCNA) in Archaea or Eukarya andβ-clamp in bacteria, play an essential role in many DNA metabolic processes, including cell cycle control, DNA replication, and repair in all organisms. This protein may function as a moving platform on which enzymes implicated in genetic information processes are exchanged. All sliding clamps from prokaryotes and eukaryotes form similar planar ring structures with a central channel that is of sufficient width to encircle duplex DNA, which suggests all sliding clamps may share the similar molecular mechanism in function. For example, architecture and mechanism of clamps and clamp loaders (γ-complex in E. coli, RFC in archaea and eukarya) are conserved across the three domains of life. Even though all sliding clamps share several similar features, individual clamps from different domains of life exist in low level of sequence identity and different Oligomeric states. Specifically, twoβ-clamp protomers in E. coli dimerize to form a ring, and PCNA is a homotrimeric ring in Eukarya and Euryarchaeota, while there exist heterotrimeric complexes in Crenarchaeota. Given that diverse PCNAs are key factors in DNA replication and repair system, studies of PCNA could provide much information for the further exploration on the specific repair mechanism in archaea.
     Here, in the main part of this study, we described the biochemical properties of the three PCNAs from Sulfolobus tokodaii strain 7, a hyperthermophilic archaeon belonging to Crearchaeota. We cloned genes encoding PCNA1, PCNA2, PCNA3, Hjm, Hjc and Ligase from S. tokodaii, overexpressed the recombinant proteins in E. coli, and purified these proteins uisng Ni-NTA or HiTrap Q column in vitro.
     About the relationship among three subunits of PCNAs, some interesting results were obtained by methords of gel filtration and yeast two-hybrid. Firstly, it was found that none of the PCNAs homo-multimerize and PCNA1 and PCNA3 can interact with each other, but PCNA1 and PCNA2 can not. Secondly, we identified for the first time a novel trimeric PCNA complex (PCNA323) composed of one PCNA2 and two PCNA3 probably similar to the ring complex (PCNA123) formed by PCNA1, PCNA2 and PCNA3.
     In order to compare difference in function of the PCNA323 and PCNA123 complex, we purified them by combination of His-pulldown with gel filtration methods. Then, we added the two complexes into the reaction systems of different enzymes including StoHjm, StoLigase and StoHjc respectively. The results indicated that both complexes inhabited the unwinding activity of Hjm and Ligase in vitro. What is more, PCNA323 stimulated the cleavage activity of Hjc more strongly than PCNA123. Further experiment is needed to determine the detailed difference or similarity between the two complexes.
     Additionally, it has been reported that PCNA can stimulate the cleavage activity of Hjc (Holliday junction cleavage) involving in recombination repair pathway in S. solfataricus, and PCNA can interact physically with Hjm in Pyrococcus. furiosus. Furthermore, our initial result on StoHjm showed that Hjm also physically interacts with StoHjc in S. tokodaii. Based on these results, we predicted that PCNA, StoHjm and StoHjc may form a heterotrimeric complex implicating in the same repair pathway. In the second part of this thesis, results on the interaction between StoHjm and StoHjc were presented. We described that StoHjm physically interacts with StoHjc in S. tokodaii by using His-pull down, gel filtration and yeast two-hybrid, and StoHjc inhibits unwinding activity of StoHjm. Although the interaction between PCNA and StoHjc or StoHjm could not been detected, interaction may be ditected by optimizing experiment protocol or analyzing the three proteins all together. Additionally, to clarify the molecular mechanism about StoHjm interacting with StoHjc, we plan to construct a series of deletion mutants of StoHjm and test the relationship of these mutants and StoHjc.
     In conclusion, we described the biochemical properties and physical interactions of several proteins related to DNA metabolism in S. tokodaii, including PCNA, Hjm, and Hjc. Our results may facilitate further understanding of the specific DNA repair system in archaea.
引文
[1] Woese CR, Fox GE. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A. 1977 Nov; 74(11):5088-90.
    [2] Woese CR, Kandler 0, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U SA. 1990 Jun;87(12):4576-9.
    [3] Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, Blake JA, FitzGerald LM, Clayton RA, Gocayne JD, Kerlavage AR, Dougherty BA, Tomb JF, Adams MD, Reich CIOverbeek R, Kirkness EF, Weinstock KG, Merrick JM, Glodek A, Scott JL, Geoghagen NS, Venter JC. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science. 1996 Aug; 273(5278):1058-73.
    [4] Olsen GJ, Woese CR. Lessons from an Archaeal genome: what are we learning from Methanococcus jannaschii? Trends Genet. 1996 Oct; 12(10):377-9.
    [5] Grabowski B, Kelman Z. Archeal DNA replication: eukaryal proteins in a bacterial context. Annu Rev Microbiol. 2003 Aug; 57(66):487-516.
    [6] Barns SM, Delwiche CF, Palmer JD, Pace NR. Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc Natl Acad Sci U S A. 1996 Aug; 93(17):9188-93.
    [7] Barns SM, Fundyga RE, Jeffries MW, Pace NR. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc Natl Acad Sci U S A. 1994 Mar; 91(5):1609-13.
    [8] Brock TD, Brock KM, Belly RT, Weiss RL. Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol. 1972 Jun;84(1):54-68.
    [9] Erauso G, Reysenbach AL. Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Arch Microbiol. 1993 Feb; 160(22):338-349.
    [10] Fischer F, Zillig W, Stetter KO, Schreiber G Chemolithoautotrophic metabolism of anaerobic extremely thermophilic archaebacteria. Nature. 1983 Feb 10; 301(5900):511-3.
    
    [11] Hicks PM, Kelly RM. Encyclopedia of bioprocess technology: fermentation, biocatalysis, and bioseparation. 1999 Apr; 21(2):2536-2552.
    [12]Jaenicke R.What ultrastable globular proteins teach us about protein stabilization.Biochemistry(Mosc).1998 Mar;63(3):312-21.
