时滞混沌系统的构造与同步及其仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在保密通信中,最关键的是要有一个可靠的密码产生器。研究发现该密码产生器可由一个混沌系统来实现,混沌系统在混沌通信中起着“加密”的作用,构造一个好的混沌系统对保密通信是很有意义的。混沌同步在混沌保密通信中起着“解密”的作用,混沌同步是混沌保密通讯中的关键技术之一。
     目前对非时滞混沌系统的大量研究成果表明,正的Lyapunov指数个数较少的非时滞低维混沌系统在保密性方面并不很强。为使系统具有多个正的Lyapunov指数,系统的维数将急剧增加,同步系统的结构随之变得庞大而复杂,这无形中就增加了同步的难度。时滞混沌系统为无穷维系统,它是可以创生具有多个正Lyapunov指数、结构相对简单却能产生具有极高随机性和不可预测性的时间序列的超混沌系统。因此在同步的过程中,它既可克服高维非时滞超混沌系统在结构上庞大而复杂的缺点,又能提高保密性。因此,对时滞混沌系统的构造与同步的研究都是具有重要实际意义的,它有望成为高新技术的一个新的生长点。另一方面,时滞混沌系统可以看成抗破译能力极强的时空混沌系统的特殊情况,对时滞混沌同步的深入研究定会有助于一般时空混沌同步的研究。所以,关于时滞混沌同步理论的研究,也是一件很有理论意义的工作。
     论文围绕混沌保密通信的两个核心问题,即混沌系统的构造(“制造密钥”)和混沌系统同步(“解密”)的判定进行了理论探讨和数值仿真,在以下几个方面取得了一定的成果。
     对于时滞混沌系统提出两种构造方法:其一是扰动,对已有的混沌系统作时滞线性扰动或者对线性系统作时滞非线性扰动;其二是变性,对非时滞混沌系统的非线性项作时滞变形。通过对稳定的线性系统和已有的非时滞混沌系统的改造,分别得到两个自由度为1的新时滞混沌系统,六个自由度为2的新时滞混沌系统,五个自由度为3的新时滞混沌系统,其中包括一个自由度为3的时滞反馈Chua电路系统(它易于用电子线路实现,且可用于模拟混沌保密通信)。
     论文给出了时滞系统Lyapunov指数比较确切的定义,进而提出了判定时滞系统是否混沌的简单实用方法:首先考察波形图和吸引子投影图,初步判定系统是否混沌;再作出解对初值的敏感性示意图,进一步对系统是否混沌进行确认;最后通过估算最大Lyapunov指数作出系统是否混沌的确切结论。此方法用多个原有的著名的时滞混沌系统进行了检验,发现它是可靠的。用此方法还对文章中构造出的所有新时滞系统(以下简称新时滞系统)的混沌特性作了考察,结果表明它们在取一定的参数时都是混沌的。
In security communication, the cryptogram generator is a key device. It is showed that in chaotic security communication, this cryptogram generator can be a chaotic system. In chaotic security communication, the utility of chaotic system is "encryption", thus it is valuable to construct a proper chaotic system for chaotic security communication. While the duty of chaotic synchronization is "decryption", it is a key technology for chaotic security communication.It is showed by large amount of uptodate investigations of nondelay chaotic system that those low dimensional nondelay chaotic systems with few positive Lyapunov exponents were not safe enough. To increase the number of positive Lyapunov exponents, the dimension of a system should be increased drastically, and the structure of the synchronization system would be huge and complex, so it would be more difficult for synchronization. Time-delayed chaotic system is an infinite dimension system; it can be a hyperchaotic system with large numbers of positive Lyapunov exponents, and can generate highly stochastic and unpredictable time series. Thus in the process of synchronization, it overcomes the shortage of nondelay chaotic system with huge dimension and complex structure, and it can also increase safety for secure communication. Therefore the study of chaotic synchronization of a time-delayed chaotic system is of high practical importance for increasing the safety of secure communication. It may become a new increase point of new-higher technology. In addition, time-delayed chaotic system can be considered as a special case of spatio-temporal chaotic systems with extremely high safety for security communication. The study of synchronization of time-delayed chaotic system would be helpful for the study of synchronization for general spatio-temporal chaotic systems. Thus the study of synchronization of a time-delayed chaotic system is of theoretical significance.This thesis investigated two key problems for chaotic security communication, which is the construction of chaotic system ("cryptogram generator") and their synchronization ("decrypt"). By theoretical investigation as well as numerical simulation, some results with different aspect were established.Two methods were presented for constructing a time-delayed chaotic system: one is perturbation, time-delayed linear perturbation for chaotic system or time-delayed nonlinear perturbation for linear system, and the other is a time-delayed modification,
    adjusting the nonlinear term of a chaotic system to a delayed one. By amendment of stable linear system and nondelay chaotic system, two novel time-delayed chaotic systems with freedom degree 1 , six novel time-delayed chaotic systems with freedom degree 2 , five novel time-delayed chaotic systems with freedom degree 3 including a time-delayed feedback Chua circuit with freedom of degree 3 were constructed.An original definition of Lyapunov exponent for time-delayed system was presented, upon which a simple practical method for determining whether a time-delayed system was chaotic or not was presented: one first exams the wave form and the projection plot of attractor to find out whether a system is chaotic in the first round, then he draws the 'sensitive' wave form to strengthen the affirmed result of the first step, and at last he estimates the largest Lyapunov exponent to make an affirmative conclusion. This method was tested by several well known time-delay chaotic system and it was found to be reliable. The chaotic activities of new time-delayed