基于纳米敏感材料和固体电解质的NO_2和H_2传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体电解质基气体传感器具有结构简单、选择性好及灵敏度高等优点,尤其是优异的高温稳定性,使其具有广泛的应用前景。敏感材料是提高固体电解质基气体传感器性能的关键。本论文以固体电解质基NO_2和H_2传感器为研究对象,采用湿化学浸渍技术,在固体电解质多孔骨架层中制备纳米结构的敏感材料。采用XRD、SEM、EDX等分析方法和动电位扫描、恒电位、电化学阻抗谱及脉冲电位等电化学测试技术,系统研究了传感器的微观结构、气敏性能及响应机理等。
     以硝酸盐溶液为敏感材料前驱液,采用湿化学浸渍技术,在Ce_(0.9)Gd_(0.1)O_(1.9)(5CGO)多孔骨架层中成功制备了纳米结构的钙钛矿型敏感材料La_(0.75)Sr_(0.25)Mn_(0.5)Cr_(0.5)O_(3-δ)(LSCM)。LSCM颗粒均匀地分布在多孔骨架层中,粒径50~150nm之间。随着煅烧温度的升高,LSCM颗粒逐渐长大。分别以LSCM和CGO为敏感电极和固体电解质,组装成电流型NO_2传感器,在400~600℃之间,对NO_2表现出优异的敏感性。响应电流与NO_2浓度呈线性关系。传感器响应、恢复迅速,具有较好的稳定性。同时,对O_2和CO_2表现出良好的抗干扰能力。
     采用交流阻抗技术,研究了以LSCM为敏感电极的NO_2传感器的气敏性能和响应机理。结果表明:该传感器在交流阻抗的工作方式下,对NO_2表现出良好的响应性能。随着NO_2浓度增大,总阻抗值|Z|线性减小。通过对不同NO_2浓度下的阻抗谱拟合和等效电路分析表明,传感器对NO_2的响应是由于NO_2在气体|LSCM|CGO三相界面处的电化学催化分解。
     研究了基于复合敏感材料(LSCM/Ag和LSCM/CGO)电流型NO_2传感器的性能。与单相LSCM敏感材料相比,电子导电相Ag或离子导电相CGO的引入可明显提高传感器的响应电流、灵敏度和响应速度。在500~700℃之间,传感器的响应信号与NO_2浓度呈线性关系。该传感器表现出良好的重现性、稳定性及抗干扰能力。
     采用湿化学浸渍技术,在钇稳定的氧化锆(YSZ)多孔骨架层中成功制备了纳米结构的尖晶石型敏感材料MCr_2O_4(M=Cu, Ni, Zn),并组装成NO_2传感器。研究了其在不同工作方式下(阻抗、电流及脉冲电位)的气敏性能。结果表明:传感器对NO_2表现出良好的敏感性能。响应、恢复迅速,传感器的响应信号与NO_2浓度呈良好的线性关系。与恒电位法相比,在脉冲电位的工作方式下,传感器的响应电流和灵敏度均明显提高。响应电流达到1×10-3A级,灵敏度达到1.5μA/ppm。该传感器表现出优异的响应能力,响应时间仅为0.1s。对O_2具有良好的抗干扰能力。
     研究了基于纳米敏感材料的固体电解质基电流型H_2传感器。采用固相反应法制备了质子导体CaZr_(0.9)In_(0.1)O_(3-δ)。利用ZnO作为烧结助剂,有效降低了CaZr_(0.9)In_(0.1)O_(3-δ)电解质的烧结温度。经1350℃烧结5h,得到具有良好致密性、较高电导率和优异稳定性的CaZr_(0.9)In_(0.1)O_(3-δ)电解质。采用湿化学浸渍技术在CaZr_(0.9)In_(0.1)O_(3-δ)多孔骨架层中成功地制备了纳米结构的敏感材料ZnO和SnO_2。在500~700℃之间,组装成的电流型H_2传感器表现出较高的灵敏度、优异的响应和恢复能力及良好的稳定性。
The solid electrolyte type gas sensors with simple structure, good selectivity and highsensitivity, especially excellent chemical and physical durability at elevated temperatures,have the widespread prospect of application. It is important to study the design andsynthesis of sensing materials which were the key factors for improving the performanceof the sensors. In the present work, the solid electrolyte type NO_2and H_2sensors werefabricated using nano-structured sensing materials which were prepared in the poroussolid electrolyte layers by impregnating method. The composition and microstructure ofthe sensors were characterized by XRD, SEM and EDX. The sensing performances andmechanisms were investigated by potentiodynamic method, potentiostatic method, ACimpedance spectroscopy and pulse potential method.