    [13]Lowe SE,Jain MK,Zeikus JG.Biology,ecology,and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature,pH,salinity,or substrates.Microbiol Rev.1993 Jun;57(2):451-509.
    [14]Marteinsson VT,Birrien JL,Reysenbach AL,Vernet M,Marie D,Gambacorta A,Messner P,Sleytr UB,Prieur D.Thermococcus barophilus sp.nov.,a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent.Int J Syst Bacteriol.1999 Apr;49(2):351-9.
    [15]Nelson CM,Schuppenhauer MR,Clark DS.High-pressure,high-temperature bioreactor for comparing effects of hyperbaric and hydrostatic pressure on bacterial growth.Appl Environ Microbiol.1992 May;58(5):1789-93.
    [16]Reysenbach AL,Deming JW.Effects of Hydrostatic Pressure on Growth of Hyperthermophilic Archaebacteria from the Juan de Fuca Ridge.Appl Environ Microbiol.1991 Apr;57(4):1271-1274.
    [17]Stetter KO.Hyperthermophilic procaryotes.FEMS Microbiol.Rev.1996 May;18(3-5):149-158.
    [18]Zeikus JG,Wolfe RS.Methanobacterium thermoautotrophicus sp.n.,an anaerobic,autotrophic,extreme thermophile.J Bacteriol.1972 Feb;109(2):707-15.
    [19]Stetter KO,Fiala G,Huber G,Huber R,Segerer A.Hyperthermophilic microorganisms.FEMS Microbiol Rev.1990 Jun;75(2-3):117-124.
    [20]Egerer A,Trincone A,Gahrtz M,Stetter KO.Stygiolobus azoricus gen.sp.nov.,represents a novel genus of anaerobic extremely thermophilic archaebacteria of the order Sulfolobales.Syst Bacteriol.1991 Feb;41(11):495-501.
    [21]Fuchs T,Huber H,Burggraf S,Stetter KO.16S rDNA-based phylogeny ofthe archaeal order Sulfolobales and reclassification of Desulfurolobus ambivalens as Acidianus ambivalens comb.nov.Syst Appl Microbiol.1996 Jun;19(11):56-60.
    [22]Trevisanato SI,Larsen N,Segerer AH,Stetter K,Garrett RA.Phylogenetic analysis of the archaeal order of Sulfolobales based on sequences of 23S rRNA genes and 16S/23S rDNA spacers.Syst Appl Microbiol.1996 Mar;19(41):61-65.
    [23] Burggraf S, Huber H, Stetter KO. Reclassification of the crenarchael orders and families in accordance with 16S rRNA sequence data. Int J Syst Bacteriol. 1997 Jul; 47(3):657-60.
    [24] Jan RL, Wu J, Chaw SM, Tsai CW, Tsen SD. A novel species of thermoacidophilic archaeon, Sulfolobus yangmingensis sp. nov. Int J Syst Bacteriol. 1999 Oct; 49(4): 1809-16.
    [25] Zillig W. Confusion in the assignments of Sulfolobus sequences to Sulfolobus species. Nucleic Acids Res. 1993 Nov; 21(22):5273.
    [26] Kurosawa N, Itoh YH, Iwai T, Sugai A, Uda I, Kimura N, Horiuchi T, Itoh T. Sulfurisphaera ohwakuensis gen.nov., sp. nov., a novel extremely thermophilic acidophile of the order Sulfolobales. Int J Syst Bacteriol. 1998 Apr; 48(2):451-6.
    [27] Inatomi K, Ohba M, Oshima T. Chemical properties of proteinaceous cell wall from an acido-thermophile, Sulfolobus acidocaldarius. Chem Lett. 1983 Oct;3(21):1191-1194.
    [28] Kondo S, Yamagishi A, Oshima T. Positive selection for uracil auxotrophs of the sulfur-dependent thermophilic archaebacterium Sulfolobus acidocaldarius by use of 5-fluoroorotic acid. J Bacteriol. 1991 Dec; 73(23):7698-700.
    [29] Iwasaki T, Matsuura K, Oshima T. Resolution of the aerobic respiratory system of the thermoacidophilic archaeon, Sulfolobus sp. strain 7. I. The archaeal terminal oxidase supercomplex is a functional fusion of respiratory complexes Ⅲ and Ⅳ with no c-type cytochromes. J Biol Chem. 1995 Dec; 270(52):30881-92.
    [30] Kawarabayasi Y, Sawada M, Horikawa H, Haikawa Y, Hino Y, Yamamoto S, Sekine M, Baba S, Kosugi H, Hosoyama A, Nagai Y, Sakai M, Ogura K, Otsuka R, Nakazawa H, Takamiya M, Ohfuku Y, Funahashi T, Tanaka T, Kudoh Y, Yamazaki J, Kushida N, Oguchi A, Aoki K, Kikuchi H. Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3. DNA Res. 1998 Apr; 5(2):55-76.
    [31] Kawarabayasi Y, Hino Y, Horikawa H, Yamazaki S, Haikawa Y, Jin-no K, Takahashi M, Sekine M, Baba S, Ankai A, Kosugi H, Hosoyama A, Fukui S, Nagai Y, Nishijima K, Nakazawa H, Takamiya M, Masuda S, Funahashi T, Tanaka T, Kudoh Y, Yamazaki J, Kushida N, Oguchi A, Kikuchi H, et al. Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1. DNARes. 1999 Apr; 6(2):83-101,145-52.
    [32] Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, Blake JA, FitzGerald LM, Clayton RA Gocayne JD, Kerlavage AR, Dougherty BA, Tomb JF, Adams MD, Reich CI, Overbeek R, Kirkness EF, Weinstock KG, Merrick JM, Glodek A, Scott JL, Geoghagen NS, Venter JC. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science. 1996 Aug; 273(5278): 1058-73.