system constructed were demonstrated by this method and it was found that all the new time-delayed systems were chaotic with certain parameters.For the investigation of synchronization of time-delayed chaotic systems, several asymptotic stability theorems with matrix inequalities as sufficient conditions for linear time-delayed system were proved by using stability theory of functional differential equations. Upon the analysis of the structure of the new time-delayed chaotic system constructed, two classes of abstract time-delayed chaotic systems were presented, one is the time-delayed nonlinear perturbation of a nondelay linear system and the other is nondelay or time-delayed nonlinear perturbation of a time-delayed linear system. These two classes of systems cover all the new time-delayed chaotic system constructed. The asymptotic stability theorems were used to investigate three kinds of synchronization problems (complete synchronization, lag synchronization and anticipating synchronization) of these two classes of time-delayed systems, and several sufficient conditions were established. And then the synchronization parameters were tested by these sufficient conditions for all new time-delayed chaotic system constructed, and the numerical simulation with Matlab 6.5 showed satisfaction.Adaptive synchronization and control problems for time-delayed system with parameters not fully known were investigated. Firstly, the adaptive chaotic synchronization problem of the time-delayed linear perturbed parameters fully unknown Chen system was studied by using Lyapunov-Krassovskii functional method, a parameters update law was established and the complete synchronization with the
    time-delayed linear perturbed Chen system as drive system was reached. Then the adaptive chaotic synchronization problem of the time-delayed feedback Chua system with two parameters unknown was studied by using Lyapunov function method, a parameters update law was established and the complete synchronization with time-delayed feedback Chua system as drive system were reached. Finally, the Lyapunov-Krassovskii functional method was used to study the adaptive synchronization and control problems for a general class of time-delayed system, two general theorem were proved and a new time-delayed chaotic system constructed were used to simulat it.
引文
[1] Yamada T, Fujisaka H. Stability theory of synchronization motion in coupled-oscillator system Ⅱ. Prog. Theor. Phys. 1983. 70. 1240-1248.
    [2] Yamada T, Fujisaka H. Stability theory of synchronization motion in coupled-oscillator system Ⅲ. Prog. Theor. Phys. 1984. 72. 885-893
    [3] Gaponov-Crrekhov, Rabinovich Starobinets. Dynamical model of spatial development of turbulence. Plasma v zh Eksp. Toor. Fiz. 1984. 39: 561-564
    [4] Affraimovich V S, Verichev N N, Rabinovich M I. Stochastic synchronization of oscillation in dissipative systems. Inv. VUZ Rasiofiz. RPQAE. 1986. 29. 795-803
    [5] Louis M. Pecora and Thomas L. Carroll. Synchronization in Chaotic Systems. Phys. Rew. Lett. 1990. Vol. 64, No. 8. 821-825
    [6] Thomas L. Carroll and Louis M. Pecora. Synchronizing Chaotic Circuits. IEEE Trans. Cir. Sys. 1991. Vol. 38. No. 4. 453-455
    [7] Louis M. Pecora and Thomas L. Carroll. Driving systems with chaotic signals. Phys. Rew. A. 1991. Vol. 44. No. 4. 2374-2384
    [8] D. Hansel H. Sompolinsky. Synchronization and Computation in a Chaotic Neural Network. Phys. Rew. lett. 1992. Vol. 68. No. 53. 718-721
    [9] P. Celka. Chaotic Synchronization and Modulation of Nonlinear Time-Delayed Feedback Optical Systems. IEEE Teans Cir. Sys. -I. 1995. Vol. 42. No. 8. 455-463
    [10] K. Pyragas. Synchronization of coupled time-delay systems: Analytical estimations. Phys. Rew. 1998. Vol. 58. No. 3. 3067-3071
    [11] Henning U. Voss. Anticipating chaotic synchronization. Phys. Rew. E. 2000. Vol. 61. No. 5. 5115-5119
    [12] Henning U. Voss. Real-time anticipation of chaotic states of an electronic circuit Int. J. of Bifurcation and Chaos. 2002.12(7). 1619-1625
    [13] C. Masoller. Anticipation in the synchronization of chaotic time-delay systems. Physica A 2001. 295. 301-304
    [14] Yonglu Shu, Anban Zhang and Bangding Tan. Switching among three different kinds of synchronization for delay chaotic systems. Chaos, Solitons and Fractals 23 (2005) 563-571
    [15] E. M. Shahverdiev, S. Sivaprakasam, K. A. Shore. Lag synchronization in time-delayed systems Physics Letters A. 2002. 292. 320-324
    [16] 马在光,吴纯英,丘水生.混沌同步和混沌通信研究的新进展与新尝试.电波科学学报.第 17卷 第3期.2002,307-314
    [17] J. Hale. Theory of functional Differential Equations. Springer-Vedag, 1977: 1-244
    [18] 李森林 温立志.泛函微分方程.湖南科技出版社.1987.
