多载波扩频信号阵列接收抗干扰技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,天线阵列信号处理技术由于在消除空域干扰、提高无线通信容量和质量方面的突出表现而引起了广泛的关注。天线阵列信号处理技术应用于扩频通信系统将提高扩频通信系统的抗干扰性能,目前已有大量的研究集中在直扩信号的天线阵列接收技术。已有文献证明了在部分频带干扰环境下多载波扩频技术比直扩技术具有更好的性能。本文以增强干扰抑制能力为目标,研究了多天线接收多载波扩频信号的若干问题,利用多载波扩频信号的频率分集特性增强天线阵列抑制干扰能力,取得了一定的有益结果。
     本文首先研究了拥挤干扰环境下的多载波扩频信号的天线阵列接收问题,并提出了一种针对多载波扩频信号的天线阵列接收算法。拥挤干扰环境指干扰个数大于波束形成波束形成自由度的环境。拥挤干扰环境下阵列往往难以保证对期望信号有足够强的增益,不利于信号的检测和判决。该算法利用期望信号在不同子载波信道中的相关性估计到达方向,然后利用空间谱分析估计干扰信号的空间分布,最后按照最大输出信噪比准则计算天线阵列加权矢量。该算法保证对期望信号有足够强度响应,并将方向图零点放置在干扰信号成簇的方向。仿真实验表明在相同的拥挤干扰环境下,本文的算法的误码率性能明显优于最佳波束形成器。
     针对实际应用中一种典型的干扰信号一随机跳时干扰,本文提出了一种用于多载波扩频信号的空域最小二乘算法。随机跳时干扰信号在时间上随机出现,常常是非平稳的,传统的基于信号统计信息的算法无法有效将其抑制。空域最小二乘算法针对一次抽样数据进行处理,主要应用于雷达系统,本文算法将其应用于通信系统,与应用于雷达系统的算法相比较具有以下特点:(1)不需要估计期望信号的到达方向,因此也不受到达方向估计误差的影响;(2)实现相干多径的相干合并。该算法将不同子信道的滤波输出互相作为参考信号,由于期望信号的相关性,不同子载波信道的滤波输出将同时渐进收敛于期望信号。
     本文最后给出了一种针对多载波直扩信号的空-时二维最小输出能量算法,结合空-时二维处理与频率分集合并处理,为干扰抑制问题提供更多的滤波自由度。空-时二维滤波同时利用信号的空间方向性和时间相关性,比单独利用信号空间方向性具有更优的滤波解。最小输出能量算法在保持输出期望信号强度的约束下使输出能量最小化,被证明了与基于训练序列的MMSE算法具有等价的性能,且仅要求期望信号的扩频码信息和码片定时,不需要训练过程,适合于抗干扰通信下的盲干扰抑制问题。本文提出的算法将空-时二维滤波处理与多载波信号频率分集合并处理相结合,当多载波直扩调制使用通用方案时进行非相干合并,在某些特定多载波直扩调制方案下进行相干合并。计算机仿真验证了该方法比单载波直扩信号的空-时最小输出能量算法具有更好的适用范围和干扰抑制能力。
Recently, technology for antenna arrays signal processing has been widely considered due to its strong ability to eliminate spatial interference and to improve the system performance. The incorporation of spectrum spread technology and antenna array is expected to enhance the ability to combat interference, and existing researches mainly focus on the direct-sequence spectrum spread (DS-SS) antenna array system. Multi-carrier spectrum spread (MC-SS) technology has been proven to outperform DS-SS under partial-band interference. Aiming to achieve better performance under jamming, several problems on receiving multi-carrier signal with antenna array have been studied in this dissertation, and the frequency diversity is exploited to construct the relevant receiving algorithms.
     First, the antenna array receiving for multi-carrier signal in crowded interference environment is studied, and a receiving algorithm is proposed for this condition. In crowded interference, the number of interference saturates the degree of freedom of beamforming, and the response to the desired signal is not guaranteed, and this results in the difficulty for signal detection and decision. The proposed algorithm estimates the direction of arrival (DoA) using the correlation between the desired components in different sub-carrier channels, and then estimates the spatial distribution of interference with spatial spectrum analysis, and forms the weight vector according to maximum signal-to-jamming-and-noise (SJNR) ratio. The proposed algorithm guarantees a unit response to the desired signal, and place nulls of beampattern in the directions of the clusters of interference. Relevant simulations and discussion are also provided to exam the performance of the proposed algorithm.
