基于Prony算法的小电流接地故障暂态选线技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中压配电网中性点采用非有效接地方式,能够提高单相接地故障(一般称为小电流接地故障)时的自动熄弧率并可在出现永久性接地故障时继续运行1~2小时,因此具有更高的供电可靠性。但小电流接地故障的故障电流十分微弱,相当一部分故障存在间歇性拉弧现象,给接地故障线路的选择带来了很大困难。由于缺少可靠的选线技术,时至今日许多供电部门仍不得不通过人工拉路选择故障线路,使得一些非故障线路的供电也出现不必要的中断。随着电力用户对供电可靠性和电能质量要求的提高,供电部门对于小电流接地故障选线技术越来越重视。近年来,在国内外电力科技工作者的努力下,小电流接地故障选线技术的研发取得了重大进展,一些实用化的选线装置投入现场运行,取得了较好的运行效果。但总体来看,这些选线方法和选线装置均存在一定的缺陷,在实际应用中不同程度地存在一些误选、漏选的问题,选线正确率一般在90%以下,有待于进一步提高。
     目前国内外常用的选线方法按照利用信号方式的不同可分为主动式选线方法和被动式选线方法。主动式选线方法主要包括注入信号法、残留增量法和中电阻法等,其缺点是需要额外增加设备,且安装维护较复杂。被动式选线方法包括利用故障稳态信息法和利用故障暂态信息法两类。利用稳态信号进行选线的方法主要包括(工频)零序电流幅值法、(工频)零序电流比幅比相法、(工频)零序无功功率方向法、谐波法等。稳态法存在的主要问题是接地稳态分量太小,常导致选线装置不能正确动作,而且要求短路时必须有一个持续的稳态短路过程,因此在发生间歇性电弧接地时便不再适用,也不适用于中性点经消弧线圈接地的系统。与利用稳态信号进行选线相比,利用故障后的暂态信号进行选线不受消弧线圈的影响,不受故障点电弧不稳定的影响,具有检测灵敏度高的优点。利用暂态信号进行选线的方法主要包括首半波法、暂态零模特征法(包括暂态零模特征电流幅值比较法与极性比较法、暂态零模特征信号无功功率方向法)、能量法和小波法等。其中,暂态零模特征法是利用暂态信号特征进行故障选线的重大突破,具有动作判据明确、简单、易于实现的优点,在现
In China, non-effectively earthed neutral is widely used in medium voltage distribution networks. When a single-phase earthed fault occured in non-effectively earthed network (usually called single-phase earthed fault for short), the arc self-distinguishing rate is high and the power supply can be maintained for about one or two hours for a permanent fault. Hence the power supply reliability of non-effectively earthed system is very high. However, the weak fault current and intermittent arcing in some faults makes it very difficult in selecting the faulty feeder. Up to the present, many utilities have to select the faulty feeder by manually switching off feeders due to lack of reliable selection techniques, which will result in unnecessary interruption in healthy feeders. With the consumer's increasing demand for power supply reliability and quality, the utilities pay more attention to fault detection techniques. In resent years, significant progress has been made on faulty feeder selection techniques thanks to the efforts of power system academics and engineers. Several kinds of faulty feeder selectinon equipments are invented and proved to have better reliability by the fault trial results. However, the success rate of these new faulty feeder selection equipments are less than 90 percent, therefore further improvement is needed.