    [33] Smith DR, Doucette-Stamm LA, Deloughery C, Lee H, Dubois J, Aldredge T, Bashirzadeh R, Blakely D, Cook R, Gilbert K, Harrison D, Hoang L, Keagle P, Lumm W, Pothier B, Qiu D, Spadafora R, Vicaire R, Wang Y, Wierzbowski J, Gibson R, Jiwani N, Caruso A, Bush D, Reeve JN, et al. Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics. J Bacteriol. 1997 Nov; 179(22):7135-55.
    [34] Klenk HP, Clayton RA, Tomb JF, White O, Nelson KE, Ketchum KA, Dodson RJ, Gwinn M, Hickey EK, Peterson JD, Richardson DL, Kerlavage AR, Graham DE, Kyrpides NC, Fleischmann RD, Quackenbush J, Lee NH, Sutton GG, Gill S, Kirkness EF, Dougherty BA, McKenney K, Adams MD, Loftus B, Peterson S, Reich CI, McNeil LK, Badger JH, Glodek A, Zhou L, Overbeek R, Gocayne JD, Weidman JF, McDonald L, Utterback T, Cotton MD, Spriggs T, Artiach P, Kaine BP, Sykes SM, Sadow PW, D'Andrea KP, Bowman C, Fujii C, Garland SA, Mason TM, Olsen GJ, Fraser CM, Smith HO, Woese CR, Venter JC. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature. 1997 Nov; 390(6658):364-70.
    [35] Kurosawa N, Itoh YH, Iwai T, Sugai A, Uda I, Kimura N, Horiuchi T, Itoh T. Sulfurisphaera ohwakuensis gen.nov., sp. nov., a novel extremely thermophilic acidophile of the order Sulfolobales. Int J Syst Bacteriol. 1998 Apr; 48(2):451-6.
    [36] Suzuki T, Iwasaki T, Uzawa T, Hara K, Nemoto N, Kon T, Ueki T, Yamagishi A, Oshima T. Sulfolobus tokodaii sp. nov. (Sulfolobus sp. strain 7), a new member of the genus Sulfolobus isolated from Beppu Hot Springs, Japan. Extremophiles. 2002 Feb;6(1):39-44.
    [37] Hanawalt PC. Paradigms for the three rs: DNA replication, recombination, and repair. Mol Cell. 2007 Dec 14; 28(5):702-7.
    [38] Heller RC, Marians KJ. Replisome assembly and the direct restart of stalled replication forks. Nat Rev Mol Cell Biol. 2006 Dec; 7(12):932-43. Epub 2006 Nov 8.
    [39] Trincao J, Johnson RE, Escalante CR, Prakash S, Prakash L, Aggarwal AK. Structure of the catalytic core of 5. cerevisiae DNA polymerase eta: implications for translesion DNA synthesis. Mol Cell. 2001 Aug; 8(2):417-26.
    [40] Yang W, Woodgate R. What a difference a decade makes: insights into translesion DNA synthesis. Proc Natl Acad Sci U S A. 2007 Oct; 104(40):15591-8. Epub 2007 Sep 26.
    [41] Higgins NP, Kato K, Strauss B. A model for replication repair in mammalian cells. J Mol Biol. 1976 Mar; 101(3):417-25.
    [42] Blastyak A, Pinter L, Unk I, Prakash L, Prakash S, Haracska L. Yeast Rad5 protein required for postreplication repair has a DNA helicase activity specific for replication fork regression. Mol Cell. 2007 Oct; 28(1): 167-75.
    [43] Ogi T, Lehmann AR. The Y-family DNA polymerase kappa (pol kappa) functions in mammalian nucleotide-excision repair. Nat Cell Biol. 2006 Jun; 8(6):640-2.
    [44] Eisen JA, Hanawalt PC. A phylogenomic study of DNA repair genes, proteins, and processes. Mutat Res. 1999 Dec; 435(3):171-213.
    [45] Hayashi I, Morikawa K, Ishino Y Specific interaction between DNA polymerase Ⅱ (PolD) and RadB, a Rad51/Dmcl homolog, in Pyrococcus furiosus. Nucleic Acids Res. 1999 Dec; 27(24):4695-702.
    [46] Johnson A, O'Donnell M. Cellular DNA replicases: components and dynamics at the replication fork. Annu Rev Biochem. 2005 Dec; 74(33):283-315.
    [47] Waga S, Stillman B. The DNA replication fork in eukaryotic cells. Annu Rev Biochem. 1998 Jun; 67(45):721-51.
    [48] Fotedar R, Mossi R, Fitzgerald P, Rousselle T, Maga G, Brickner H, Messier H, Kasibhatla S, Hubscher U, Fotedar A. A conserved domain of the large subunit of replication factor C binds PCNA and acts like a dominant negative inhibitor of DNA replication in mammalian cells. EMBO J, 1996 Aug; 15(16):4423-33.
    [49] Indiani C, O'Donnell M. The replication clamp-loading machine at work in the three domains of life. Nat Rev Mol Cell Biol. 2006 Oct; 7(10):751-61. Epub 2006 Sep 6.
    [50] Warbrick E.The puzzle of PCNA's many partners. Bioessays. 2000 Nov; 22(11):997-1006.
    [51] Miyata T, Suzuki H, Oyama T, Mayanagi K, Ishino Y, Morikawa K. Open clamp structure in the clamp-loading complex visualized by electron microscopic image analysis. Proc Natl Acad Sci U S A. 2005 Sep 27; 102(39): 13795-800. Epub 2005 Sep 16.
    [52]Bowman GD,O'Donnell M,Kuriyan J.Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex.Nature.2004 Jun 17;429(6993):724-30.
    [53]Jeruzalmi D,O'Donnell M,Kuriyan J.Crystal structure of the processivity clamp loader gamma(gamma)complex of E.coli DNA polymerase Ⅲ.Cell.2001 Aug 24;106(4):429-41.