     To combat a typical jammer in real world - intermittent jammer, a spatial-domain Least Square (LS) algorithm for receiving multi-carrier signal is proposed. Intermittent jammer is randomly on and off at a particular snapshot, and is usually nonstationary, which makes it difficult for statistics-based beamformer to eliminate interference of this kind. Spatial-domain LS methodology processes data of a single snapshot, and was originally designed for RADAR system. The methodology is developed to apply in communications system in this dissertation, with some new advantages: DoA estimate is not necessary, thus the impact of estimate error is eliminated, moreover, coherent multipath is combined to improve the signal quality. In the proposed algorithm, a filter for one sub-channel uses the output of another filter for another sub-channel as the reference, and the outputs of all the filters converge to the desired signal asymptotically and simultaneously due to the correlated desired component in different sub-channels. Simulations show that proposed algorithm meets the expected performance.
     Finally, a spatial-temporal constrained minimum output energy (STCMOE) algorithm for multi-carrier signal, spatial-temporal-frequency CMOE (STFCMOE), is proposed, which combines the spatial-temporal (S-T) processing and frequency diversity to provide more degree of freedom for interference suppression. S-T processing employs the spatial directivity and temporal correlation of the desired signal to improve the performance. Constrained minimum output energy (CMOE) methodology minimizes the output energy with the constraint of unit response to the desired signal, which has been proven to have the same performance as training-based MMSE algorithm but only requires the information of spreading code and chip timing for the desired signal, thus CMOE methodology is suitable for blind interference suppression in anti-jamming applications. The proposed algorithm combines the signals from different sub-channels while performing S-T processing. The scheme of noncoherent combining is proposed for generalized multi-carrier system, and the scheme of coherent combining is also given for some specific multi-carrier systems. The simulations present the improvement of the proposed STFCMOE algorithm over STCMOE algorithm, and imply that the proposed STFCMOE algorithm has stronger ability to suppress undesired jamming in much more cases.
引文
[1]Theodore S.Rappaport.Wireless Communications:Principles and Practice.Prentice-Hall,Inc.,1996.
    [2]Lal Chand Godara.Smart Antennas.NewYork:CRC Press,2004.
    [3]N.Amitay,V.Galindo,C.P.Wu.相控阵天线理论与分析.陆雷,译.北京:国防工业出版社,1978.
    [4]V.C.Anderson,P.Rudnick.Rejection of A Coherent Arrival at An Array.J.Acoust.Soc.Am.,1969,45:406-410.
    [5]V.C.Anderson.DICANNE,A Realizable Adaptive Process.J.Acoust.Soc.Am.,1969:398-405.
    [6]L.C.Godara,A.CantoN.Uniqueness and Linear Independence of Steering Vectors in Array Space.J.Acoust.Soc.Am.,1981,70:467-475.
    [7]H.A.d' Assumpcao,G.E.Mountford.An overview of signal processing fro arrays of receivers.J.Inst.Eng.Aust.IREE Aust.,1984,4:6-19.
    [8]Y.Bresler,V.U.Reddy,T.Kailath.Optimum Beamforming for Coherent Signal and Interferences.IEEE Trans.Acoust.Speech Signal Process,1988,36:833-843.
    [9]S.Choi,T.K.Sarkar,S.S.Lee.Design of Two-dimensional Tseng Window and Its application to Antenna Array for the Detection of AM Signal in the presence of Strong Jammers in Mobile Communications.Signal Process,1993,34:297-310.
    [10]Ⅰ.Chiba,T.Takahashi,Y.Karasawa.Transmitting Null Beam Forming with Beam Space Adaptive Array Antennas.Proceedings of IEEE 44~(th) Vehicular Technology Conference,1994:1498-1502.
    [11]B.Friedlander,B.Porat.Performance Analysis of A Null-Steering Algorithm Based on Direction-of-Arrival Estimation.IEEE Trans.Acoust.Speech Signal Process,1989,37:461-466.
    [12]L.E.Brennan,I.S.Reed.Theory of Adaptive Radar.IEEE Trans.Aerosp.Electron.Syst.,1973,9:237-252.
    [13]I.S.Reed,J.D.Mallett,L.E.Brennan.Rapid Convergence Rate in Adaptive Arrays.IEEE Trans.Aerosp.Electron.Syst.,1974,10:853-863.
    [14] S.P. Applebaum. Adaptive Arrays. IEEE Trans. Antennas Propagat., 1976, 24:585-598.
    [15] H. Cox. Resolving Power and Sensitivity to Mismatch of Optimum Array Processors. J. Acoust. Soc. Am., 1973, 54: 771-785.
    [16] J. Capon. High-Resolution Frequency-Wave Number Spectrum Analysis. IEEE Proc., 1969, 57: 1408-1418.
    [17] I.J. Gupta, A.A. Ksienski. Dependence of Adaptive Array Performance on Conventional Array Design. IEEE Trans. Antennas Propagat., 1982, 30: 549-553.