     Nano-structured perovskite-type oxide La_(0.75)Sr_(0.25)Cr_(0.5)Mn_(0.5)O_(3-δ)(LSCM)as sensingelectrode was prepared in the porous Ce_(0.9)Gd_(0.1)O_(1.9)(5CGO)layer by impregnating methodusing nitrate salts precursor solution. The LSCM particles in the range of50–150nm werehomogeneously dispersed in the porous CGO layer. With calcining temperature increasing,LSCM particles gradually grew up. An amperometric NO_2sensor using nano-structuredLSCM sensing electrode with CGO electrolyte was fabricated. The sensor showed goodsensitivity to NO_2at400~600℃. The response current was linearly related to theconcentration of NO_2. The sensor showed good response–recovery characteristics,reproducibility and stability. Negligible effects of O_2and CO_2on the sensor response wereobserved.
     The sensing performance and mechanism of the NO_2sensor using nano-structuredLSCM sensing electrode were investigated by AC impedance spectroscopy. The resultsshowed that the impedancemetric NO_2sensor was sensitive to NO_2.With the increase inthe NO_2concentration, the total impedance values (|Z|) linearly decreased. Anequivalent-circuit model analysis for the impedance spectra showed that sensor responseto NO_2was attributed to the processes occurring at the triple-phase boundary.
     Amperometric NO_2sensors using nano-structured composite sensing electrodes(LSCM/Ag and LSCM/CGO)with CGO electrolyte were fabricated. Compared withsingle LSCM sensing electrode, the sensors with composite sensing electrodes showedextraordinarily higher response currents, sensitivities and response rates. The responsecurrent was linearly related to the concentration of NO_2at500~700℃. The sensorsshowed good response–recovery characteristics, stability and anti-interference ability tothe coexistence gases.
     Novel NO_2sensors were fabricated using nano-structured spinel-type oxides MCr2O4(M=Cu, Ni, Zn) as sensing electrodes prepared in the porous yttria-stabilized zirconia(YSZ) layer by impregnating method. The sensing performances of the NO_2sensors wereinvestigated using different working modes, including amperometric, impedancemetricand pulse potential mode. The sensor showed good sensitivity and response–recoverycharacteristics to NO_2. The response current was linearly related to the concentration ofNO_2. Compared with the potentiostatic mode, the sensors using pulse potential modeshowed extraordinarily higher response current and sensitivity which could reach1×10-3Aand1.5μA ppm-1, respectively. The response time of the sensors was0.1s. A negligibleeffect on the sensor response was observed when O_2concentration varying from0to20vol.%.
     Amperometric hydrogen sensors using nano-structured sensing electrodes and aproton conductor CaZr_(0.9)In_(0.1)O_(3-δ)as electrolyte were fabricated. A bilayer CaZr_(0.9)In_(0.1)O_(3-δ)electrolyte including both a dense layer and a porous layer was prepared by conventionalsolid state reaction method. During the preparation of electrolyte, sintering aid (ZnO) wasintroduced into CaZr_(0.9)In_(0.1)O_(3-δ)for promoting its sintering. CaZr_(0.9)In_(0.1)O_(3-δ)with highdensified structure, good conductivity and excellent chemical stability was prepared aftersintered at1350℃for5h. The nano-structured ZnO and SnO_2particles were in-situprepared in the porous CaZr_(0.9)In_(0.1)O_(3-δ)backbone by impregnating method. The sensorshowed good sensitivities, response–recovery characteristics, reproducibility and stability.
引文
[1] Korotcenkov G. Metal Oxides for Solid-state Gas Sensors: What Determines Our Choice?[J].Materials Science and Engineering B,2007,139:1-23.
    [2] Zhuiykov S. Gas sensor Applications of Oxygen-ionic Electrolytes: Development of Their ElectronModel[J]. Sensors and Actuators B: Chemical,2008,130:488-496.
    [3] Lee J H. Gas sensors Using Hierarchical and Hollow Oxide Nanostructures: Overview[J]. Sensorsand Actuators B: Chemical,2009,140:319-336.
    [4] Gándara C L, Fernández-Sanjuán J M, Klaas A, Ramos F M, et al. How to Test Exhaust Gas sensors?Influence of Gas Testing Systems and Experimental Artifacts in Exhaust Gas sensorsCharacterization[J]. Procedia Engineering,2012,47:1105-1108.
    [5] Ayo B P, Duraiswamia D, Delgado J, et al. Turning Operational Conditions for Efficient NOxStorage and Reduction over a Pt–Ba/Al2O3Monolith Catalyst[J]. Applied Catalysis B:Environmental,2010,96:329-337.
    [6] Radzilowski R H, Kummer J T. The Preparation of Nitrosonium β-alumina[J]. InorganicChemistry,1969,8:2531-2533.
    [7] Moos R, Reetmeyer B, Hurland A, Plog C. Sensor for Directly Determining The Rxhaust GasRecirculation Rate—EGR Sensor[J]. Sensors and Actuators B: Chemical,2006,119:57-63.