    [54]Jeruzalmi D,Yurieva O,Zhao Y,Young M,Stewart J,Hingorani M,O'Donnell M,Kuriyan J.Mechanism of processivity clamp opening by the delta subunit wrench of the clamp loader complex of E.coli DNA polymerase Ⅲ.Cell.2001Aug 24;106(4):417-28.
    [55]Trakselis MA,Benkovic SJ.Intricacies in ATP-dependent clamp loading:variations across replication systems.Structure.2001 Nov;9(11):999-1004.
    [56]Kong XP,Onrust R,O'Donnell M,Kuriyan J.Three-dimensional structure of the beta subunit of E.coli DNA polymerase Ⅲ holoenzyme:a sliding DNA clamp.Cell.1992 May;69(3):425-37.
    [57]Moarefi I,Jeruzalmi D,Turner J,O'Donnell M,Kuriyan J.Crystal structure of the DNA polymerase processivity factor of T4 bacteriophage.J Mol Biol.2000Mar;296(5):1215-23.
    [58]Gulbis JM,Kelman Z,Hurwitz J,O'Donnell M,Kuriyan J.Structure of the C-terminal region of p21(WAF1/CIP1)complexed with human PCNA.Cell.1996 Oct;87(2):297-306.
    [59]Krishna TS,Kong XP,Gary S,Burgers PM,Kuriyan J.Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA.Cell.1994 Dec;79(7):1233-43.
    [60]Matsumiya S,Ishino Y,Morikawa K.Crystal structure of an archaeal DNA sliding clamp:proliferating cell nuclear antigen from Pyrococcus furiosus.Protein Sci.2001 Jan;10(1):17-23.
    [61]Dionne I,Nookala RK,Jackson SP,Doherty AJ,Bell SD.A heterotrimeric PCNA in the hyperthermophilic archaeon Sulfolobus solfataricus.Mol Cell.2003 Jan;11(1):275-82.
    [62]Daimon K,Kawarabayasi Y,Kikuchi H,Sako Y,Ishino Y.Three proliferating cell nuclear antigen-like proteins found in the hyperthermophilic archaeon Aeropyrum pernix:interactions with the two DNA polymerases.J Bacteriol.2002Feb;184(3):687-94.
    [63]Lindsey-Boltz LA,Bermudez VP,Hurwitz J,Sancar A.Purification and characterization of human DNA damage checkpoint Rad complexes. Proc Natl Acad Sci U S A. 2001 Sep 25; 98(20): 11236-41.
    [64] Venclovas C, Thelen MR Structure-based predictions of Radl, Rad9, Husl and Rad 17 participation in sliding clamp and clamp-loading complexes. Nucleic Acids Res. 2000 Jul 1; 28(13):2481-93.
    [65] Cullmann G, Fien K, Kobayashi R, Stillman B.Characterization of the five replication factor C genes of Saccharomyces cerevisiae. Mol Cell Biol. 1995 Sep; 15(9):4661-71.
    [66] Kelman Z, O'Donnell M. DNA polymerase Ⅲ holoenzyme: structure and function of a chromosomal replicating machine. Annu Rev Biochem. 1995; 64:171-200.
    [67] Turner J, Hingorani M,Turner J, Hingorani MM, Kelman Z, O'Donnell M. The internal workings of a DNA polymerase clamp-loading machine. EMBO J. 1999 Feb 1; 18(3):771-83.
    [68] Naktinis V, Onrust R, Fang L, O'Donnell M. Assembly of a chromosomal replication machine: two DNA polymerases, a clamp loader, and sliding clamps in one holoenzyme particle. Ⅱ. Intermediate complex between the clamp loader and its clamp. J Biol Chem. 1995 Jun 2; 270(22):13358-65.
    [69] Bertram JG, Bloom LB, Hingorani MM, Beechem JM, O'Donnell M, Goodman MF. Molecular mechanism and energetics of clamp assembly in Escherichia coli. The role of ATP hydrolysis when gamma complex loads beta on DNA. J Biol Chem. 2000 Sep 15; 275(37):28413-20.
    [70] Ason B, Bertram JG, Hingorani MM, Beechem JM, O'Donnell M, Goodman MF, Bloom LB.A model for Escherichia coli DNA polymerase Ⅲ holoenzyme assembly at primer/template ends. DNA triggers a change in binding specificity of the gamma complex clamp loader. J Biol Chem. 2000 Jan 28; 275(4):3006-15.
    [71] Ason B, Handayani R, Williams CR, Bertram JG, Hingorani MM, O'Donnell M, Goodman MF, Bloom LB. Mechanism of loading the Escherichia coli DNA polymerase Ⅲ beta sliding clamp on DNA. Bona fide primer/templates preferentially trigger the gamma complex to hydrolyze ATP and load the clamp. J Biol Chem. 2003 Mar 21; 278(12):10033-40. Epub 2003 Jan 8.
    [72] Grúz P, Pisani FM, Shimizu M, Yamada M, Hayashi I, Morikawa K, Nohmi T. Synthetic activity of Sso DNA polymerase YI, an archaeal DinB-like DNA polymerase, is stimulated by processivity factors proliferating cell nuclear antigen and replication factor C. J Biol Chem. 2001 Dec 14; 276(50):47394-401. Epub 2001 Oct1.
    [73] Pritchard AE, Dallmann HG, Glover BP, McHenry CS. A novel assembly mechanism for the DNA polymerase Ⅲ holoenzyme DnaX complex: association of deltadelta' with DnaX(4) forms DnaX(3)deltadelta'. EMBO J. 2000 Dec 1; 19(23):6536-45.
    [74] Flower AM, McHenry CS. The gamma subunit of DNA polymerase Ⅲ holoenzyme of Escherichia coli is produced by ribosomal frameshifting. Proc Natl Acad Sci U S A. 1990 May; 87(10):3713-7.