     At present the conventional faulty feeder selection methods can be classified into two kinds in terms of the way of signal utilizing, active methods and passive methods. The former methods mainly include method of signal injection, residue current method, and shunt resistor method and so on. The disadvantages of the active methods are that they all require adding signal injection devices, which is complicated and mighe affect safe operation of the primary system. The passive methods can be sorted into two types: detection methods based on steady-state signals or detection methods based on transient signals. Steady-state methods include fault current amplitude and phase comparing, fault current direction method, harmonic method and so on. The main problem existed in steady-state detection method is that the fault current is too small to be detected. Moreover, the successful selection relies on the sustained earthing at the fault, where the arcing will affect the incorrect selection of the faulty feeder. Hence steady-state detection methods are all invalid in detecting the arcing faults in neutral isolated system and all kinds of faults in Peterson coil earthed system. By contrast, when selecting faulty feeder using transient signals, the influence of arc suppression coil can be neglected since the frequency of transient signal is very high. It is also invalid in case of the intermittent arc earthed fault. In addition, the detection sensitivity is very high as the amplitude of transient signal is much larger than that of steady-state signal. Detection methods using transient signals include the first half-wave method, transient zero modal selected frequency band (SFB) method (including comparing amplitude and phase of zero modal transient currents in SFB between faulty feeder and healthy feeder, detecting the reactive power direction of zero modal transient signals in SFB), energy method, Wavelet transformation method and so on. Particularly, transient zero modal SFB method is a great breakthrough in using transient signal to select faulty feeder. It is simple and can be easily realized. The selection equipments based on transient zero modal SFB method have been widely used. The shortcoming of the method is that the signals must be filtered before performing in order to get the transient signals in SFB. Thus the dominant transient frequency (DTF for short) component of transient signal will be significately attenuated when it is low, which may result in incorrect faulty feeder selection. Therefore, it is necessary to continue the research work on fault detection method based on transient signals.
     A novel detection principle based on Prony algorithm is presented in the paper, which determines the faulty feeder by comparing the amplitude and phase of DTF admittanceof faulty feeder and healthy feeder. Details of the research works are as follows:
     1. The transient signal characteristic of single-phase earthed fault in non-effectively earthed system is analyzed accurately to some extent based on approximate fault modal network, and the varying trend of transient zero modal voltage and current when earthed fault with transition resistance is summarized. That energy of DTF signal is the chief component of transient energy is proved. The DTF signal can be used to select faulty feeder and has high detection sensitivity is demonstrated too.
     2. The principle of Prony algorithm is introduced and the rule of choosing parameters when fitting transient signals generated by single-phase earthed fault based on Prony algorithm is presented. The problem of how to determine sampling frequency, sampling time and model order is discussed by certain examples.
     3. Transient zero modal voltage of bus bar, transient zero modal current in faulty feeder and healthy feeder generated by single-phase earthed fault are decomposed into exponentially different frequency component by using Prony algorithm. The common principle of how to determine DTF is presented too. The feasibility and validity of Prony algorithm in analyzing transient signals generated by single-phase earthed fault is verified too.
     4. The phasor of zero modal current and voltage at DTF are defined, and the ratio of them is defined as DTF admittance. It is proved that DTF admittance is approximately equal to the corresponding admittance of sinusoidal frequency at steady-state. When short circuit in positive direction occurred, the amplitude of DTF admittance is large and the phase is close to -90°, whereas when short circuit in negative direction occurred, the amplitude of DTF admittance is small and the phase is close to 90°.
     5. The faulty feeder selection principle and realization based on Prony algorithm is presented, which determines the faulty feeder by comparing the amplitude and phase of DTF admittance of faulty feeder and healthy feeder. When the admittance amplitude of certain feeder is larger than set admittance and its phase is close to -90°, and then this feeder is selected as faulty feeder. When the admittance amplitude of certain feeder is less than set admittance and its phase is close to 90°, and then this feeder is selected as healthy feeder.
     6. Influence factors considered when set faulty feeder selection criterions are discussed. The set value of admittance magnitude must consider the influence of arc suppression coil when DTF of system is low, that is, inductive admittance of arc suppression coil must be added to admittance set value. Some secondary factors are neglected when deduce the phase of DTF admittance and the phase error of short feeder is big when length difference among all feeders connected to same bus bar is large, so the set value of admittance phase can not be exact 90°, but an operation angle range.
     7. Vast simulation and Prony fitting of transient zero modal voltage of bus bar, transient zero modal current in faulty feeder and healthy feeder are performed by building ATP simulation model and writing Matlab programs. The novel faulty feeder selection principle is verified by ATP simulation data and field measured fault data respectively.