    [19] Xiao Fan Wang, Guanrong Chen, Kim F. Man. Chaotifing a Continuous-Time System by Time-Delay Feedaoack. ISCAS 2000-IEEE International Symposium on Circuits and Systems, May 28-31. 2000. Geneva, Switzerland
    [20] W. L. Brogan. Modem Control Theory. Englewood Cliffs, NJ: Prentice-Hall. 1991
    [21] P. Celka. Delay-differential equation versus 1 D-map: Application to chaos control. 1997. Physica D 104. 127-147
    [22] 禹思敏.混沌系统同步与调制技术及其在保密通信中应用的研究.华南理工大学博士学位论文.2001.4.12
    [23] Takashi Maruyama, Naohiko Inabat, Yoshifumi Nishio and Shinsaltu Mori. Chaos in Self-Oscillatory Circuits Containing Time Delay.. Proceedings of the 33rd Midwest Symposium on 12-14 Aug. 1990. 1055-1059
    [24] 方锦清.驾驭混沌与发展高科技.原子能出版社 2002.1-250
    [25] 贾春光,王一平.混沌电路同步及其在通信中的应用研究.电波科学报.第11卷,第2期1996,1-8
    [26] Shu yonglu, Tan Bangding, Li Chuandong, Control of Chaotic n-dimensional Continuous-time System with Delay. Physics Letters A. 2004. 323. 251-259
    [27] 陶朝海,陆君安.统一混沌系统的控制.物理学报.2003.第52卷第2期.281-284
    [28] Jinhu Lu, Guanrong Chen and Suochun Zhang. Controlling in Between the Lorenz and the Chen Systems. International Journal of Bifurcation and Chaos. 2002. Vol.. No. 6. 1417-1422
    [29] K. Ikeda, H. Daido, and O. Akimoto. Optical Turbulence: Chaotic Behavior of Transmitted Light from a Ring Cavity, Phys. Rev. Lett. 1980. 45. 709-713.
    [30] Henning U. Voss and Jurgen Kurths. Analysis of Economic Delayed-Feedback Dynamics. To appear in "Nonlinear modeling and forecasting of high-frequency financial and economic time series" edited by Abdol Soofi and Ly Cao
    [31] S. S. YANGa and C. K. DUANb. Generalized Synchronization in Chaotic Systems. Chaos, Solitons & fiaclal Vol. 9, No. 10. pp. 1703 1707, 1998
    [32] Xzao Fan Wang, Guanrong Chen, Kim F. Man. Chaotifmg a continuous-time system by time-delay feedback. ISCAS 2000-IEEE International Symposium on Circuits and Systems. May28-31. 2000. Geneva, Switzerland, 116-119
    [33] Yanwu Wang, Zhi-Hong Guan, Xiaojiang Wen. Adaptive synchronization for Chen chaotic system with fully unknown parameters. Chaos, Solitons and Fractals. 2004. 19. 899-903
    [34] M. C Mackey, L. Glass. Oscillation and Chaos in Physiological Control Systems. Science, 1977, 197. 287-289
    [35] J , D Farmer. Chaotic Attractors of an Infinite Dimensional Dynamical System. Physica. D. 1982. (4). 366-393.
    [36] H. Lu, Z. He. Chaotic Behaviors In First-Order Autonomous Continuous-Time Systems With Delay. IEEE. Trans. Cris. Syst. 1996. 43. 700 ~ 702.
    [37] H. Lu, Y. He,. He. A Chaos Generator: Analyses of Complex Dynamics of a Cell Equation in Delayed Cellular Neural Network s. IEEE. Trans. Cirs. Syst. 1998. 45. 178 ~ 181.
    [38] Y. C. Tian, F. R. Gao. Adaptive Control of Chaotic Continuous Time System With Delay. Phys. D. 1998,117. 1-12
    [39] K. Ogata. Modern Control Engineering. Upper Saddle River, New Jersey: Prentice Hall, 1997.