    [75] Tsuchihashi Z, Kornberg A. Translational frameshifting generates the gamma subunit of DNA polymerase Ⅲ holoenzyme. Proc Natl Acad Sci U S A. 1990 Apr; 87(7):2516-20.
    [76] Blinkowa AL, Walker JR. Programmed ribosomal frameshifting generates the Escherichia coli DNA polymerase Ⅲ gamma subunit from within the tau subunit reading frame. Nucleic Acids Res. 1990 Apr; 18(7): 1725-9.
    [77] Dallmann HG, Kim S, Pritchard AE, Marians KJ, McHenry CS. Characterization of the unique C terminus of the Escherichia coli tau DnaX protein. Monomeric C-tau binds alpha AND DnaB and can partially replace tau in reconstituted replication forks. J Biol Chem. 2000 May; 275(20): 15512-9.
    [78] Gao D, McHenry CS. tau binds and organizes Escherichia coli replication through distinct domains. Partial proteolysis of terminally tagged tau to determine candidate domains and to assign domain V as the alpha binding domain. J Biol Chem. 2001 Feb; 276(6):4433-40. Epub 2000 Nov 14.
    [79] Kim S, Dallmann HG, McHenry CS, Marians KJ.Coupling of a replicative polymerase and helicase: a tau-DnaB interaction mediates rapid replication fork movement. Cell. 1996 Feb; 84(4):643-50.
    [80] Yuzhakov A, Turner J, O'Donnell M. Replisome assembly reveals the basis for asymmetric function in leading and lagging strand replication. Cell. 1996 Sep 20; 86(6):877-86.
    [81] Onrust R, O'Donnell M. DNA polymerase Ⅲ accessory proteins. Ⅱ. Characterization of delta and delta'. J Biol Chem. 1993 Jun 5; 268(16):11766-72.
    [82] Pritchard AE, Dallmann HG, McHenry CS. In vivo assembly of the tau-complex of the DNA polymerase Ⅲ holoenzyme expressed from a five-gene artificial operon. Cleavage of the tau-complex to form a mixed gamma-tau-complex by the Omp T protease. J Biol Chem. 1996 Apr 26; 271 (17): 10291-8.
    [83] Gulbi JM, Kazmirski SL, Finkelstein J, Kelman Z, O'Donnell M, Kuriyan J. Crystal structure of thechi: psi sub-assembly of the Escherichia coli DNA polymerase clamp-loader complex. Eur J Biochem. 2004 Jan; 271(2):439-49.
    [84] Jonsson ZO, Hübscher U. Proliferating cell nuclear antigen: more than a clamp for DN Apolymerases. Bioessays. 1997 Nov; 19(11):967-75.
    [85] Tsurimoto T. PCNA, a multifunctional ring on DNA. Biochim Biophys Acta. 1998 Nov 26;1443(1-2):23-39.
    [86] Kelman Z. PCNA: structure, functions and interactions. Oncogene. 1997 Feb 13; 14(6):629-40.
    [87] Garg P, Burgers PM. DNA polymerases that propagate the eukaryotic DNA replication fork. Crit Rev Biochem Mol Biol. 2005 Mar-Apr; 40(2): 115-28.
    [88] Hubscher U, Maga G, Spadari S. Eukaryotic DNA polymerases. Annu Rev Biochem. 2002; 71:133-63. Epub 2001 Nov 9.
    [89] Krishna TS, Kong XP, Gary S, Burgers PM, Kuriyan J. Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell. 1994 Dec 30; 79(7):1233-43.
    [90] Mossi R, Jonsson ZO, Allen BL, Hardin SH, Hubscher U. Replication factor C interacts with the C-terminal side of proliferating cell nuclear antigen. J Biol Chem. 1997 Jan 17; 272(3): 1769-76.
    [91] Oku T, Ikeda S, Sasaki H, Fukuda K, Morioka H, Ohtsuka E, Yoshikawa H, Tsurimoto T. Functional sites of human PCNA which interact with p21 (Cip1/Waf1), DNA polymerase delta and replication factor C. Genes Cells. 1998 Jun; 3(6):357-69.
    [92] De Felice M, Sensen CW, Charlebois RL, Rossi M, Pisani FM.Two DNA polymerase sliding clamps from the thermophilic archaeon Sulfolobus solfataricus. J Mol Biol. 1999 Aug 6; 291(1):47-57.
    [93] Uhlmann F, Gibbs E, Cai J, O'Donnell M, Hurwitz J. Identification of regions within the four small subunits of human replication factor C required for complex formation and DNA replication. J Biol Chem. 1997 Apr 11; 272(15):10065-71.
    [94] Bunz F, Kobayashi R, Stillman B. cDNAs encoding the large subunit of human replication factor C. Proc Natl Acad Sci U S A. 1993 Dec 1; 90(23): 11014-8.
    [95] Ellison V, Stillman B. Biochemical characterization of DNA damage checkpoint complexes: clamp loader and clamp complexes with specificity for 5' recessed DNA. PLoS Biol. 2003 Nov; 1(2):E33.
    [96] Zou L, Liu D, Elledge SJ. Replication protein A-mediated recruitment and activation of Radl7 complexes. Proc Natl Acad Sci U S A. 2003 Nov 25; 100(24): 13827-32.
    [97] Sancar A, Lindsey-Boltz LA, Unsal-Ka? maz K, Linn S.Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem. 2004; 73:39-85.
    [98] Majka J, Burgers PM. The PCNA-RFC families of DNA clamps and clamp loaders. Prog Nucleic Acid Res Mol Biol. 2004; 78:227-60.
    [99] Yao NY, Johnson A, Bowman GD, Kuriyan J, O'Donnell M. Mechanism of proliferating cell nuclear antigen clamp opening by replication factor C. J Biol Chem. 2006 Jun 23; 281(25): 17528-39. Epub 2006 Apr 11.