    [18] I.J. Gupta. Effect of Jammer Power on the Performance of Adaptive Arrays. IEEE Trans. Antennas Propagat., 1984, 32: 933-934.
    [19] J.H. Winters. Optimum Combining in Digital Mobile Radio with Cochannel Interference. IEEE J. Selected Areas Commn., 1984, 2: 528-539.
    [20] J.H. Winters. Optimum Combining for Indoor Radio Systems with Multiple Users.IEEE Trans. Commn., 1987, 35: 1222-1230.
    [21] B. Suard. Performance of CDMA Mobile Communication System Using Antenna Arrays. IEEE Int. Conf. Acoust., Speech, Signal Process., 1993: 153-156.
    [22] A.F. Naguib, A. Paulraj. Performance of CDMA Cellular Networks with Base-Station Antenna Arrays. Proceedings of IEEE International Zurich Seminar on Communications, 1994: 87-100.
    
    [23] B. Widrow, et al. Adaptive Antenna Systems. IEEE Proc, 1967, 55: 2143-2158.
    [24] C.L. Zahm. Application of Adaptive Arrays to Suppress Strong Jammers in the Presence of Weak Signals. IEEE Trans. Aerosp. Electron. Syst., 1973, 9: 260-271.
    [25] B. Widrow, et al. Adaptive Noise Canceling: Principles and Applications. IEEE Proc, 1975,63: 1692-1716.
    [26] S.P. Applebaum, D.J. Chapman. Adaptive Arrays with Main Beam Constraints. IEEE Trans. Antennas Propagat., 1976, AP-24: 650-662.
    [27] R.T. Jr. Compton. The Power-Inversion Adaptive Array: Concepts and Performance.IEEE Trans. Aerosp. Electron. Syst., 1979, 15: 803-814.
    [28] L.J. Griffiths. A Comparison of Multidimensional Wiener and Maximum-Likelihood Filters for Antennas Array. IEEE Proc. Lett., 1967, 55:2045-2047.
    [29] A. Flieller, P. Larzabal, H. Clergeot. Applications of High Resolution Array Processing Techniques for Mobile Communication System. Proceedings of IEEE Intelligent Vehicles Symposium, 1994: 606-611.
    [30] J.H. Winters, J. Salz, R.D. Gitlin. The Impact of Antenna Diversity on The Capacity of Wireless Communication Systems. IEEE Trans. Commn., 1994,42: 1740-1751.
    [31] S. Anderson, et al. An Adaptive Array for Mobile Communication Systems. IEEE Trans. Vehicular Technol, 1991,40:230-236.
    [32] S. Choi, T.K. Sarkar. Adaptive Antenna Array Utilizing The Conjugate Gradient Method for Multipath Mobile Communication. Signal Process., 1992, 29: 319-333.
    [33] J.F. Diouris, B. Feuvrie, J. Saillard. Adaptive Multi-sensor Receiver for Mobile Communications. Ann. Telecommn., 1993,48: 35-46.
    [34] T. Gebauer, H.G Gockler. Channel-Individual Adaptive Beamforming for Mobile Satellite Communications. IEEE J. Selected Areas Commn., 1995, 13: 439-448.
    [35] P.W. Howells. Explorations in Fixed and Adaptive Resolution at GE and SURC.IEEE Trans. Antennas Propagat, 1976,24: 575-584.
    [36] L.J. Griffiths. An Adaptive Beamformer which Implements Constraints Using An Auxiliary Array Processor. Aspects of Signal Processing, Part 2, G Tacconi, Ed.,Reidel, Dordrecht, 1977: 517-522.
    [37] L.J. Griffiths, C.W. Jim. An Alternative Approach to Linearly Constrained Adaptive Beamforming. IEEE Trans. Antennas Propagat., 1982, 30: 27-34.
    [38] C.W. Jim. A Comparison of Two LMS Constrained Optimal Array Structures. IEEE Proc., 1977, 65: 1730-1731.
    [39] A. Cantoni, L.C. Godara. Fast Algorithms for Time Domain Broadband Adaptive Array Processing. IEEE Trans. Aerosp. Electron. Syst., 1982, 18: 682-699.
    [40] B.D. Van Veen, R.A. Roberts. Partially Adaptive Beamformer Design Via Output Power Minimization. IEEE Trans. Acoust. Speech Signal Process., 1987, 35:1524-1532.
    [41] B.D. Van Veen. An Analysis of Several Partially Adaptive Beamformer Designs.IEEE Trans. Acoust. Speech Signal Process., 1989, 37: 192-203.
    [42] B.D. Van Veen. Optimization of Quiescent Response in Partially Adaptive Beamformers. IEEE Trans. Acoust. Speech Signal Signal Process., 1990, 38: 471-477.