    [40] K. Pyragas. Synchronization of coupled time-delay systems: Analytical estimations. Phys. Rev. E. 1998. Vol. 58, No.3. 3067-3071
    [41] Tomasz A.Bartler. Lyapunov exponents and chaos investigation. University of Cincinati, Phd Dissertation. 1999
    [42] Arkady Pikovskyy and Antonio Politiz. Dynamic 1 ocalization of Lyapunov vectors in spacetime chaos. Nonlinearity. 1998. 11. 1049-1062. Printed in the UK
    [43] Arkady S. Pikovsky and Jurgen Kurths. Roughening interfaces in the dynamics of perturbations of spatiotemporal chaos. Phys. Rev. E. 1994.Vol. 49. No. 1. 989-901
    [44] D.C. Lin. Fluctuations of Lyapunov vectors in large volume limit and the information-flow configuration in space-time dynamics. Physica D. 1996. 95 . 244-267
    [45] Lucadieci, Robert D. Russell and Erik S. Van Vleck. On the Computation of Lyapunov Exponents for Continuous Dynamical systems, SLAM J. Numer. Anal.. 1997. Vol. 34. No. 1 402-423.
    [46] Victor F. Dailyudenko. Lyapunov exponents for complex systems with delayed feedback. Chaos, Solitons and Fractals. 2003. 17.473-484
    [47] Giovanni Giacomelli and Antonio Politi. Relationship between Delayed and Spatially Extended Dynamical Systems. Phys. Rev. Lett. 1996. Vol. 76. No. 15. 2686-2689
    [48] Fradkov AL, Pogromsky AYu. Speed gradient control of chaotic continuous-time systems. IEEE Trans Circ Syst I: Fundam Theory Appl 1996. 43(11). 907-913.
    [49] Markov AYu, Fradkov AL. Adaptive synchronization of chaotic generators based on tunnel diodes. In: Proceedings of the 35th Conference on Decision and Control. Kobe. Japan. 1996. vol. 2.2177-2182.
    [50] Fradkov AL, Markov AYu. Adaptive synchronization of chaotic systems based on speed
     gradient method and passification. IEEE Trans Circ Syst I: Fundam Theory Appl 1997. 44(10): 905-912.
    [51] Wang C, Ge SS. Adaptive synchronization of uncertain chaotic systems via backstepping design. Chaos, Solitons & Fractals 2001. 12. 1119-1206.
    [52] Liao T-L. Adaptive synchronization of two Lorenz systems. Chaos, Solitons & Fractals 1998. 9. 1555-1561.
    [53] Chert S, Lu. J. Synchronization of an uncertain unified chaotic system via adaptive control. Chaos. Solitons & Fractals 2002. 14(4). 643-647.
    [54] Chert S, Lu. J. Parameters identification and synchronization of chaotic systems based upon adaptive control. Phys Lett A. 2002. 299(4). 353-358.
    [55] Yu-Chu Tian, Furong Gao, Adaptive control of chaotic continuous-time system with delay. Physcia D. 1998. Vol. 117. 1-12
    [56] Guanrong Chert and Xinghuo Yu. On Timc-Delay Feedback Control of chaotic Systems. IEEE Pans. CAS-I: Fundamental and Applications. 1999. Vol. 46. 767-772,
    [57] Tao Yang Chun-Me, Yang Lin-Bao Yang. A Detailed Study of Adaptive Control of Chaotic System with Unknown Parameters, Dynamics and Control. 1998.. Vol. 8. 255-267.
    [58] E. Zeidler. Nonlinear functional analysis with applications Vol.I fixed point theory. Springer-Verlag, Berlin Heidelberg New York 1985. 130-205
    [59] Shangbo Zhou. Juebang Yu, Xiaofeng Liao. Adaptive, Control of Chaotic Continuous-time System with Delay. Communications, Circuits and Systems and West Sino Expositions. IEEE 2002. 1680-1684
    [60] 周尚波.时延神经网络系统的Hopt分岔、混沌及其控制研究.学位论文.电子科技大学2002.11
    [61] Boualem Mensour, And Longtin. Synchronization of delay-differential equations with application to private communication..Physics Letters A. 1998. 244. 59-70
    [62] E-MShahverdiev and K. A. Shore. Time-delay hyperchaos synchronisation and implications for laser diodes subject to optical feedback. IEE Proc. -Optoelectron., Vol. 148. No. Ⅰ. 2001. 46-48
    [63] Cristina Masoller, Damian H. Zanetteb. Anticipated synchronization in coupled chaotic maps with delays. Physica A. 2001. 300. 359-366
    [64] Tilmann Heil, Ingo Fischer, and Wolfgang Elsasser. Chaos Synchronization and Spontaneous Symmetry-Breaking in Symmetrically Delay-Coupled Semiconductor Lasers. Phy. Rev. Lett 2001. Vol. 86. No. 5. 795-798
    [65] Dubois Daniel M. Theory of Incursive Synchronization and Application to the Anticipation of Delayed Linear and Nonlinear Systems. Physics Letters A. 2004. 323. 251-259..