    [100] Burgers PM. Saccharomyces cerevisiae replication factor C. Ⅱ. Formation and activity of complexes with the proliferating cell nuclear antigen and with DNA polymerases delta and epsilon. J Biol Chem. 1991 Nov 25; 266(33):22698-706.
    [101] Tsurimoto T, Stillman B. Replication factors required for SV40 DNA replication in vitro. I. DNA structure-specific recognition of a primer-template junction by eukaryotic DNA polymerases and their accessory proteins. J Biol Chem. 1991 Jan 25; 266(3): 1950-60.
    [102] Gomes XV, Schmidt SL, Burgers PM. ATP utilization by yeast replication factor C. Ⅱ. Multiple stepwise ATP binding events are required to load proliferating cell nuclear antigen onto primed DNA. J Biol Chem. 2001 Sep 14; 276(37):34776-83. Epub 2001 Jun 29.
    [103] Edgell DR, Doolittle WE Archaea and the origin(s) of DNA replication proteins. Cell. 1997 Jun 27; 89(7):995-8.
    [104] Leipe DD, Aravind L, Koonin EV. Did DNA replication evolve twice independently? Nucleic Acids Res. 1999 Sep 1; 27(17):3389-401.
    [105] Hingorani MM, O'Donnell M. A tale of toroids in DNA metabolism. Nat Rev Mol Cell Biol. 2000 Oct; 1(1):22-30.
    [106] Matsumiya S, Ishino Y, Morikawa K. Crystal structure of an archaeal DNA sliding clamp: proliferating cell nuclear antigen from Pyrococcus furiosus. Protein Sci. 2001 Jan; 10(1):17-23.
    [107] Cann IK, Ishino S, Yuasa M, Daiyasu H, Toh H, Ishino Y. Biochemical analysis of replication factor C from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol. 2001 Apr; 183(8):2614-23.
    [108] Kelman Z, Hurwitz J. A unique organization of the protein subunits of the DNA polymerase clamp loader in the archaeon Methanobacterium thermoautotrophicum deltaH. J Biol Chem. 2000 Mar 10; 275(10):7327-36.
    [109] Kelman Z, Pietrokovski S, Hurwitz J. Isolation and characterization of a split B-type DNA polymerase from the archaeon Methanobacterium thermoautotrophicum deltaH. J Biol Chem. 1999 Oct 1; 274(40):28751-61.
    [110] Pisani FM, De Felice M, Carpentieri F, Rossi M. Biochemical characterization of a clamp-loader complex homologous to eukaryotic replication factor C from the hyperthermophilic archaeon Sulfolobus solfataricus. J Mol Biol. 2000 Aug 4; 301(1):61-73.
    [111] O'Donnell M, Jeruzalmi D, Kuriyan J. Clamp loader structure predicts the architecture of DNA polymerase Ⅲ holoenzyme and RFC. Curr Biol. 2001 Nov 13; 11(22):R935-46.
    [112] Cann IK, Ishino S, Hayashi I, Komori K, Toh H, Morikawa K, Ishino Y.Functional interactions of a homolog of proliferating cell nuclear antigen with DNA polymerases in Archaea. J Bacteriol. 1999 Nov; 181(21):6591-9.
    [113] Daimon K, Kawarabayasi Y, Kikuchi H, Sako Y, Ishino Y. Three proliferating cell nuclear antigen-like proteins found in the hyperthermophilic archaeon Aeropyrum pernix: interactions with the two DNA polymerases. J Bacteriol. 2002 Feb; 184(3):687-94.
    [114] De Felice M, Sensen CW, Charlebois RL, Rossi M, Pisani FM. Two DNA polymerase sliding clamps from the thermophilic archaeon Sulfolobus solfataricus. J Mol Biol. 1999 Aug 6; 291(1):47-57.
    [115] Henneke G, Raffin JP, Ferrari E, Jonsson ZO, Dietrich J, Hübscher U. The PCNA from Thermococcus fumicolans functionally interacts with DNA polymerase delta. Biochem Biophys Res Commun. 2000 Sep 24; 276(2):600-6.
    [116] Oyama T, Ishino Y, Cann IK, Ishino S, Morikawa K. Atomic structure of the clamp loader small subunit from Pyrococcus furiosus. Mol Cell. 2001 Aug; 8(2):455-63.
    [117] Seybert A, Singleton MR, Cook N, Hall DR, Wigley DB. Communication between subunits within an archaeal clamp-loader complex. EMBO J. 2006 May 17; 25(10):2209-18. Epub 2006 Apr 20.
    [118] Cann IK, Ishino Y. Archaeal DNA replication: identifying the pieces to solve a puzzle. Genetics. 1999 Aug; 152(4): 1249-67. .
    [119] Kazmirski SL, Podobnik M, Weitze TF, O'Donnell M, Kuriyan J. Structural analysis of the inactive state of the Escherichia coli DNA polymerase clamp-loader complex. Proc Natl Acad Sci U S A. 2004 Nov 30; 101 (48): 16750-5. Epub 2004 Nov 19.
    [120] Podobnik M, Weitze TF, O'Donnell M, Kuriyan J. Nucleotide-induced conformational changes in an isolated Escherichia coli DNA polymerase Ⅲ clamp loader subunit. Structure. 2003 Mar; ll(3):253-63.
    [121] Iwai T, Kurosawa N, Itoh YH, Horiuchi T. Phylogenetic analysis of archaeal PCNA homologues. Extremophiles. 2000 Dec; 4(6):357-64.
    [122] Kelman Z, Hurwitz J. Protein-PCNA interactions: a DNA-scanning mechanism? Trends Biochem Sci. 1998 Jul; 23(7):236-8.
    [123] Motz M, Kober I, Girardot C, Loeser E, Bauer U, Albers M, Moeckel G, Minch E, Voss H, Kilger C, Koegl M. Elucidation of an archaeal replication protein network to generate enhanced PCR enzymes. J Biol Chem. 2002 May 3; 277(18): 16179-88. Epub 2002 Jan 22.