    [43] F. Qian, B.D. Van Veen. Partially Adaptive Beamformer Design Subject to Worst Case Performance Constraints. IEEE Trans. Signal Process., 1994,42: 1218-1221.
    [44] F. Qian, B.D. Van Veen. Partially Adaptive Beamforming for Correlated Interference Rejection. IEEE Trans. Signal Process., 1995,43: 506-515.
    [45] D.J. Chapman. Partial Adaptivity for The Large Array. IEEE Trans. Antennas Propagat., 1976, 24: 685-696.
    [46] D.R. Morgan. Partially Adaptive Array Techniques. IEEE Trans. Antennas Propagat.,1987,26:823-833.
    [47] A. Cantoni, L.C. Godara. Performance of A Postbeamformer Interference Canceller in The Presence of Broadband Directional Signals. J. Acoust. Soc. Am., 1984, 76:128-138.
    [48] L.C. Godara. Error Analysis of The Optimal Antenna Array Processors. IEEE Trans.Aerosp. Eletron. Syst., 1986, 22: 395-409.
    [49] L.C. Godara. Analysis of Transient and Steady State Weight Covariance in Adaptive Postbeamformer Interference Canceller. J. Acoust. Soc. Am., 1989, 85: 194-201.
    [50] L.C. Godara. Postbeamformer Interference Canceller with Improved Perfromance. J.Acoust. Soc. Am., 1989, 85: 202-213.
    [51] L.C. Godara. Adaptive Postbeamformer Interference Canceller with Improved Performance in The Presence of Broadband Directional Sources. J. Acoust. Soc.Am., 1991, 89: 266-273.
    [52] E. Brookner, J.M. Howell. Adaptive-adaptive Array Processing. IEEE Proa, 1986,74: 602-604.
    [53] R. Klemm. Suppressino of Jammers by Multiple Beam Signal Processing. IEEE Int.Radar Conf., 1975: 176-180.
    [54] J. Gobert. Adaptive Beam Weighting. IEEE Trans. Antennas Propagat., 1976, 24:744-749.
    [55] J.T. Mayhan. Adaptive Nulling with Multiple Beam Antennas. IEEE Trans.Antennas Propagat., 1978, 26: 267-273.
    [56] I.S. Reed, J.D. Mallett, L.E. Brerman. Rapid Convergence Rate in Adaptive Arrays.IEEE Trans. Aerosp. Eletron. Syst, 1974, 10: 853-863.
    [57] L.L. Horowitz, et al. Controlling Adaptive Antenna Arrays with The Sample matrix Inversion Algorithm. IEEE Trans. Aerosp. Eletron. Syst., 1979, 15: 840-847.
    [58] B.D. Van Veen. Adaptive Convergence of Linearly Constrained Beamformer Based on The Sample Covariance Matrix. IEEE Trans. Signal Process., 1991, 39:1470-1473.
    [59] L.C. Godara. Application to Antenna Arrays to Mobile Communications. Part Ⅱ:Beamforming and Direction of Arrival Considerations. IEEE Proc, 1997, 85:1195-1247.
    
    [60] B. Widrow, et al. Adaptive Antenna Systems. IEEE Proc, 1967, 55: 2143-2158.
    [61] L.J. Griffiths. A Simple Adaptive Algorithm for Real-Time Processing in Antenna Arrays. IEEE Proc, 1969, 57: 1696-1704.
    [62] B. Widrow, J.M. McCool. A Comparison of Adaptive Algorithms Based on The Methods of Steepest Descent and Random Search. IEEE Trans. Antennas Propagat,1976,24:615-637.
    [63] B. Widrow, et al. Stationary and Nonstationary Learning Characteristics of The LMS Adaptive Filter. Aspects of Signal Processing, Part 1, G Tacconi, Ed., 1976:355-393.
    [64] L.L. Horowitz, K.D. Senne. Performance Advantage of Complex LMS for Controlling Narrowband Adaptive Arrays. IEEE Trans. Circuits Syst, 1981, 28:562-576.
    [65] R.A. Iltis, L.B. Milstein. An Approximate Statistical Analysis of The Widrow LMS Algorithm with Application to Narrowband Interference Rejection. IEEE Trans.Commn., 1985,33: 121-130.
    [66] P.M. Clarkson, P.R. White. Simplified Analysis of The LMS Adaptive Filter Using A Transfer Function Approximation. IEEE Trans. Acoust. Speech Signal Process,1987, 35: 987-993.
    [67] A. Feuer, E. Weinstein. Convergence Analysis of LMS Filters with Uncorrelated Gaussian Data. IEEE Trans. Acoust. Speech Signal Process, 1985, 33: 222-229.
    [68] W.A. Gardner. Comments on Convergence Analysis of LMS Filters with Uncorrelated Data. IEEE Trans. Acoust. Speech Signal Process, 1986, 34: 378-379.