    [66] Meng Zhan, Xingang Wang, Xiaofeng Gong, G. W. Wei and C. -H. Lai. Complete synchronization and generalized synchronization of one-way coupled time-delay systems. Phys. Rev. E. 2003. 68. 036208. 1-5
    [67] Xiaoxin Liao, Guanrong Chert. Chaos Synchronization of General Lure Systems via Time-Delay feedback control. International Journal of Bifurcation and Chaos. 2003. Vol. 13. No. 1. 207-213
    [68] C. Masoller, Damian H. Zanett. Different regimes of synchronization in nonidentical time-delayed maps. Physica A. 2003. 325. 361-370
    [69] Shawn D. Pethel, Ned J. Corron, Quitisha R. Underwood, and Krishna Myneni. Information Flow in Chaos Synchronization: Fundamental Tradeoffs in Precision, Delay, and Anticipation. Phys. Rev. Lett. 2003. Vol. 90. No. 25. 254101. 1-4
    [70] Chuandong Li, Xiaofeng Liao, Kwok-wo Wong. Chaotic lag synchronization of coupled time-delayed systems and its applications in secure communication. Physica D. 2004. 194. 187-202
    [71] Yalcin ME, Suykens JAK, Vandewalle J. Master-slave synchronization of Lure systems with time-delay. Int J Bifurcat Chaos 2001. 11 (6). 1707-1722.
    [72] Guo-Ping Jiang, Wei Xing Zheng, Guanrong Chen. Global chaos synchronization with channel time-delay. Chaos, Solitons and Fractals. 2004. 20. 267-275
    [73] Jitao Sun. Some global synchronization criteria for coupled delay-systems via unidirectional linear error feedback approach. Chaos, Solitons and Fractals. 2004. 19. 789-794
    [74] 侯沿滨,向廷元.时滞超混沌系统的同步.河北工业科技.2002.第19卷第2期.4-7
    [75] 肖井华,刘杰,邹勇.耦合混沌同步和多路保密通信.通信学报.第17卷第5期.1996.98-103
    [76] 关新平,彭海朋,何宴辉.具有随机扰动连续时滞混沌系统的同步.系统工程与电子技术.2002.第24卷第9期.74-77
    [77] S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares, C. S. Zhou. The synchronization of chaotic systems. Phys. Rep. 2002. 366. 1-101.
    [78] N. F. Rulkov, M. M. Sushehik, L. S. Tsimring, H. D. I. Abarbanel. Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E. 1995. 51. 980-994
    [79] M. G. Rosenblum, A. S. Pikovsky, J. Kurths. Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 1996. 76. 1804-1807
    [80] Michael G. Rosenblum, Arkady S. Pikovsky, and Jurgen Kurths. From Phase to Lag Synchronization in Coupled Chaotic Oscillators. Phys. Rev. Lett. 1997. Vol. 78. No. 22 4193-4196
    [81] A. Barsella, C. Lepers. Chaotic lag synchronization and pulse-induced transient chaos in lasers coupled by saturable absorber. Opt. Commun. 2002. 205. 397-403.
    [82] V. Ahlers, U. Parlitz, W. Lauterborn. Hyperchaotic dynamics and synchroiaization of externalcavity semiconductor lasers. Phys. Rev. E 1998. 58. 7208-7213
    [83] S. Sivaprakasarn, K. A. Shore. Demonstration of optical synchronization of chaotic external-cavity laser diodes. Opt. Lett. 1999. 24. 466-468
    [84] H. Fujino, J. Ohtsubo. Experimental synchronization of chaotic oscillations in external-cavity semiconductor lasers. Opt. Lett. 2000. 25. 625-630
    [85] S. Sivaprakasam, E. M. Shahverdiev, K. A. Shore. Experimental verification of the synchronization condition for chaotic external cavity diode lasers, Phys. Rev. E 2000. 62. 7505-7507
    [86] S. Sivaprakasam, E. M. Shahverdiev, P. S. Spencer, K. A. Shore. Experimental demonstration of anticipating synchronization in chaotic semiconductor lasers with optical feedback. Phys. Rev. Lett. 2001. 87. 154101. 1-3.