    [124] Matsumiya S, Ishino S, Ishino Y, Morikawa K. Physical interaction between proliferating cell nuclear antigen and replication factor C from Pyrococcus furiosus. Genes Cells. 2002 Sep; 7(9):911-22.
    [125] Ishino Y, Tsurimoto T, Ishino S, Cann IK. Functional interactions of an archaeal sliding clamp with mammalian clamp loader and DNA polymerase delta. Genes Cells. 2001 Aug; 6(8):699-706.
    [126] Henneke G, Raffin JP, Ferrari E, Jonsson ZO, Dietrich J, Hübscher U. The PCNA from Thermococcus fumicolans functionally interacts with DNA polymerase delta. Biochem Biophys Res Commun. 2000 Sep 24; 276(2):600-6.
    [127] Imamura K, Fukunaga K, Kawarabayasi Y, Ishino Y. Specific interactions of three proliferating cell nuclear antigens with replication-related proteins in Aeropyrum pernix. Mol Microbiol. 2007 Apr; 64(2):308-18.
    [128] Komori K, Miyata T, DiRuggiero J, Holley-Shanks R, Hayashi I, Cann IK, Mayanagi K, Shinagawa H, Ishino Y. Both RadA and RadB are involved in homologous recombination in Pyrococcus furiosus. J Biol Chem. 2000 Oct 27; 275(43):33782-90.
    [129] Gorbalenya AE, Koonin EV. Helicases: amino acid sequence comparisons and structure-function relationships. Curr Opin Struct Biol. 1993 Oct; 3(12): 419-429.
    [130] Singleton MR, Wigley DB. Modularity and specialization in superfamily 1 and 2 helicases. J Bacteriol. 2002 Apr; 184(7):1819-26.
    [131] Boyd JB, Golino MD, Nguyen TD, Green MM.Isolation and characterization of X-linked mutants of Drosophila melanogaster which are sensitive to mutagens. Genetics. 1976 Nov; 84(3):485-506.
    [132] Seki M, Marini F, Wood RD. POLQ (Pol theta), a DNA polymerase and DNA-dependent ATPase in human cells. Nucleic Acids Res. 2003 Nov 1; 31(21):6117-26.
    [133] Yoshimura M, Kohzaki M, Nakamura J, Asagoshi K, Sonoda E, Hou E, Prasad R, Wilson SH, Tano K, Yasui A, Lan L, Seki M, Wood RD, Arakawa H, Buerstedde JM, Hochegger H, Okada T, Hiraoka M, Takeda S. Vertebrate POLQ and POLbeta cooperate in base excision repair of oxidative DNA damage. Mol Cell.2006 Oct 6;24(1):115-25.
    [134] Takata K, Shimizu T, Iwai S, Wood RD. Human DNA polymerase N (POLN) is a low fidelity enzyme capable of error-free bypass of 5S-thymine glycol. J Biol Chem. 2006 Aug 18; 281(33):23445-55. Epub 2006 Jun 19.
    [135] Marini F, Wood RD. A human DNA helicase homologous to the DNA cross-link sensitivity protein Mus308. J Biol Chem. 2002 Mar 8; 277(10):8716-23. Epub 2001 Dec 18.
    [136] McCaffrey R, St Johnston D, Gonzalez-Reyes A. Drosophila mus301/spindle-C encodes a helicase with an essential role in double-strand DNA break repair and meiotic progression. Genetics. 2006 Nov; 174(3): 1273-85. Epub 2006 Aug 3.
    [137] Guy CP, Haldenby S, Brindley A, Walsh DA, Briggs GS, Warren MJ, Allers T, Bolt EL. Interactions of RadB, a DNA repair protein in archaea, with DNA and ATP. J Mol Biol. 2006 Apr 21; 358(1):46-56. Epub 2006 Feb 21.
    [138] Kawarabayasi Y, Hino Y, Horikawa H, Jin-no K, Takahashi M, Sekine M, Baba S, Ankai A, Kosugi H, Hosoyama A, Fukui S, Nagai Y, Nishijima K, Otsuka R, Nakazawa H, Takamiya M, Kato Y, Yoshizawa T, Tanaka T, Kudoh Y, Yamazaki J, Kushida N, Oguchi A, Aoki K, Masuda S, Yanagii M, Nishimura M, Yamagishi A, Oshima T, Kikuchi H. Complete genome sequence of an aerobic thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain 7. DNA Res. 2001 Aug 31;8(4):123-40.
    [139] Singleton MR, Dillingham MS, Wigley DB. Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem. 2007; 76:23-50.
    [140] Fujikane R, Komori K, Shinagawa H, Ishino Y. Identification of a novel helicase activity unwinding branched DNAs from the hyperthermophilic archaeon, Pyrococcus furiosus. J Biol Chem. 2005 Apr 1; 280(13):12351-8. Epub 2005 Jan 27.
    [141] Fujikane R, Shinagawa H, Ishino Y. The archaeal Hjm helicase has recQ-like functions, and may be involved in repair of stalled replication fork. Genes Cells. 2006 Feb;11(2):99-110.
    [142] Guy CP, Bolt EL. Archaeal Hel308 helicase targets replication forks in vivo and in vitro and unwinds lagging strands. Nucleic Acids Res. 2005 Jun 30; 33(11):3678-90.
    [143] S Buttner K, Nehring S, Hopfner KP. Structural basis for DNA duplex separation by a superfamily-2 helicase. Nat Struct Mol Biol. 2007 Jul; 14(7):647-52. Epub 2007 Jun 10.
    [144] Woodman IL, Briggs GS, Bolt EL. Archaeal Hel308 domain V couples DNA binding to ATP hydrolysis and positions DNA for unwinding over the helicase ratchet. J Mol Biol. 2007 Dec 14; 374(5): 1139-44. Epub 2007 Oct 10.