    [69] F.M. Boland, J.B. Foley. Stochastic Convergence of The LMS Algorithm in Adaptive Systems. Signal Process., 1987, 13: 339-352.
    [70] J.B. Foley, F.M Boland. A Note on The Convergence Analysis of LMS Adaptive Filters with Gaussian Data. IEEE Trans. Acoust. Speech Signal Process., 1988, 36:1087-1089.
    [71] V. Solo. The limiting Behavior of LMS. IEEE Trans. Acoust. Speech Signal Process., 1989,37: 1909-1922.
    [72] S. Jaggi, A.B. Martinez. Upper and Lower Bounds of The Misadjustment in the LMS Algorithm. IEEE Trans. Acoust. Speech Signal Process., 1990, 38: 164-166.
    [73] V. Solo. The Error Variance of LMS withTime-Varying Weights. IEEE Trans. Signal Process., 1992,40:803-813.
    
    [74] J.E. Hudson. Adaptive Array Principles. Peter Peregrins, New York; London, 1981.
    [75] O.L. Frost III. An Algorithm for Linearly Constrained Adaptive Array Processing.IEEE Proc., 1972, 60: 926-935.
    [76] A. Cantoni. Application of Orthogonal Perturbation Sequences to Adaptive Beamforming. IEEE Trans. Antennas Propagat., 1980,28: 191-202.
    [77] L.C. Godara, A. Cantoni. Analysis of The Performance of Adaptive Beamforming Using Perturbation Sequences. IEEE Trans. Antennas Propagat., 1983, 31: 268-279.
    [78] L.C. Godara, A. Cantoni. Analysis of Constrained LMS Algorithm with Application to Adaptive Beamforming Using Perturbation Sequences. IEEE Trans. Antennas Propagat, 1986,34:368-379.
    [79] L.C. Godara, D.A. Gray. A Structure Gradient Algorithm for Adaptive Beamforming. J.Acoust. Soc. Am., 1989, 86: 1040-1046.
    [80] L.C. Godara. Performance Analysis of Structured Gradient Algorithm. IEEE Trans.Antennas Propagat., 1990, 38: 1078-1083.
    [81] L.C. Godara. Constrained Beamforming and Adaptive Algorithms. Handbook of Statistics, Vol. 10, Bose, N.K. and Rao, C.R., Eds., Elsevier, Amsterdam; New York,1993.
    [82] J.L. Moschner. Adaptive Filters with Clipped Input Data, Technical Report 6796-1.Stanford, CA: Information Systems Laboratory, Stanford University, 1970.
    [83] P.M. Schultheiss. Some Lessons from Array Processing Theory. Aspects of Signal Processing, Part 1, G. Tacconi, Ed., Reidel, Dordrecht, 1977: 309-331.
    [84] H.A. d'Assumpcao. Some New Signal Processors for Array of Sensors. IEEE Trans.Info. Theory, 1980, 26: 441-453.
    [85] J.M. Cioffi, T. Kailath. Fast Recursive-Least-Square, Transversal Filters for Adaptive Filtering. IEEE Trans. Acoust. Speech Signal Process., 1984, 32:998-1005.
    [86] P. Fabre, C. Gueguen. Improvement of The Fast Recursive Least-Squares Algorithms Via Normalization: A Comparative Study. IEEE Trans. Acoust. Speech Signal Process., 1986, 34: 296-308.
    [87] W.A. Gardner, W.A. Brown III. A New Algorithm for Adaptive Arrays. IEEE Trans. Acoust. Speech Signal Process., 1987, 35: 1314-1319.
    [88] J. Fernandez, I.R. Corden, M. Barrett. Adaptive Array Algorithms for Optimal Combining in Digital Mobile Communication Systems. Proceedings of IEEE Conf.on Antennas and Propagat., 1993: 983-986.
    [89] Y. Wang, J.R. Cruz. Adaptive Antenna Arrays for The Reverse Link of CDMA Cellular Communication Systems. IEE Electron. Lett., 1994, 30: 1017-1018.
    [90] M. Hestenes, E. Stiefel. Method of Conjugate Gradients for Solving Linear Systems.J. Res. Nat. Bur. Standards, 1952, 49: 409-436.
    [91] J.W. Daniel. The Conjugate Gradient Method for Linear and Nonlinear Operator Equations. SIAM J. Numerical. Anal., 1967, 4: 10-26.
    [92] T. Sarkar, K.R. Siarkiewicz, R.F. Stratton. Survey of Numerical Methods for Solutions of Large Systems of Linear Equations for Electromagnetic Field Problems.IEEE Trans. Antennas Propagat., 1981, 29: 847-856.