    [8] Rao N, Van der Bleeck C, Schoonman J. Potentiometric Nitrogen Oxide NOx(x=1,2) Sensors withAg+-β"-Alumina as Solid Electrolyte and Silver Metal as Solid Reference[J]. Solid State Ionics,1992,52:339-346.
    [9] Imanaka N, YamamotoT, Adachi G. Nitrogen Monoxide Sensing with Nitrosonium Ion ConductingSolid Electrolytes[J]. Electrochemical and Solid-State Letters,1999,2:409-411.
    [10] Huerland A, Moos R, Mueller R, et al. A New Potentiometric Sensors Based on A NO+CationConducting Ceramic Membrane, Sensors and Actuators B: Chemical,2001,77:287-292.
    [11] Fanget S, Hentz S, Puget P, et al. Gas Sensors Based on Gravimetric Detection-A Review[J].Sensors and Actuators B: Chemical,2011,160:804-821.
    [12] Imanaka N, Oda A, Tamura S, et al. Total Nitrogen Oxides Gas Sensor Based on SolidElectrolytes with Refractory Oxide-based Auxiliary Electrode[J]. Journal of The ElectrochemicalSociety,2004,151:113-116.
    [13] Imanaka N. Novel Multivalent Cation Conducting Ceramics and Their Application[J]. Journal ofthe Ceramic Society of Japan,2005,113:387-393.
    [14] Hasegawa I, Tamura S, Imanaka N. Solid Electrolyte Nitrogen Monoxide Gas Sensor Operating atIntermediate Temperature Range[J]. Sensors and Actuators B: Chemical,2005,108:314-318.
    [15] Oda A, Imanaka N, Adachi G Y. New Type of Nitrogen Oxide Sensor with Multivalent Cation-and Anion-conducting Solid Electrolytes[J]. Sensors and Actuators B: Chemical,2003,93:229-232.
    [16] Zhuiykov S, Miura N. Development of zirconia-based potentiometric NOx sensors for automotiveand energy industries in the early21st century: What are the prospects for sensors?[J]. Sensors andActuators B: Chemical,2007,121:639-651.
    [17] Yao S, Stetter J R. Modification of NASICON Solid Electrolyte for NOxMeasurements[J].Journal of The Electrochemical Society,2004,151:75-80.
    [18] Yao S, Stetter J R. Solid-state NOxSensor Based on Surface Modifications of The SolidElectrolyte[J]. Solid-State Ionic Dev. III, Electrochem. Soc. Proc,2003,26:252-260.
    [19] Yao S, Shimizu Y, Miura N, et al. Use of Sodium Nitrate Auxiliary Electrode for Solid ElectrolyteSensor to Detect nitrogen Oxides[J]. Chemistry Letters,1992,1992:587-590.
    [20] Park J, Yoon B Y, Park C O, et al. Sensing Behavior and Mechanism of Mixed Potential NOxSensors Using NiO, NiO(+YSZ) and CuO Oxide Electrodes[J]. Sensors and Actuators B:Chemical,2009,135:516-523.
    [21] Miura N, Wang J, Nakatou M, et al. Zirconia-based Gas Sensors Using Oxide Sensing Electrodefor Monitoring NOxin Car Exhaust[J]. Ceramic Engineering&Science Proceedings,2005,26:3-13.
    [22] Macam E R, Blackburn B M, Wachsman E D. Effect of La2CuO4Electrode Area on PotentiometricNOxSensor Response and Its Implications on Sensing Mechanism[J]. Sensors and Actuators B:Chemical,2011,158:304-312.
    [23] Gessner M A, Nagy S G, Michaels J N. Multiple Charge-transfer Reaction in Zirconia ElectrolyticCells; NOxReduction on Platinum[J]. Journal of The Electrochemical Society,1988,135:1294-1301.
    [24] Skelton D C, Tobin R G, Lambert D K, et al. A Surface-science-based Model for The Selectivityof Platinum–gold Alloy Electrodes in Zirconia-based NOxSensors[J]. Sensors and Actuators B:Chemical,2003,96:46-52.
    [25] Macam E R, Blackburn B M, Wachsman E D. The Effect of La2CuO4Sensing ElectrodeThickness on A Potentiometric NOxSensor Response[J]. Sensors and Actuators B: Chemical,2011,157:353-360.
    [26] Armstrong E N, Striker T, Ramaswamy V, et al. NOxAdsorption Behavior of LaFeO3andLaMnO3+δand Its Influence on Potentiometric Sensor Response[J]. Sensors and Actuators B:Chemical,2011,158:159-170.
    [27] Yang J C, Dutta P K. High Temperature Potentiometric NO2Sensor with Asymmetric Sensing andReference Pt Electrodes[J]. Sensors and Actuators B: Chemical,2010,143:459-463.
    [28] Plashnitsa V V, Gupta V, Miura N. Mechanochemical Approach for Fabrication of ANano-structured NiO-sensing Electrode Used in A Zirconia-based NO2Sensor[J]. ElectrochimicaActa,2010,55:6941-6945.