     A single-phase earthed fault detection method based on comparing amplitude and phase of DTF admittance is presented. The DTF admittance is calculated based on DTF voltage and current signals fitted from transient signals by Prony algorithm. The method is based on the identification of the frequency domain characteristic parameter of transient signals. The criteria used are clear and therefore have better reliability and stability than conventional techniques directly utilizing the time domain transient signals.
     The setting of faulty feeder selection criterion can be easily determined and the performance of presented method is also easy to be analyzed and evaluated as the admittance has clear physical meaning. Moreover, only zero modal voltage of bus bar and zero modal current of the feeder itself are used to select the faulty feeder, hence the method is of self-maintained. Because it does not require filtering to obtain transient signals in SFB, the DTF admittance can also be correctly extracted even when its frequency is very low. Hence, it has better sensitivity and reliabilityfor high resistance fault. The two presented methods are significant improvements to the existing transient techniques of faulty feeder selection methods. Their application will enhance the success rate of faulty feeder selection and will improve power supply reliability and quality. They will also help to promote the developments of transient faulty feeder selection techniques.
引文
[1]李福寿.中性点非有效接地电网的运行[M].北京:水利电力出版社,1993
    [2]贺家李,宋从矩.电力系统继电保护原理[M].北京:中国电力出版社,2001
    [3]刘万顺.电力系统故障分析[M].北京:水利电力出版社,1992
    [4]要焕年,曹梅月.电力系统谐振接地[M].北京:中国电力出版社,2000
    [5]薛永端.基于暂态特征信息的配电网单相接地故障检测研究[D].博士学位论文.西安交通大学,2003
    [6]薛永端,冯祖仁,徐丙垠等.基于暂态零序电流比较的小电流接地选线研究[J].电力系统自动化,2003,27(9):48-53
    [7]Xue Yongduan,Xu Bingyin,Chen Yu,Feng Zuren,Philip Gale.Earth Fault Protection Using Transient Signals in Non-Solid Grounding Network[C].IEEE/CSEE International Conference on Power System Technology Proceedings,2002,Kunming,China,1763-1767
    [8]薛永端,徐丙垠,冯祖仁等.小电流接地故障暂态方向保护原理研究[J].中国电机工程学报,2003,23(7):51-56
    [9]Matti L,Tapio H.Neutral earthing and power system protection[M].ABB Transmit Oy Publication,Vaasa,Finland 1996
    [10]Griffel D,Leitloff V,Harmand Y,et al.A new deal for safety and quality on MV networks[J].IEEE Trans on Power Delivery.1997,12(4):1428-1433
    [11]Till W,Volker L,Rene F,et al.Location strategies and evaluation of detection algorithms for earth faults in compensated MV distribution system[J].IEEE Trans on Power Delivery.2000,15(4):1121-1128