    [93] S. Choi. Application of The Conjugate Gradient Method for Optimum Array Processing. Book Series on PIER(M.I.T), Vol. 5, Elsevier, Amsterdam, 1991.
    [94] C. Lau, B. Widrow, Eds.. Special Issue on Neural Networks I. IEEE Proc, 1990.
    [95] W.E. Rodgers, R.T. Jr. Compton. Adaptive Array Bandwidth with tapped Delay Line Processing. IEEE Trans. Aerosp. Eletron. Syst., 1979, 15: 21-28.
    [96] J.T. Mayhan, A.J. Simmons, W.C. Cummings. Wide-Band Adaptive Nulling Using Tapped Delay Lines. IEEE Trans. Antennas Propagat., 1981, 29: 923-936.
    [97] C.C. Ko. Jamming Rejection Capablity of Broadband Frost Power Inversion Array.IEE Proc. ,1981, 128(Pt. F): 140-151.
    [98] D. Nunn. Performance Assessments of A Time Domain Adaptive Processor in A Broadband Environment. IEE Proa, 1983,130(Pts. F and H): 139-145.
    [99] K.K. Scott. Transversal Filter Techniques for Adaptive Applications. IEE Proa,1983, 130(Pts.F and H): 29-35.
    [100] C.C. Ko. Tracking Performance of A Broadband Tapped Delay Line Adaptive Array Using The LMS Algorithm. ffiE Proc., 1987, 134(Pt. F): 295-305.
    [101] C.C. Yeh, Y.J. Hong, D.R. Ucci. Use of Tapped Delay Line Adaptive Array to Increase The Number of Degrees of Freedom for Interference Suppression. IEEE Trans. Aerosp. Electron. Syst, 1987, 23: 809-813.
    [102] R.T. Jr. Compton. The Bandwidth Performance of A Two Element Adaptive Array with Tapped Delay Line Processing. IEEE Trans. Antennas Propagat., 1988, 36:5-14.
    [103] E.W. Vook, R.T. Jr. Compton. Bandwidth Performance of Linear Arrays with Tapped Delay Line Processing. IEEE Trans. Aerosp. Electron. Syst., 1992, 28:901-908.
    [104] L.P. Winkler, M. Schwartz. Adaptive Nonlinear Optimization of The Signal-to-Noise Ratio of An Array Subject to A Constraint. J. Acoust. Soc. Am.,1972,52:39-51.
    [105] D.E.N. Davies. Independent Angular Steering of Each Zero of The Directional Pattern for A Linear Array. IEEE Trans. Antennas Propagat. (Commn.), 1967, 15:296-298.
    [106] C.C. Ko. Fast Null Steering Algorithm for Broadband Power Inversion Array. IEE Proc., 1990,137(Pt. F): 377-383.
    [107] K. Takao, K. Komiyama. An Adaptive Antenna for Rejection of Wideband Interference. IEEE Trans. Aerosp. Electron. Syst., 1980, 16: 452-459.
    [108] M. Simaan. Optimum Array Filters for Array Data Signal Processing. IEEE Trans.Acoust. Speech Signal Process., 1983, 31: 1006-1015.
    
    [109] K.C. Huang, S.H. Chang, Y.H. Chen. An Alternative Structure for Adaptive Broadband Beamforming with Imperfect Arrays. J. Acoust. Soc. Am., 1990, 87:1218-1226.
    [110] S.J. Chern, C.Y. Sung. The Hybrid Frost's Beamforming Algorithm for Multiple Jammers Suppression.Signal Process.,1995,43:113-132.
    [111]S.Nordebo,Ⅰ.Claesson,S.Nordhom.Weighted Tschebysheff Approximation for The Design of Broadband Beamformers Using Quadratic Programming.IEEE Signal Process.Lett.,1994,1:103-105.
    [112]S.Valaee,P.Kabal.Wideband Array Processing Using A Two-Sided Correlation Transformation.IEEE Trans.Signal Process.,1995,43:160-172.
    [113]M.K.Simon,J.K.Omura,R.A.Scholtz,et al.Spread Spectrum Communications Handbook.New York:McGraw-Hill Comp.Inc.,2002.
    [114]张贤达,保铮.通信信号处理.北京:国防工业出版社,2000.
    [115]A.J.Paulraj,C.B.Papadias.Space-Time Processing for Wireless Communications.IEEE Signal Processing Magzine.Nov.1997,14:49-83.
    [116]J.Ramos,M.D.Zoltowski,H.Liu.Low-Complexity Space-Time Processor for DS-CDMA Communications.IEEE Trans.Signal Processing,2000,48:39-52.
    [117]H.Liu,G.Xu,L.Tong,et al.Recent Developments in Blind Channel Equalization:from Cyclostationary to Subspaces.Signal Processing,1996,50:83-99.