    [29] Hieu N V, Vuong H V, Duy N V, et al. A Morphological Control of Tungsten Oxide Nanowires byThermal Evaporation Method for Sub-ppm NO2Gas Sensor Application[J]. Sensors and ActuatorsB: Chemical,2012,171-172:760-768.
    [30] Zeng J, Hu M, Wang W, et al. NO2-sensing properties of Porous WO3Gas Sensor Based onAnodized Sputtered Tungsten Thin Film[J]. Sensors and Actuators B: Chemical,2012,161:447-452.
    [31] Bartolomeo E D, Kaabbuathong N, Grilli M L, et al. Planar Electrochemical Sensors Based onTape-cast YSZ Layers and Oxide Electrodes[J]. Solid State Ionics,2004,171:173-181.
    [32] Miura N, Akisada K, Wang J, et al. Mixed-potential-type NOxSensor Based on YSZ and ZincOxide Sensing Electrode[J]. Ionics,2004,10:1-9.
    [33] West D L, Montgomery F C, Armstrong T R.“NO-selective” NOxSensing Elements forCombustion Exhausts[J]. Sensors and Actuators B: Chemical,2005,111-112:84-90.
    [34] Elumalai P, Miura N. Performances of Planar NO2Sensor Using Stabilized Zirconia and NiOSensing Electrode at High Temperature[J]. Solid State Ionics,2005,31-34:2517-2522.
    [35] Liang X S, Yang S Q, Li J G, et al. Mixed-potential-type Zirconia-based NO2Sensor withHigh-performance Three-phase Boundary[J]. Sensors and Actuators B: Chemical,2011,158:1-8.
    [36] Miura N, Wang J, Nakatou M, et al. NOxSensing Characteristics of Mixed-potential-type ZirconiaSensor Using NiO Sensing Electrode at High Temperatures[J]. Electrochemical and Solid-StateLetters,2005,8:9-11.
    [37] Miura N, Wang J, Nakatou M, et al. High temperature Operating Characteristics ofMixed-potential-type NO2Sensor Based on Stabilized-zirconia Tube and NiO SensingElectrode[J]. Sensors and Actuators B: Chemical,2006,114:903-909.
    [38] Martin L P, Pham I Q, Glass R S. Effect of Cr2O3Morphology on The Nitric Oxide Response of AStabilized Zirconia Sensor[J]. Sensors and Actuators B: Chemical,2003,96:53-60.
    [39] Miura N, Kurosawa H, Hasei M, et al. Stabilized Zirconiabased Sensor Using Oxide Electrode forDetection of NOxin High-temperature Combustion-exhausts[J]. Solid State Ionics,1996,86-88:1069-1073.
    [40] Szabo N F, Dutta P K. Correlation of Sensing Behaviour of Mixed Potential Sensors withChemical and Electrochemical Properties of Electrodes[J]. Solid State Ionics,2004,171:183-190.
    [41] Li X, Xiong W, Kale G M. Novel Nanosized ITO Electrode for Mixed Potential Gas Sensor[J].Electrochemical and Solid-State Letters,2005,8:27-30.
    [42] Zhuiykov S, Nakano T, Kunimoto A, et al. Potentiometric NOxSensor Based on The StabilisedZirconia and NiCr2O4Sensing Electrode Operating at High Temperatures[J]. ElectrochemistryCommunications,2001,3:97-101.
    [43] Zhuiykov S, Miura N. Solid-state Electrochemical Sensors for Emission Control[J]. Materials forEnergy Conversion Devices,2005,12:303-335.
    [44] Zhuiykov S, Ono T, Yamazoe N, et al. High-temperature NOxSensors Using Zirconia andZinc-family Oxide Sensing Electrode[J]. Solid State Ionics,2002,158:801-807.
    [45] Miura N, Nakatou M, Zhuiykov S. Development of NOxSensing Devices Based on YSZ andOxide Electrode Aiming for Monitoring Car Exhausts[J]. Ceramics International,2004,30:1135-1139.
    [46] Zhuiykov S, Muta M, Hasei M, et al. Stabilised Zirconiabased NOxSensor Using ZnFe2O4Sensing Electrode[J]. Electrochemical and Solid-State Letters,2001,4:19-21.
    [47] Miura N, Zhuiykov S, Ono T, et al. Mixed Potential Type Sensor Using Stabilized Zirconia andZnFe2O4Sensing Electrode for NOxDetection at High Temperature[J]. Sensors and Actuators B:Chemical,2002,88:222-229.
    [48] Xiong W, Kale G M. Novel High-selectivity NO2Sensor Incorporating Mixed-oxide Electrode[J].Sensors and Actuators B: Chemical,2006,114:101-108.