    [145] McGlynn P, Lloyd RG, Marians KJ. Formation of Holliday junctions by regression of nascent DNA in intermediates containing stalled replication forks: RecG stimulates regression even when the DNA is negatively supercoiled. Proc Natl Acad Sci U S A. 2001 Jul 17; 98(15):8235-40.
    [146] Marini F, Wood RD. A human DNA helicase homologous to the DNA cross-link sensitivity protein Mus308. J Biol Chem. 2002 Mar 8; 277(10):8716-23. Epub 2001 Dec 18.
    
    [147] Richards JD, Johnson KA, Liu H, McRobbie AM, McMahon S, Oke M, Carter L, Naismith JH, White MF. Structure of the DNA repair helicase hel308 reveals DNA binding and autoinhibitory domains. J Biol Chem. 2008 Feb 22; 283(8):5118-26. Epub 2007 Dec 4.
    [148] Li Z, Lu S, Hou G, Ma X, Sheng D, Ni J, Shen Y. Hjm/Hel308A DNA helicase from Sulfolobus tokodaii promotes replication fork regression and interacts with Hjc endonuclease in vitro. J Bacteriol. 2008 Apr; 190(8):3006-17. Epub 2008 Feb 22.
    [149] Cheok CF, Wu L, Garcia PL, Janscak P, Hickson ID. The Bloom's syndrome helicase promotes the annealing of complementary single-stranded DNA.. Nucleic Acids Res. 2005 Jul 15; 33(12):3932-41.
    [150] McGlynn P, Lloyd RG. Modulation of RNA polymerase by (p)ppGpp reveals a RecG-dependent mechanism for replication fork progression. Cell. 2000 Mar 31; 101(1):35-45.
    [151] McGlynn P, Lloyd RG. Genome stability and the processing of damaged replication forks by RecG. Trends Genet. 2002 Aug; 18(8):413-9.
    [152] McGlynn P, Lloyd RG. Rescue of stalled replication forks by RecG: simultaneous translocation on the leading and lagging strand templates supports an active DNA unwinding model of fork reversal and Holliday junction formation. Proc Natl Acad Sci U S A. 2001 Jul 17; 98(15):8227-34.
    [153] McGlynn P, Lloyd RG, Marians KJ. Formation of Holliday junctions by regression of nascent DNA in intermediates containing stalled replication forks: RecG stimulates regression even when the DNA is negatively supercoiled. Proc Natl Acad Sci U S A. 2001 Jul 17; 98(15):8235-40.
    [154] Garcia PL, Liu Y, Jiricny J, West SC, Janscak P. Human RECQ5beta, a protein with DNA helicase and strand-annealing activities in a single polypeptide. EMBO J. 2004 Jul 21; 23(14):2882-91. Epub 2004 Jul 8.
    [155] Sharma S, Sommers JA, Choudhary S, Faulkner JK, Cui S, Andreoli L,Muzzolini L, Vindigni A, Brosh RM Jr. Biochemical analysis of the DNA unwinding and strand annealing activities catalyzed by human RECQ1. J Biol Chem. 2005 Jul 29; 280(30):28072-84. Epub 2005 May 16.
    [156] White MF, Giraud-Panis MJ, Lilley DM. Recognition and manipulation of branched DNA structure by junction-resolving enzymes. J Mol Biol. 1997 Jun 27; 269(5):647-64.
    [157] Lilley DM, White MF. Resolving the relationships of resolving enzymes. Proc Natl Acad Sci U S A. 2000 Aug 15; 97(17):9351-3.
    [158] Daiyasu H, Komori K, Sakae S, Ishino Y, Toh H. Hjc resolvase is a distantly related member of the type Ⅱ restriction endonuclease family. Nucleic Acids Res. 2000 Nov 15;28(22):4540-3.
    [159] Komori K, Sakae S, Fujikane R, Morikawa K, Shinagawa H, Ishino Y. Biochemical characterization of the hjc holliday junction resolvase of Pyrococcus furiosus. Nucleic Acids Res. 2000 Nov 15; 28(22):4544-51.
    [160] Kvaratskhelia M, Wardleworth BN, Norman DG, White MF. A conserved nuclease domain in the archaeal Holliday junction resolving enzyme Hjc. J Biol Chem. 2000 Aug 18; 275(33):25540-6.
    [161] Komori K, Sakae S, Shinagawa H, Morikawa K, Ishino Y.A. Holliday junction resolvase from Pyrococcus furiosus: functional similarity to Escherichia coli RuvC provides evidence for conserved mechanism of homologous recombination in Bacteria, Eukarya, and Archaea. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):8873-8.
    [162] Nishino T, Komori K, Tsuchiya D, Ishino Y, Morikawa K. Crystal structure of the archaeal holliday junction resolvase Hjc and implications for DNA recognition. Structure. 2001 Mar 7; 9(3): 197-204.
    [163] Bond CS, Kvaratskhelia M, Richard D, White MF, Hunter WN. Structure of Hjc, a Holliday junction resolvase, from Sulfolobus solfataricus. Proc Natl Acad Sci U S A. 2001 May 8; 98(10):5509-14.
    [164] Kvaratskhelia M, White MF. An archaeal Holliday junction resolving enzyme from Sulfolobus solfataricus exhibits unique properties. J Mol Biol. 2000 Jan 14; 295(2): 193-202.
    [165] Middleton CL, Parker JL, Richard DJ, White MF, Bond CS. Substrate recognition and catalysis by the Holliday junction resolving enzyme Hje. Nucleic Acids Res. 2004 Oct 12; 32(18):5442-51.
    [166] Dorazi R, Parker JL, White MF. PCNA activates the Holliday junction endonuclease Hjc. J Mol Biol. 2006 Dec 1; 364(3):243-7.