    [118]S.A.Zekavat,C.R.Nassar,S.Shattil..Combined Directionality and Transmit Diversity Via Smart Antenna Spatial Sweeping.Proc.38~(th) Allerton Annu.Conf.Commun.,Control and Computing,Oct.2000:203-211.
    [119]S.A.Zekavat,C.R.Nassar,S.Shattil.Smart Anteena Spatial Sweeping for Combined Directionality and Transmit Diversity.J.Commun.Networks,Special Issue on Adaptive Antennas for Wireless Commun.,Dec.2000,2(4):325-330.
    [120]S.A.Zekavat,C.R.Nassar.Smart Antenna Arrays with Oscillating Beam Patterns:Characterization of Transmit Diversity Using Semi-elliptic Coverage Geometric-Based Stochastic Channel Modeling.IEEE Trans.Commun.,Oct.2002,50:1544-1556.
    [121]S.A.Zekavat,C.R.Nassar.Semi-Elliptic Coverage Geometric-Based Stochastic Channel Modeling for Smart Antenna Arrays with Oscillating Beam Patterns.Proc.IEEE Globecom,San Antonio,TX,Nov.25-29,2001:2337-3241.
    [122]S.A.Zekavat,C.R.Nassar.Fading Channel Characterization for Oscillating Beam Pattern Smart Antennas Using Geometric-Based Stochastic Channel Modeling with Circular Coverage Scenario.Proc.IEEE Vehicular Technology Conf.,Atlantic City,NJ,Oct.7-11,2001:1452-1456.
    [123]S.A.Zekavat,C.R.Nassar.Geometirc-Based Stochastic Channel Modeling for Adaptive Antennas with Oscillating Beam Patterns.Proc.IEEE Int.Syrup.Personal,Indoor,Mobile Radio Communications,PIMRC'01,San Diego,CA,Sept.2001:130-134.
    [124]S.A.Zekavat,C.R.Nassar.Diversity Gains in Wireless Systems with Oscillating Beam Smart Antennas:An Evaluation Via Geometric-Based Stochastic Channel Models with Point Scatterers.Proc.SPIE Int.Symp.Converagence of Information Technologies and Communication,ITCOM,Denver,CO,Aug.20-24,2001:118-124.
    [125]S.A.Zekavat,C.R.Nassar,S.Shattil.Merging Multicarrier CDMA and Oscillating-Beam Smart Antenna Arrays:Exploiting Directionality,Transmit Diversity,and Frequency Diversity.IEEE Trans.on Commun.,Jan.2004,52(1):110-119.
    [126]G.K.Kaleh.Frequency-Diversity Spread-Spectrum Communication System to Counter Bandlimited Gaussian Interference.IEEE Trans.on Commun.,July 1996,44(7):886-893.
    [127]S.Kondo,L.B.Milstein.Multicarrier DS CDMA Systems in The Presence of Partial Band Interference.IEEE MILCOM,Conf.Rec.,1994:588-592.
    [128]B.Farhang-Boroujeny,C.Furse.A Robust Detector for Multicarrier Spread Spectrum Transmission Over Partially Jammed Channels.IEEE Trans.on Signal Processing,March 2005,53(3):1038-1044.
    [129]R.V.Nee,R.Prasad.OFDM for Wireless Multimedia Communications.Boston,MA:Artech House,2000.
    [130]D.J.Sadler,A.Manikas.Blind Reception of Multicarrier DS-CDMA Using Antenna Arrays.IEEE Trans.On Wireless Commun.,Nov.2003,2(6):1231-1239.
    [131]S.Hara,R.Prasad.Overview of Multicarrier CDMA.IEEE Communications Magzine.Dec.1997,35:126-133.
    [132]K.Cheun,K.Choi,H.Lim,et al.Antijamming Performance of a Multicarrier Direct-Sequence Spread-Spectrum System.IEEE Trans.On Commun.,Dec.1999, 47(12):1781-1784.
    [133]Tapan K.Sarkar,Jinwan Koh.A Pragmatic Approach to Adaptive Antennas.IEEE Antennas and Propagation Magazine,2000,42(2):39-54.
    [134]T.K.Sarkar,M.C.Wicks,M.Salazar-Palma,et al.Smart Antennas.Piscataway,NJ:Wiley-IEEE Press,2003.
    [135]J.Carlo,T.K.Sarkar,M.C.Wicks.Application of deterministic techniques to STAP.Applications of Space-Time Adaptive Processing,R.Klemm,Ed.London,UK:IEE Press,2004:375-411.
    [136]M.Pastorino,A.Randazzo.A smart antenna system for direction of arrival estimation based on a support vector regression.Antennas and Propagation,IEEE Transactions on,2005,53(7):2161-2168.