    [49] Yoon J W, Grilli M L, Bartolomeo E D, et al. The NO2Response of Solid Electrolyte SensorsMade Using Nano-sized LaFeO3Electrodes[J]. Sensors and Actuators B: Chemical,2001,76:483-488.
    [50] Bartolomeo E D, Kaabbuathong N, Grilli M L, et al. Planar Electrochemical Sensors Based onTape-cast YSZ Layers and Oxide Electrodes[J]. Solid State Ionics,2004,171:173-181.
    [51] West D L, Montgomery F C, Armstrong T R. Use La0.85Sr0.15CrO3in High-temperature NOxSensing Elements[J]. Sensors and Actuators B: Chemical,2005,106:758-765.
    [52] Jiun C Y, Prabir K D. Solution-based Synthesis of Efficient WO3Sensing Electrodes for HighTemperature Potentiometric NOxSensors[J]. Sensors and Actuators B: Chemical,2009,136:523-529.
    [53] Elham K H, Cyrus Z, Ehsan M, et al. WO3-based NO2Sensors Fabricated through Low FrequencyAC Electrophoretic Deposition[J]. Sensors and Actuators B: Chemical,2010,146(1):165-170.
    [54] Lu G, Miura N, Yamazoe N. Stabilized Zirconia-based Sensors Using WO3Electrode forDetection of NO or NO2[J]. Sensors and Actuators B: Chemical,2000,65:125-127.
    [55] Grilli M L, Chevallier L, Di V M L, et al. Planar Electrochemical Sensors Based on YSZ withWO3Electrode Prepared by Different Chemical Routes[J]. Sensors and Actuators B: Chemical,2005,111-112:91-95.
    [56] Vladimir V.P, Taro U, Perumal E, et al. NO2Sensing Performances of Planar Sensor UsingStabilized Zirconia and Thin-NiO Sensing Electrode[J]. Sensors and Actuators B: Chemical,2008,130(1):231-239.
    [57] Jiusu P, Byoung Y Y, Chong O P, et al. Sensing Behavior and Mechanism of Mixed Potential NOxSensors Using NiO, NiO(+YSZ) and CuO Oxide Electrodes[J]. Sensors and Actuators B:Chemical,2009,135:516-526.
    [58] Laure C, Elisabetta D B, Maria L G, et al. Non-Nernstian Planar Sensors Based on YSZ with ANb2O5Electrode[J]. Sensors and Actuators B: Chemical,2008,129:591-598.
    [59] Kading S, Jakobs S, Guth U. YSZ-cells for Potentiometric Nitric Oxide Sensors[J]. Solid StateIonics,2003,9:151-154.
    [60] Fergus J W. Materials for High Temperature Electrochemical NOxGas Sensors[J]. Sensors andActuators B: Chemical,2007,121:652-663.
    [61] Xiong W, Kale G.M. High-selectivity Mixed-potential NO2Sensor Incorporating Au and CuO+CuCr2O4Electrode Couple[J]. Sensors and Actuators B: Chemical,2006,119:409-414.
    [62] Grilli M.L, Bartolomeo E D, Traversa E, Electrochemical NOx Sensors Based on InterfacingNanosized LaFeO3Perovskite-type Oxide and Ionic Conductors[J]. The Electrochemical Society,2001,148:98-102.
    [63] Lantto V, Saukko S, Toan N N, et al. Gas Sensing with Perovskite-like Oxides Having ABO3andBO3Structures[J]. Journal of Electroceramics,2004,13:721-726.
    [64] Bartolomeo E D, Traversa E, Baroncini M, et al. Solid State Ceramic Sensors Based on InterfacingIonic Conductors with Semiconducting Oxides[J]. Journal of the European Ceramic Society,2002,20:2691-2699.
    [65] Bartolomeo E D, Grilli M L, Antonias N, et al. Testing Planar Gas Sensors Based onYttria-stabilized Zirconia with Oxide Electrodes in The Exhaust Gases of A Spark IgnitionEngine[J]. Sensors. Letters,2005,3:22-26.
    [66] Wachsman E D, Jayaweera P. Selective Detection of NOxby Differential Electrode Equilibria[J].Solid-State Ionic Dev. II: Ceram. Sens., Electrochem. Soc. Proc,2001,32:298-304.
    [67]吴印林,王岭,赵海燕,等.溶胶-凝胶法制备La0.8Sr0.2CoO3及其气敏性能研究[J].稀有金属材料与工程,2007,36(2):145-148.
    [68]吴印林,王岭,李福燊,等. La0.75Sr0.25Cr0.5Mn0.5O3的制备及其NO2气敏性能研究[J].中国稀土学报,2007,25(5):562-565.
    [69]赵海燕,王岭,陈嘉庚,等. La0.75Sr0.25Cr0.5Mn0.5O3粉末的溶胶-凝胶法制备及其NO2气敏性能研究[J].稀有金属材料与工程,2007,36(2):202-205.