    [87] Fradkov AL, Pogromsky AYu. Speed gradient control of chaotic continuous-time systems. IEEE Trans Circ Syst Ⅰ: Fundam Theory Appl 1996. 43(11). 907-13
    [88] Markov AYu, Fradkov AL. Adaptive synchronization of chaotic generators based on tunnel diodes. In: Proceedings of the 35th Conference on Decision and Control, vol. 2. Kobe, Japan, 1996. 2177-2182.
    [89] Fradkov AL, Markov AYu. Adaptive synchronization of chaotic systems based on speed gradient method and passification. IEEE Trans Circ Syst Ⅰ: Fundam Theory Appl 1997. 44(10). 905-912.
    [90] Wang C, Ge SS. Adaptive synchronization of uncertain chaotic systems via baekstepping design. Chaos, Solitons & Fractals 2001. 12. 1119-1206.
    [91] Liao T-L. Adaptive synchronization of two Lorenz systems. Chaos, Solitons & Fraetals 1998. 9. 1555-61.
    [92] Chen S, Lu J. Synchronization of an uncertain unified chaotic system via adaptive control. Chaos, Solitons & Fractals 2002. 14(4). 643-647.
    [93] Chen S, Lu J. Parameters identification and synchronization of chaotic systems based upon adaptive control. Phys Lett A 2002. 299(4). 353-358.
    [94] Yanwu Wang, Zhi-Hong Guan, Xiaojiang Wen. Adaptive synchronization for Chen chaotic system with fully unknown parameters. Chaos, Solitons and Fractals 2004. 19. 899-903
    [95] 杨涛,邵感鹤.一种自适应混沌同步方法及其在信息传输中的应用.计算机工程与应用 2001.13.20-23
    [96] 岳东,Jun Yoneyama.含不确定性混沌系统的模糊自适应同步.物理学报.2003.第52卷 第2期.292-295
    [97] 贺明峰,穆云明,赵立中.基于参数自适应控制的混沌同步.物理学报.2000.第49卷.第5期.830-833
    [98] 关新平,唐英干,范正平,王益群.基于神经网络的混沌系统鲁棒自适应同步.物理学报.2001.第50卷第11期.2112-2115
    [99] 戴栋,马西奎.基于间歇性参数自适应控制的混沌同步.物理学报.2001.第50卷 第7期.1237-1240
    [100] 高金峰,马西奎,罗先觉.实现连续时间标量混沌信号同步的自适应控制方法.物理学报.2000.第49卷.第7期.1235-1241
    [101] 高金峰,潘秀琴,王俊昆.自适应方法控制混沌超混沌系统同步的研究.计算技术与自动化.1999.第18卷 第4期.7-12
    [102] Brown R., Kocarev L. A unifyng definition of synchronization for dynamical systems. Chaos. 2000. Vol. 10, No. 2. 344-349
    [103] 关新平,范正平,彭海朋,王益群.扰动情况下基于RBF网络的混沌系统同步.物理学报.2001.第50卷.第9期.1670-1674
    [104] Liu, Feng; Ren, Yong; Shan, Xiuming; Qiu, Zulian. A linear feedback synchronization theorem for a class of chaotic systems. Chaos, Solitons and Fractals. 2002. 13. 723-730
    [105] 关新平,何宴辉,邬晶.基于弹性控制器的混沌同步.物理学报.2003.第52卷.第11期.2718-2723
    [106] L. Kocarev and U. Parlitz. Generalized Synchronization, Predictability, and Equivalence of Unidirectionally Coupled Dynamical Systems. No. 11 Phys. Rev. 1996. Lett. Vol 76. 1816-1819
    [107] 杨林保、杨涛.非自治混沌系统的脉冲同步.物理学报2000.49.33-37
    [108] Epaminondas Rosa, Jr. Edward Ott, and Mark H. Hess, Transition to Phase Synchronization of Chaos. Phys. Rev. Lett. 1998. Vol. 80. No. 8. 1642-1645
    [109] Xiao-Song Yang, C, K. Duan, and X. X. Liao. A Note on Mathematical Aspects of Drive-Response Type Synchronization. Chaos. Solitons & Fraclals. 1999. Vol. 10. No. 9. 1457-1462
    [110] Wang X F and Wang Z Q. Synchronizing chaos and hyperchaos with any scalar transmitted signal. IEEE Trans. Circuits Sys. 1998. 45 1101-1103
    [111] Giuseppe Grassi and Saverio Mascolo. Synchronization of High-Dimensional Chaos Generators by Observer Design. Int. J. Bifurca. Chaos. 1999. 9 1175-1180
    [112] Liao T L and Tsai SH. Adaptive synchronization of chaotic systems and its application to secure communications. Chaos, Solitons and Fractals 2000. 11. 1387-1396
    [113] 关新平、张群亮、范正平.扰动下一类超混沌系统的同步及其在保密通信中的应用.通信学报.2001.12.55-62
    [114] 杨晓松.一类混沌系统观测器.物理学报.2000.49.1919-1221
    [115] 马克茂 王子才.一类非线性系统的观测器设计.控制理论与应用.1998.15.443-446.