    [137]Wonsuk Choi,Tapan K.Sarkar,Hong Wang,etc.Adaptive Processing Using Real Weights Based on a Direct Data Domain Least Squares Approach.IEEE Trans.on Antennas and Propagation,2006,54(1):182-191.
    [138]S.Burintramart,T.K.Sarkar,Yu Zhang.Nonconventional Least Squares Optimization for DOA Estimation.IEEE Trans.on Antennas and Propagation,2007,55(3):707-714.
    [139]J.G Proakis.数字通信(第三版).张力军,张宗橙,郑宝玉,译.北京:电子工业出版社.2002.
    [140]金荣洪,耿军平,范瑜.无线通信中的智能天线.北京:北京邮电大学出版社,2006.
    [141]R.T.Compton Jr..Adaptive Antennas.London,U.K.:Prentice Hall,1988.
    [142]H.L.Van Trees.Optimum Array Processing.New York:Wiley,2002.
    [143]M.D.Migliore.A Beamforming Algorithm for Adaptive Antennas Operating in Crowed CDMA Signal Environment.IEEE Trans.on Antennas and Propagation,April 2006,54(4):1354-1357.
    [144]D.G.Manolakis,V.K.Ingle,S.M.Kogon.Statistical and Adaptive Signal Processing.周正,译.北京:电子工业出版社,2003.
    [145]T.K.Sarkar,J.Nebat,D.D.Wiener,et al.A Discussion of Various Approaches to the Identification/Approximation Problem.IEEE Trans.on Antennas and Propagation,March 1982,AP-30(2):267-272.
    [146]W.A.Gardner.Cyclostationarity in Communications and Signal Processing.Piscataway,New Jersey,IEEE Press,1994.
    [147]苏小桅.随机脉冲干扰样式的仿真分析.成都大学学报(自然科学版),2007年9月,26(3):236-239.
    [148]A.M.Wiener,J.R Heritage,J.Salehi.Encoding and decoding of Femtosecond Pulses.Opt.Lett.,1988,13(4):300-302.
    [149]S.Haykin.Adaptive Filter Theory.Englewood Cliffs,New Jersey,Prentice Hall,1996.
    [150]A.Paulraj,B.Papadias.Space-Time Processing for Wireless Communications.IEEE Signal Process.Mag.,Nov.1997,14(6):49-83.
    [151]X.Wang,H.Poor.Space-Time Multiuser Detection in Multipath CDMA Channels.IEEE Trans.Signal Process.,Sep.1999,47(9):2356-2374.
    [152]S.Miller,S.Schwartz.Integrated Spatial-Temporal Detectors for Asynchronous Gaussian Multiple-Access Channels.IEEE Trans.Commun.,Feb.-Apr.1995,43(234):396-411.
    [153]H.Dai,H.Poor.Iterative Space-Time Processing for Multinser Detection in Multipath CDMA Channels.IEEE Trans.Signal Process.,Sep.2002,50(9):2116-2127.
    [154]C.C.Hu,I.Reed.Space-Time Adaptive Reduced-Rank Multistage Wiener Filtering for Asynchronous DS-CDMA.IEEE Trans.Signal Process.,Jul.2004,52(7):1862-1877.
    [155]C.C.Hu.Space-Time Adaptive Reduced-Rank Multistage Receiver for Asynchronous CDMA.Proc.GLOBECOM,Dec.1-5,2003,4:2073-2078.
    [156]M.L.Honing,U.Madhow,S.Verdu.Blind Adaptive Multiuser Detection.IEEE Trans.Inf.Theory,Jul.1995,41(4):944-960.
    [157]A.Kong,C.Wan.A Blind Space-Time Constrained Minimum Output Energy Detector for DS-CDMA Communication System.IEEE Trans.on Vehicular Tech.,May 2007,56(3):1187-1196.
    [158]X.Wang,H.V.Poor.Blind Multiuser Detection:A Subspace Approach.IEEE Trans. Inf. Theory, Mar. 1998, 44(2): 677-690.
    [159] D. J. Sadler, A. Manikas. MMSE Multiuser Detection for Array Multicarrier DS-CDMA in Fading Channels. IEEE Trans. Signal Processing, July 2005, 53(7):2348-2358.
    [160] W. Wang, H. V. Poor. Blind Equalization and Multiuser Detection in Dispersive CDMA Channels. IEEE Trans. Commun., Jan. 1998,46(1): 91-103.
    [161] B. D. Carlson. Covariance Matrix Estimation Error and Diagonal Loading in Adaptive Arrays. IEEE Trans. Aerosp. Electron. Syst., Jul. 1988,4(10): 397-401.
    [162] W. Xu, L. B. Milstein. On the Performance of Multicarrier RAKE Systems. IEEE Trans. Commun., Oct. 2001,49: 1812-1823.