    [70] Sekhara P K, Broshaa E L, Mukundana R. Application of Commercial Automotive SensorManufacturing Methods for NOx/NH3Mixed Potential Sensors for On-board Emissions Control[J].Sensors and Actuators B: Chemical,2010,144:112-119.
    [71] Gao J, Viricelle J P, Pijolat C, et al. Improvement of The Selectivity for A Planar YSZ Sensor[J].Sensors and Actuators B: Chemical,2011,154:106-110.
    [72] Kato N, Kokune N. Long Term Stable NOxSensor with Integrated Inconnector ControlElectronics[J]. SAE Tech. Paper Ser,1999,0202:1-6.
    [73] Somov S I, Reinhardt G, Guth U, et al. Multi-electrode Zirconia Electrolyte AmperometricSensors[J]. Solid State Ionics,2000,136-137:543-547.
    [74] Magori E, Reinhardt G, Fleischer M, et al. Thick Film Device for The Detection of NO andOxygen in Exhaust Gases[J]. Sensors and Actuators B: Chemical,2003,95:162-169.
    [75] Zhang P S, Sandow K P, Adolf F, et al. A Novel Thick Film Sensor for Simultaneous O2and NOMonitoring in Exhaust Gases[J]. Sensors and Actuators B: Chemical,2000,70:25-29.
    [76] Dutta A, Ishihara T. Amperometric NOxSensor Based on Oxygen Pumping Current by UsingLaGaO3-based Solid Electrolyte for Monitoring Exhaust Gas[J]. Sensors and Actuators B:Chemical,2005,108:309-313.
    [77] Nigge U, Wiemhofer H D, Romer E W J. Composites of Ce0.8Gd0.2O1.9and Gd0.7Ca0.3CoO3asOxygen Permeable Membranes for Exhaust Gas Sensors[J]. Solid State Ionics,2002,146:163-174.
    [78] Orban J E, Naber S J, Sharp C A, et al. Long-term Aging of NOxSensors in Heavy-duty EngineExhaust[J]. SAE Tech. Paper Ser,2005,3793:1-4.
    [79] Taro U. Zirconia-based Amperometric Sensor Using La–Sr-based Perovskite-type Oxide SensingElectrode for Detection of NO2[J]. Electrochemistry Communications,2009,11:1654-1656.
    [80] Yang J C. High Temperature amperometric Total NOxSensors with Platinum-loaded Zeolite YElectrodes[J]. Sensors and Actuators B: Chemical,2007,12:929-936.
    [81] Jin H, Breedon M, Miura N. Sensing Behavior of YSZ-based Amperometric NO2SensorsConsisting of Mn-based Reference-electrode and In2O3Sensing-electrode[J]. Talanta,2012,88:318-323.
    [82] Miura N, Nakatou M, Zhuiykov S. Impedancemetric Gas Sensor Based on Zirconia SolidElectrolyte and Oxide Sensing Electrode for Detecting Total NOxat High Temperature[J]. Sensorsand Actuators B: Chemical,2003,93:221-228.
    [83] Mathias S, Saruhan B. Equivalent Circuit Analysis on NOxImpendence-metric Gas Sensor[J].Sensors and Actuators B: Chemical,2009,137:154-163.
    [84] Mathias S, Erik G, Saruhan B. Planar Impedancemetric NOx-sensor with Spinel-type SE for HighTemperature Applica-tions[J]. Sensors and Actuators B: Chemical,2007,127:224-230.
    [85] Kenichi S, Kohichi K, Hiroyuki N, et al. Impendencemetric Gas Sensor Based on Pt and WO3Co-loaded TiO2and ZrO2as Total NOxSensing Materials[J]. Sensors and Actuators B: Chemical,2008,130(2):707-712.
    [86] Peter M, Leta Y W, Robert S G. Impendencemetric NOxSens-ing Using YSZ Electrolyte andYSZ/Cr2O3Composite Electrodes[J]. Jounal of The Electrochemical Society,2007,154(3):J97-J104.
    [87] Stetter J R, Li J. Amperometric Gas Sensorss-A Review[J]. Chemical Reviews,2008,108:352-366.
    [88] Korotcenkov G, Han S D, Stetter J R. Review of Electrochemical Hydrogen Sensors[J]. ChemicalReviews,2009,109:1402-1433.
    [89] Hübert T, Boon-Brett L, Black G, et al. Hydrogen Sensors–A Review[J]. Sensors and ActuatorsB: Chemical,2011,157:329-352.
    [90] Schwandt C, Frey D J. Hydrogen Sensing in Molten Aluminum Using A CommercialElectrochemical Sensor[J]. Ionics,2000,6:3-4.
    [91] Lu G, Miura, N, Yamazoe N. High-temperature Hydrogen Sensor Based on Stabilized Zirconia andA Metal Oxide Electrode[J]. Sensors and Actuators B: Chemical,1996,35:130-135.