    [116] Duma G R. Solutions of the equation AV+BW=VF and their application to eigenstructure assignment in linear systems. IEEE Trans. Auto. Con. 1993. 38. 276-280
    [117] Matsumoto, T. Chua, L. Kobayashi, K. Hyper chaos: Laboratory experiment and numerical confirmation. IEEE Trans. Circuits Sys. 1986. 33. 11. 1143-1147
    [118] 关新平,何宴辉,范正平.扰动情况下一类混沌系统的观测器同步.物理学报.2003.第52卷.第2期.276-281
    [119] 高金峰,王晶.实现标量混沌信号同步控制的神经网络方法.电路与系统学.2003.第8卷第2期.1-5
    [120] J. H. Peng, E. J. Ding, M. Ding, mad W. Yang. Synchronizing Hyperchaos with a Scalar Transmitted Signal. Phys. Rev. Lett. 1996. 76. 904-907
    [121] L. Kocarev, U. Parlitz. General Approach for Chaotic Synchronization with Applications to Communication. Phys. Rev. Lett. 1995. Vol. 74. No. 25. 5028-5031
    [122] 程丽,张入元,彭建华.用单一驱动变量同步混沌与超混沌的一种方法.物理学报.2003 第52卷.第3期.536-541
    [123] Jolly K. John and R. E. Amfitkar. Synchronization of unstable orbits using adaptive control, Phys. Rev. E 1994. Vol. 49. No. 6. 4843-4848
    [124] 赵辽英,厉小润,赵光宙.用细胞神经网络超混沌同步系统实现保密通信:电路与系统学报.2003.第8卷.第3期.41-45
    [125] 赵耿,方锦清.现代信息安全与混沌保密通信应用研究的进展.物理学进展.2003第23卷第2期.212-255
    [126] Tao Yang, Leon O. Chua. Impulsive Control and Synchronization of Nonlinear Dynamical Systems and Application to Secure Communication. International Journal of Bifurcation and Chaos. 1997. Vol. 7. No. 3. 645-664
    [127] Henk Nijmeijer and Iven M. Y. Marcels. An Observer Looks at Synchronization. IEEE Trans. Cir. SYS. Ⅰ. 1997. Vol. 44, No. 10. 882-889
    [128] 齐冬莲,魏金岭,赵光宙.基于系统辨识的自适应混沌同步控制研究.控制与决策.第16卷.第1期.120-121
    [129] 李国辉,徐得名,周世平,赖建文.用APD法及主动间隙耦合实现混沌同步.应用科学学报.2001.第19卷.第1期.1-4
    [130] Tao Yang and Leon O. Chua. Chaotic Digital Code-Division Multiple Access (CDMA) Communication Systems. International Journal of Bifurcation and Chaos. 1997. Vol. 7. No. 12. 2789-2805
    [131] 杨绿溪,李克,何振亚.用于混沌同步的非线性观测器的稳定性分析.中国科学(E辑).2001.第38卷 第4期.355-362
    [132] Morgul O, Solak E. Observer based synchronization of chaotic systems. Phy. Rev. E. 1996. 54(5). 4803-4811
    [133] Grassi G, Maseolo S. Nonlinear observer design to synchronize hyperchaotie systems via a scalar signal. IEEE Trans Circuits Syst (Part Ⅰ). 1997. 44(10). 1011——1014
    [134] Wang X F, Wang Z Q, Synchronizing chaos and hyperehaos with any scalar transmitted signal. IEEE Trans Circuits Syst.1998. 45(10). 1101——1103
    [135] 赖建文,周世平.间歇驱动混沌同步法.物理学报.2001.第50卷.第1期.21-25
    [136] 南明凯,驱动响应耦合混沌系统的同步理论研究及其在通信中的应用,南京理工大学博士学位论文.2000.6.1
    [137] 蒋国平,王锁萍.基于状态观测器的超混沌同步方法研究.电子学报.第1期2000年
    [138] 高金峰,罗先觉,马西奎,实现连续时间标量(超)混沌信号同步控制的非线性反馈方法.物理学报.2000第49卷第5期
    [139] 兰祝刚,彭巍,丘水生.混沌同步方法的研究.通信技术.2000年第1期,总第108期.28-31
    [140] Tao Yang and Leon O. Chua, Applications of Chaotic Digital Code-Division Multiple Access (CDMA) to Cable Communication Systems. International Journal of Bifurcation and Chaos. 1998. Vol. 8, No. 8. 1657-1669
    [141] Andrey I. Panas, Tao Yang and Leon O. Chua. Experimental Results of Impulsive Synchronization Between Two Chua's Circuits. International Journal of Bifurcation and Chaos. 1998. Vol. 8, No. 3. 639-644
    [142] 蒋国平,王锁萍.细胞神经网络超混沌系统同步及其在保密通信中的应用.通信学报.2000.第21卷,第9期.79-85
    [143] 刘金刚,沈柯,周立伟.声光双稳系统的自控制反馈耦合驱动混沌同步.物理学报.1997.第46卷.第6期.1041-1047
    [144] Xiao Fan Wang, Guo-Qun Zhong, Kit-Sang Tang, Kim F. Man, and Zhi-Feng Liu. Generating Chaos in Chua's Circuit via Time-Delay Feedback. IEEE Trans. N Circuits. Syst. Ⅰ Vol. 48, No. 9, 2001, 1151-1155.