    [12]Hanninen S,Lehtonen M,Antila E.A method for detection and location of high resistance earth faults[C].Proceedings of EMPD '98,2:495-500
    [13]Aucoin B M,Jones R H.High impedance fault detection implementation issues[J].IEEE Transactions on Power Delivery,1996(11):139-148
    [14]Oinis C,Patrick B,Michel M.Prony's method:an efficient tool for the analysis of earth fault currents in Petersen-coil-protected networks[J].IEEE Trans on Power Delivery,1995,10(3):1234-1241
    [15]徐丙垠,薛永端,李天友等.小电流接地故障选线技术综述[J].电力设备,2005,6(4):1-7
    [16]索南加乐,薛晓辉,高峰等.小电流接地系统单相接地故障选线的研究[J].西安交通大学学报,2008,42(4):471-475
    [17]Xinhui Zhang,Bingyin Xu,Zhencun Pan and Peiyu Wei.Study on Single-Phase Earthed Faulty Feeder Selection Methods in Non-Solidly Grounded Systems[C].The Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies-DRPT2008,06-09 April 2008,China,1836-1840
    [18]桑在中,张慧芬,潘贞存等.用注入法实现小电流接地系统单相接地选线保护[J].电力系统自动化,1996,20(2):11-12
    [19]张慧芬.配电网单相接地故障检测技术研究.博士学位论文[D].山东大学,2006
    [20]Zhang Huifen,Pan Zhencun,Sang Zalzhong,Wang Bin.A Signal Injection Method for Line Selection and Location of Single Phase-to-ground Faults in Distribution Networks[C].Proceedings of the 3rd LASTED International Conference on Power and Energy Systems,2003.9,P257-262
    [21]H F Zhang,Z C Pan,Z Z Sang.Fault Locating in Ungrounded and Compensated Systems[C].8th IEE International Conference on Developments in Power System Protection,2004.4,469-472
    [22]曾祥君,尹项根,于永源等.基于注入变频信号法的经消弧线圈接地系统控制与保护新方法[J].中国电机工程学报,2000,20(1):29-32
    [23]桑在中,潘贞存,李磊等.小电流接地系统单相接地故障选线测距和定位的新技术[J].电网技术,1997,21(10):50-52
    [24]桑在中,潘贞存,李磊等.“S注入法”选线定位原理及应用[J].中国电力,1997(30):44-45
    [25]潘贞存.比相式和比幅式小接地电流系统接地选线保护[J].山东电力技术,1991(3):60-64
    [26]郝玉山,杨以涵等.小电流接地微机选线的群体比幅比相原理[J].电力情报,1994,2(2):51-53
    [27]檀国彪,涂东明,陈大鹏.基于最大Isinφ或△Isinφ原理的选线方法[J].中国电力,1995,28(7):16-20
    [28]牟龙华.零序电流有功分量方向接地选线保护原理[J].电网技术,1999,23(9):60-62
    [29]杜丁香,徐玉琴.消弧线圈接地电网有功选线[J].继电器,2002,30(5):33-36
    [30]郝玉山,高曙,杨以涵等.MLN系列小电流接地微机选线装置动作原理[J].电力情报,1994(2):7-11
    [31]郝玉山,齐立芳,尹永生等.零序网络中的谐波电流分布[J].华北电力学院学报,1995,22(3):12-17
    [32]陈志亮,范春菊.基于5次谐波突变量的小电流接地系统选线[J].电力系统及其自动化学报,2006,18(5):37-41
    [33]戴剑锋,张艳霞.基于多频带分析的自适应配电网故障选线研究[J].中国电机工程学报,2003,23(5):44-47
    [34]索南加乐,张超,王树刚.基于模型参数识别法的小电流接地故障选线研究[J].电力系统自动化,2004,28(19):65-70
    [35]李森,宋国兵,康小宁等.基于时域下相关分析法的小电流接地故障选线[J].电力系统保护与控制,2008,36(13):15-20
    [36]曾祥君,尹项根,张哲等.零序导纳法馈线接地保护的研究[J].中国电机工程学报,2001,21(4):5-10
    [37]林湘宁,高艳,刘沛等.基于零序补偿导纳的小电流接地系统单相故障保护新方法[J].中国电机工程学报,2006,26(10):45-49
    [38]曾祥君,尹项根,张哲等.配电网接地故障负序电流分布及接地保护原理研究[J].中国电机工程学报,2001,21(6):84-89
    [39]Geise F.Erdschlu β und Erdschlu β relais[M].Siemens Zeitschrift,1952
    [40]Sture L.Sensitive earth fault protection for MV distribution system[C].2.09 CIRED 1991