    [92] Matsumoto H, Suzuki T, Iwahara H. Automatic Regulation of Hydrogen Partial Pressure Using AProton Conducting Ceramic Based on SrCeO3[J]. Solid State Ionics,1999,116:99-104.
    [93] Katahira K, Matsumoto H, Iwahara H, et al. A Solid Electrolyte Steam Sensor with AnElectrochemically Supplied Hydrogen Standard Using Proton-conducting Oxides[J]. Sensors andActuators B: Chemical,2000,67:189-193.
    [94] Kosacki I, Anderson H U. The Structure and Electrical Properties of SrCe0.95Yb0.05O3Thin FilmProtonic Conductors[J]. Solid State Ionics,1997,97:429-436.
    [95] Yajima T, Koide K, Takai H, et al. Application of Hydrogen Sensor Using Proton ConductiveCeramics as A Solid Electrolyte to Aluminum Casting Industries[J]. Solid State Ionics,1995,79:333-337.
    [96] Iwahara H, Uchida H, Ogaki K, et al. Nernstian Hydrogen Sensor Using BaCeO3-δBasedProton-Conducting Ceramics Operative at200–900°C[J]. Jounal of the Electrochemical Society,1991,138:295-299.
    [97] Bonanos N, Ellis B, Mahmood M N. Construction and Operation of Fuel Cells Based on The SolidElectrolyte BaCeO3:Gd[J]. Solid State Ionics1991,44:305-311.
    [98] Taniguchi N, Kuroha T, Nishimura C, et al. Characteristics of Novel BaZr0.4Ce0.4In0.2O3ProtonConducting Ceramics and Their Application to Hydrogen Sensors[J]. Solid State Ionics,2005,176:2979-2983.
    [99] Du Y, Nowick A S. Galvanic Cell Measurements on A Fast Proton Conducting ComplexPerovskite Electrolyte[J]. Solid State Ionics,1996,91:85-91.
    [100] Serret P, Colominas S, Reyes G, et al. Characterization of Ceramic Materials for ElectrochemicalHydrogen Sensors[J]. Fusion Engineering and Design,2011,86:2446-2449.
    [101] Okuyama Y, Kurita N, Yamada A, et al. A New Type of Hydrogen Sensor for Molten MetalsUsable Up to1600K[J]. Electrochimica Acta,2009,55:470-474.
    [102] Zosel J, Schiffel G, Gerlach F, et al. Electrode Materials for Potentiometric Hydrogen Sensors[J].Solid State Ionics,2006,177:2301-2304.
    [103] Rosini S, Siebert E. Electrochemical Sensors for Detection of Hydrogen in Air: Model of TheNon-Nernstian Potentiometric Response of Platinum Gas Diffusion Electrodes[J].Electrochimica Acta,2005,50:2943-2953.
    [104] Yang Y C, Park J, Kim J W, et al. The Study of The Voltage Drift in High-temperature ProtonConductor-based Hydrogen Sensors Adopting The Solid Reference Electrode[J]. Sensors andActuators B: Chemical,2009,140:273-277.
    [105] Zhuiykov S. Hydrogen Sensor Based on A New Type of Proton Conductive Ceramic[J].International Journal of Hydrogen Energy,1996,21:749-759.
    [106] Tan Y, Tan T C. Sensing Behaviour of An Amperometric Hydrogen Sensor[J]. Journal of TheElectrochemical Society,1995,142:1923-1928.
    [107] Taniguchi N, Kuroha T, Nishimura C, et al. Characteristics of Novel BaZr0.4Ce0.4In0.2O3ProtonConducting Ceramics and Their Application to Hydrogen Sensors[J]. Solid State Ionics,2005,176:2979-2983.
    [108] Zhou M H, Ahmad A. Sol–gel Processing of In-doped CaZrO3Solid Electrolyte and TheImpedimetric Sensing Characteristics of Humidity and Hydrogen[J]. Sensors and Actuators B:Chemical,2008,129:285-291.
    [109] Iwahara H, Asakura Y, Katahira K, et al. Prospect of Hydrogen Technology UsingProton-conducting Ceramics[J]. Solid State Ionics,2004,168:299–310.
    [110] Product literature from TYK Corporation, http://www.tykamerica.com/pages/newprod. html
    [111] Iwahara H, Yajima T, Hibino T K. et al. Protonic conduction in calcium, strontium and bariumzirconates[J]. Solid State Ionics,1993,61:65-69.
    [112] Iwahara H, Uchida K. Studies on Solid Electrolyte Gas Cells with High-temperature-type ProtonConductor and Oxide Ion Conductor[J]. Solid State Ionics,1983,11:109-115.
    [113] Ktahira K, Matsumoto H, Iwahara H. A Solid Electrolyte Hydrogen Sensor with AnElectrochemically-supplied Hydrogen Standard[J]. Sensors and Actuators B: Chemical,2001,73:130-134.