    [145] 蒋国平,王锁萍.蔡氏混沌电路的单向耦合同步研究.电子学报.2000.第1期.67-69
    [146] 罗晓曙.蔡氏混沌电路的同步及其在保密通信中的应用.军事通信技术.总第72期1999 19-23
    [147] 李克,杨绿溪,何振亚.基于非线性观测器的离散驱动混沌同步.自动化学报.2001.第27卷 第2期.280-283
    [148] 罗晓曙,方锦清,王力虎,孔令江,翁甲强.用离散混沌信号驱动实现混沌同步.物理学报.1999.第48卷.第11期.2022-2029
    [149] 高金峰,罗先觉 马西奎,潘秀琴,王俊昆.控制与同步连续时间混沌系统的非线性反馈方法.物理学报.第48卷.第9期.1618-1627
    [150] 蔡新国,丘水生.一种新型混沌同步方式—脉冲式同步.通信技术.1998.第3期,总第102期.61-64
    [151] K, Pyragas. Continuous control of chaos by self-controlling feedback. Phys. Lett. A, 1992. 170. 421-428
    [152] K Pyragas, A. Tamasevicius. Experimental control of chaos by delayed self-controlling feedback. Phy. Lett. A. 1993. 180. 99-102
    [153] M. K. Ali, Jin-Qing Fang. Synchronization of chaos and hyperchaos using linear and nonlinear feedback functions. Phy. Rev. E. Vol. 55. No. 5. 1997. 5285-5290
    [154] Guanrong Chen, Xiaoning Dong. On Feedback Control of Chaotic Continuous-Time Systems, IEEE TRANS. CIR. SYS-Ⅰ. 1993 Vol.. 40. NO. 9. 591-600
    [155] Y. H. Chen and M. Y. Chou. Continuous feedback approach for controlling chaos. Phy. Rev. E 1994. Vol. 50, No. 3. 2331-2334
    [156] T. C. Newell, P. M. Alsing, A. Gavrielides, and V. Kovanis, Synchronization of chaos using proportional feedback. Phy. Rev. E 1994. Vol. 49, No. 1. 313-321
    [157] K. Pyragas. Control of chaos via extended delay feedback. Physics Letters A 206 (1995) 323-330
    [158] A. Kittel, J. Parisi, K. Pyragas. Delayed feedback control of chaos by self-adapted delay time, Physics Letters A. 1995. 198. 433-436
    [159] Makoto Itoh, Tao Yang and Leon O. Chua. Experimental study of Impulsive Synchronization of Chaotic and Hyperchaotic Circuits. International Journal of Bifurcation and Chaos. 1999. Vol. 9, No. 7. 1393-1424
    [160] Makoto Itoh, Tao Yang and Leon O. Chua, Conditions for Impulsive Synchronization of Chaotic and Hyperchaotic Systems, International Journal of Bifurcation and Chaos, 2001, Vol. 11, No. 2. 551-560
    [161] Shihua Chen, Qing Yang. Changping Wang, Impulsive control and synchronization of unified chaotic system, Chaos, Solitons and Fractals Chaos. Solitons and Fractals 20 (2004) 751-758
    [162] Edgar N. Sanchez, Jose P. Perezz, Luis J. Flicaldel and Guanrong Chen, Chaos Synchronization via Adaptive Recufkrent Neural Control. Raceeding af the 40th IEEE Conference on Decision and Contml Orlando, Florida USA, December 2001
    [163] Arkady S. Pikovsky. Comment on "Chaos, Noise, and Synchronization", Phy. Rev. Leet. 1994 Vol.73.No. 21.. 2931-2931
    [164] Lech Longa, Evaldo M. F. Curado and Fernando A. Oliveira. Roundoff-induced coalescence of chaotic trajectories, Phy. Rev. 1996. Vol.54 No. 3 2201 -2204
    [165] Amos Maritan and Jayanth R. Banavar, Chaos, noise, and synchronization, Phys. Rev. Lett. 1994.72, 1451-1454