    [41]薛永端,冯祖仁,徐丙垠.中性点非直接接地电网单相接地故障暂态特征分析[J].西安交通大学学报.2004,38(2):195-199
    [42]徐丙垠,李天友,薛永端等.小电流接地故障选线及定位技术新进展[J].供用电,2003,20(4):21-25
    [43]张帆.基于单端暂态行波的故障测距与保护研究.博士学位论文[D].山东大学,2008
    [44]孙雅明,苗友忠.谐振接地配电系统馈线单相接地故障的暂态电流保护新原理[J].中国电机工程学报,24(3):62-66
    [45]何奔腾,胡为进.能量法小电流接地选线原理[J].浙江大学学报(自然科学版),1998,32(4):451-456
    [46]束洪春,刘娟,王超等.谐振接地电网故障暂态能量自适应选线新方法[J].电力系统自动化,2006,30(11):72-76
    [47]X.H.Zhang,H.X.Ha,Z.C.Pan and B.Y.Xu.Grounding Faulty Line Selection in Non-Solidly Grounded Systems Using Transient Energy[C].The 8th International Power Engineering Conference-IPEC2007,3-6 December 2007,Singapore,1147-1150
    [48]曾祥君,LI K K,Chan W L,等.信息融合技术在故障选线中的应用[J].继电器,2002,30(9):15-20
    [49]贾清泉,刘连光,杨以涵等.应用小波检测故障突变量特性实现配电网小电流故障选线保护[J].中国电机工程学报,2001,21(10):78-82
    [50]Assef Y,Chaari O,Meunier M.Classification of Power Distribution System Fault Currents Using Wavelets Associated to Artificial Neural Networks[C].Proceedings of the IEEE-SP Internation Symposium on Time-Frequency and Time-Seal Analysis,1996:421-424
    [51]张兆宁,郁惟镛,孙阳盛.基于小波包变换的模糊神经网络小电流接地系统故障选线[J].上海交通大学学报,2002,36(7):1012-1015
    [52]梁军,刘非凡,贠志皓.基于小波原理的小电流接地系统故障选线新方法的研究[J].山东大学学报(工学版),2002,32(2):111-114
    [53]Huang S J,Hsieh C T.High-impedance Fault Detection Utilizing a Morlet Wavelet Transform Approach[J].IEEE Trans on Power Delivery,1999,14(4):1401-1407
    [54]Oinis C,Miehiel M,Francoise B.Wavelets:A New Tool for the Resonant Grounded Power Distribution System Relaying[J].IEEE Tram on Power Delivery,1996,11(3):1301-1308
    [55]毛鹏,孙雅明,张兆宁等.小波包在配电网单相接地故障选线中的应用[J].电网技术,2000,24(6):9-13
    [56]王耀南,霍百林,王辉等.基于小波包的小电流接地系统故障选线的新判据[J].中国电机工程学报,2004,24(6):54-58
    [57]胡汉梅,黄景光,刘会家.基于小波分析的行波相位比较法接地故障选线[J].高电压技术,2007,33(12):168-172
    [58]王艳松,陈国明,张加胜等.基于小波包的配电网单相接地故障选线新方法[J].高电压技术,2005,31(6):78-81
    [59]Chaari O,Meunier M.A Recursive Wavelet Transform Analysis of Earth Fault Currents in Petersen-Coil-Protected Power Distribution Networks[C].Proceedings of the IEEE-SP Internation Symposium on Time-Frequency and Time-Seal Analysis,1994:162-165
    [60]黄景光,刘会家,胡汉梅等.行波小波系数极大值极性法接地故障选线研究[J].高电压技术,2006,32(8):100-104
    [61]Thomas Baldwin,P.E.,Frank Renovich,Lynn Saunders,P.E.Fault Locating in Ungrounded and High-resistance Grounded[J].Copyright Material IEEE,Paper No.PCIC-2000-25:245-251
    [62]张彦昌,吕艳萍,李振强等.扩展Prony谐波分析法在配电网接地选线中的应用[J].电气应用,2007,26(5):33-37
    [63]邵明.基于暂态特征的小电流接地系统单相接地选线研究[D].硕士学位论文.西南交通大学,电力系统及其自动化专业,2005:22-29,32-35
    [64]肖静.中低压配电网单相接地故障检测的研究[D].硕士学位论文,山东大学,2002
    [65]A.I.Shalin,E.N.Politov.Ground fault protection for 6-10KV distribution system[J].Power and Electrophysies,2002,430-433
    [66]苗友忠,孙雅明,杨华.中性点不接地配电系统馈线单相接地故障的暂态电流保护新原理[J].中国电机工程学报,24(2):28-32
    [67]束洪春,肖白.配电网单相电弧接地故障选线暂态分析法[J].电力系统自动化,2002,26(21):58-61
    [68]邱斌.暂态故障电流功率谱方法在中性点非直接接地系统单相接地选线中的应用研究[D].硕士学位论文.西安交通大学,1997
    [69]郁惟镛,吴小建,左问等.基于暂态分量的小电流接地系统故障定位新方案[J].中国电力,1998,31(2):13-16
    [70]张帆,潘贞存,张慧芬等.基于零序电流暂态极大值的小电流接地选线新判据[J]. 电力系统自动化,2006,3(4):45-48
    [71]董新洲,毕见广.配电线路暂态行波的分析和接地选线研究[J].中国电机工程学报,2005,25(4):1-6
    [72]张帆,潘贞存,张慧芬.基于方向行波的小电流接地系统故障选线[J].中国电机工程学报,2007,27(34):70-76
    [73]潘露,吕艳萍,于芳等.基于相频特性与多频带分析的小电流接地系统故障选线[J].电力系统自动化,2007,31(4):76-80
    [74]张庆超,杨金飞.基于两相电流变换的小电流接地系统故障选线新方法[J].电力系统自动化,2007,31(8):75-79
    [75]肖白,束洪春,高峰.小电流接地系统单相接地故障选线方法综述[J].继电器,2001,29(4):16-20
    [76]Etwell E A,Shaffer A W,Jerrings D I,et al.Performance testing of the Norton high impedance ground fault detector on a distribution feeder[C].Rural electric power Conference,New York,1990:C6/1-C6/7
    [77]Zhang Q,Zhang Y,Song W,et al.Transmission line fault location for single-phase-to-earth fault on non-direct-ground neutral system[J].IEEE Tram on Power Delivery,1998,13(4):1086-1092
    [78]Love D J,Hashemi N.Considerations for ground fault protection in medium-voltage industrial and co-generation systems[J].IEEE Trans on Industry Applications,1988,24(4):548-553
    [79]葛耀中,窦乘国.非直接接地系统中检出单相接地线路的新方法[J].继电器,2001,29(9):1-5
    [80]Jota P R S,Jota F G.Fuzzy Detection of High Impedance Faults in Radial Distribution Feeders[J].Electric Power Systems Research,1999,(49):169-174
    [81]Kish D J,Heydt G T.A new approach to power distribution system transient analysis using Walsh functions[C].IEEE International Conference on Systems,Man and Cybernetics,1992,Vol.1:145-150
    [82]马柯,张保会.中性点非直接接地系统故障选线原理的发展与展望[J].继电器,2003,31(5):65-70
    [83]Togami M,Abe N,Kitahashi T,et al.On the application of a machine learning technique to fault diagnosis of power distribution lines[J].IEEE Trans on Power Delivery,1995,10(4):1927-1936
    [84]房鑫炎,郁惟镛,庄伟.模糊神经网络在小电流接地系统选线中的应用[J].电网技术,2002,26(5):15-19
    [85]夏道止.电力系统分析[M].北京:中国电力出版社,1995
    [86]施围.电力系统过电压计算[M].西安:西安交通大学出版社,1988
    [87]吴维韩,张芳榴等.电力系统过电压数值计算[M].北京:科学出版社,1989
    [88]X.H.Zhang,Z.C.Pan,B.Y.Xu and H.X.Ha.Voltage Analysis of High Resistance Earthed Fault in Non-solidly Grounded Systems[C].The 8th International Power Engineering Conference-IPEC2007,3-6 December 2007,Singapore,1152-1155
    [89]葛耀中.新型继电保护与故障测距原理与技术[M].西安:西安交通大学出版社,1996
    [90]Hanninen S,Lehtonen M,et al.Characteristic of earth faults in power systems with a compensated or an unearthed neutral[C].14th International Conference on Electricity Distribution CIRED,Birmingham,UK,June 1997:2.16.1-2.16.5
    [91]朱声石.高压电网继电保护原理与技术[M].北京:中国电力出版社,2005
    [92]张新慧,潘贞存,徐丙垠,薛永端.基于暂态零序电流的小电流接地故障选线仿真[J].继电器,2008,36(3):5-9
    [93]张新慧,薛永端,潘贞存,徐丙垠等.单相接地故障零模暂态特征的仿真分析[J].电力自动化设备,2007,27(12):39-43
    [94]Tawfik M M,Morcos.M M.ANN-Based Techniques for Estimating Fault Location on Transmission Lines Using Prony Method[J].IEEE Trans on Power Delivery,2001,16(2):219-224
    [95]Tawfik M M,Morcos.M M.A Fault Locator for Transmission Lines Based on Prony Method[C].Proceedings of IEEE:Power Engineering Society Summer Meeting,1999,(2):943-947
    [96]M.M.Tawfik,M.M.Morcos.On the Use of Prony to Locate Faults in Loop Systems by Utilizing Modal Parameters of Fault Current[J].IEEE,Trans.on Power Delivery,2005,20(1):532-534
    [97]吴杰,李建东.使用PRONY方法的OFDM频偏估计[J].通信学报,2004, 25(11):107-111
    [98]王磊,郝士琦,戎雁.瞬时频率的Prony方法提取及MATLAB实现[J].计算机仿真,2008,25(2):303-305
    [99]Hauer J F.Application of Prony Analysis to the Determination of Modal Content and Equivalent Models for Measured Power System Response[J].IEEE,Transactions on Power Systems,1991,6(3):1062-1068
    [100]J,F.Hauer,C.J.Demeure,L.L.Scharf.Initial Results in Prony Analysis of Power System Response Signals[J].IEEE,Transactions on Power Systems,1990,5(1):80-89
    [101]Trudnowski D J,Smith J R,Short T A,Pierre D A.An Application of Prony Method in PSS Design for Multimachine Systems[J].IEEE Trans.on Power Systems,1991,6(1):118-126
    [102]Grund C E,Pasterba J J,Hauer J F,et al.Comparison of Prony and tigenanalysis for power system control design[J].IEEE Transactions on Power System,1993,8(3):964-970
    [103]Smith J R,Hauer J F,Trudnowaki D J.Transfer Function Identification in Power System Based On Prony Method[J].IEEE Trans on Power Systems,1993,8(3):1282-1290
    [I04]D.J.Turdnowski,M.K.Donnelly,J.F.Hauer.Advances in the Identification of Transfer Function Models using Prony Analysis[J].IEEE Trans.Power Systems,1993,1(1):1561-1562
    [105]Rob Carriere,Randolph L Moses.High Resolution Radar Target Modeling Using a Modified Prony Estimator[J].IEEE Trans on AP,1992,40(1):13-18
    [106]易新超,徐永海,肖湘宁等.电力系统振荡与谐波扰动识别的Prony分析法[J].现代电力,2005,22(5):33-37
    [107]M.Amono,M.Watanabe,M.Banjo.Self-testing and Self-tuning of Power System Stabilizers Using Prony Analysis[J].IEEE Power Delivery,1998,18(5):38-47
    [108]M.A.Johnson,I.P.Zarafonitis,M.Calligaris.Prony Analysis and Power System Stability-Some Recent Theoretical and Applications Research[C].IEEE Power Engineering Society Summer Meeting,2000,IEEE,3(1):1918-1923
    [109]Trudnow ski D J.Order Reduction of Large Scale Linear Oscillatory System Models[J].IEEE Trans on Power System,1994,9(1):451-458
    [110]Zivanovic R,Scheger P.Pre-filtering Improve Prony Analysis of Disturbance Records[C].Development in Power System Protection,English IEE International Conference,2004,(2):780-783
    [111]刘剑,刘天琪.Prony在电力系统稳定控制领域中的应用[J].现代电力,2005,22(6):27-31
    [112]魏伟,赵书强,马燕峰.基于Prony算法的模糊电力系统稳定器设计[J].电力自动化设备,2005,25(13):54-56
    [113]芦晶晶,郭剑,田芳等.基于Prony方法的电力系统振荡模式分析及PSS参数设计[J].电网技术,2004,28(15):31-34
    [114]肖晋宇,谢小荣,胡志祥等.电力系统低频振荡在线辨识的改进Prony算法[J].清华大学学报(自然科学版),2004,44(7):883-887
    [115]刘国平.基于Prony法的电力系统低频振荡分析与控制.硕士学位论文[D].杭州:浙江大学.2004
    [116]王铁强,贺仁睦,徐东杰等.Prony算法分析低频振荡的有效性研究[J].中国电力,2001,34(11):38-41
    [117]徐东杰.Prony分析在电力系统低频振荡研究中的应用.硕士学位论文[D].北京:华北电力大学.2001
    [118]曹维,翁斌伟,陈陈.电力系统暂态变量的Prony分析[J].电工技术学报,2000,15(6):56-60
    [119]Zhijian Hu,Jianquang Guo,Mei Yu,Zhiwei Du,and Chao Wang.The Studies on Power System Harmonic Analysis Based on Extended Prony Method[C].2006International Conference on Power System Technology,2006,1-8
    [120]苟北,提兆旭,陈陈.Prony算法在大规模线性系统中的应用—动态模型的辨识与降阶[J].上海交通大学学报,1996,30(12):85-90
    [121]苏小林,周双喜.Prony法在同步发电机参数辨识中的应用[J].电力自动化设备,2006,26(9):1-4
    [122]T.Lobos,J.Rezmer,P.Schegner.Parameter Estimation of Distorted Signals Using Prony Method[C].IEEE,Bologna Power Tech Conference,2003,1(4):28-32
    [123]吴茂林,崔翔,卢铁兵等.变电站电磁瞬态过程的Prony分析[J].华北电力大学 学报,2004,31(2):24-27
    [124]T.Lobos,J.Rezmer,H.-J.Koglin.Analysis of Power System Transients Using Wavelets and Prony Method[C].IEEE Porto Power Tech conference,2001,1(4):3-6
    [125]丁屹峰,占勇,程浩忠等.基于Prony算法的暂态电能质量扰动信号分析[J].上海交通大学学报,2005,39(8):36-38
    [126]刘红超,李兴源.基于PRONY辨识的交直流并联输电系统直流阻尼控制的研究[J].中国电机工程学报,2002,22(7):54-57
    [127]刘红超,李兴源,邱晓燕等.基于Prony算法的HVDC输电系统模型辨识[J].四川大学学报(工程科学版),2004,36(2):86-89
    [128]徐东杰,贺仁睦,高海龙.基于迭代PRONY算法的传递函数辨识[J].中国电机工程学报,2004,24(6):40-43
    [129]李一泉,何奔腾.基于PRONY算法的电容式电压互感器暂态基波辨识[J].中国电机工程学报,2005,25(14):30-34
    [130]D.J.Trudnowski,J.M.Johnson,J.F.Hauer.Making Prony Analysis More Accurate Using Multiple Signals[J].IEEE Transactions on Power System,1999,14(1):226-231
    [131]Kumaresan R,Tufts D W,Scharf L L.A Prony Method for Noisy Data:Choosing the Signal Components and Selecting the Order in Exponential Signal Models[J].Proc IEEE,1984,72(2):230-233
    [132]Joon-Ho Lee,Hyo-Tae Kim.Selecting Sampling Interval of Transient Response for the Improved Prony Method[J].IEEE Transactions on Antennas and Propagation,2003,51(1):74-77
    [133]张贤达.现代信号处理[M].北京:清华大学出版社,1995:92-96,119-125
    [134]Dommel H.EMTP theory Book[M].北京:水利电力出版社,1990:125-261
    [135]李广凯,李庚银.电力系统仿真软件综述[J].电气电子教学学报,2005,27(3):61-65
    [136]H.W.Dommel.TRANSIENTS PROGRAM USER'S MANUAL Dept.of Electrical Engineering.
    [137]ATP-EMTP Rule Book[M].Canadian-American EMTP Users Group,1997