    [114] Matsumoto H, Hayashi H, Shimura T, et al. Electrochemical Hydrogen Isotope Sensing via TheHigh-temperature Proton Conductor CaZr0.90In0.10O3-δ[J].Solid State Ionics,2003,161(1):93–103.
    [115]郭红霞,吕敬德,王岭,等.新型致密扩散障碍层极限电流型氢传感器[J].无机化学学报,2008,24(10):1631–1635.
    [116]唐晓薇.以MIC做致密扩散层极限电流型氢气传感器的研究[D].唐山:河北理工大学,2009.
    [117]赵佳一. BaCO3基质子导体的制备及性能研究[D].唐山:河北理工大学,2010.
    [118] Li J L, Wang S R, Wang Z R, et al.(La0.74Bi0.10Sr0.16)MnO3δ–Ce0.8Gd0.2O2δCathodes Fabricatedby Ion-impregnating Method for Intermediate-temperature Solid Oxide Fuel Cells[J]. Journal ofPower Sources,2009,118:453-457.
    [119] Wu L.E., Jiang Z.Y., Wang S.R., et al.,(La, Sr)MnO3-(Y, Bi)2O3composite cathodes forintermediate-temperature solid oxide fuel cells[J]. International Journal of Hydrogen Energy,2013,38:2398–2406
    [120] Lin Y, Ran R, Shao Z P. Silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3δas Cathodes for A ProtonConducting Solid-oxide Fuel Cell[J]. International Journal of Hydrogen Energy,2010,35:8281-8288.
    [121] Lin Y H, Chi B, Pu J, et al. Performance Degradation of Impregnated La0.6Sr0.4Co0.2Fe0.8O3+Y2O3Stabilized ZrO2Composite Cathodes of Intermediate Temperature Solid Oxide Fuel Cells[J].International Journal of Hydrogen Energy,2012,37:4388-4393.
    [122] Liu X J, Meng X, Han D, et al. Impregnated Nickel Anodes for Reduced-temperature SolidOxide Fuel Cells Based on Thin Electrolytes of Doped LaGaO3[J]. Journal of Power Sources,2013,222:92-96.
    [123] Zhu X B, Zhe L, Bo W, et al. A Comparison of La0.75Sr0.25Cr0.5Mn0.5O3-δand Ni ImpregnatedPorous YSZ Anodes Fabricated in Two Different Ways for SOFCs[J]. Electrochimica Acta,2010,55:3932-3938.
    [124] Park S, Vohs J M, Gorte R J. Direct Oxidation of Hydrocarbons in A Solid-oxide Fuel Cell[J].Nature,2000,404:265-267.
    [125] McIntosh S, Vohs J M, Gorte R J. An Examination of Lanthanide Additives on The Performanceof Cu–YSZ Cermet Anodes[J]. Electrochimica Acta,2002,47:3815-3821.
    [126] McIntosh S, Vohs J M, Gorte R J. Role of Hydrocarbon Deposits in The Enhanced Performanceof Direct-Oxidation SOFCs[J]. Journal of The Electrochemical Society,2003,150:470-476.
    [127] Lu C, Worrell W L, Gorte R J, et al. SOFCs for Direct Oxidation of Hydrocarbon Fuels withSamaria-doped Ceria Electrolyte[J]. Journal of The Electrochemical Society,2003,150:354–358.
    [128] Zhu X B, Lü Z, Wei B, et al. A Symmetrical Solid Oxide Fuel Cell Prepared by Dry-pressing andImpregnating Methods[J]. Journal of Power Sources,2011,196:729-733.
    [129] Jiang S P. A Review of Wet Impregnation—An Alternative Method for The Fabrication of HighPerformance and Nano-structured Electrodes of Solid Oxide Fuel Cells[J]. Materials Science andEngineering A,2006,418:199-210.
    [130] Zhu X B, Lü Z, Wei B, et al. Fabrication and Performance of Membrane Solid Oxide Fuel Cellswith La0.75Sr0.25Cr0.5Mn0.5O3δImpregnated Anodes[J]. Journal of Power Sources,2010,195:1793-1798.
    [131] Zhang C M, Lin Y, Zong R R, et al. Improving Single-chamber Performance of AnAnode-supported SOFC by Impregnating Anode with Active Nickel Catalyst[J]. InternationalJournal of Hydrogen Energy,2010,35:8171-8176.
    [132] Sui J, Dong L F, Liu J. Cone-shaped Cylindrical Ce0.9Gd0.1O1.95Electrolyte Prepared by SlipCasting and Its Application to Solid Oxide Fuel Cells[J]. Journal of Rare Earths,2012,30:53-56.
    [133] Blennow P, Chen W W, Lundberg Ma, et al. Characterization of Ce0.9Gd0.1O1.95PowdersSynthesized by Spray Drying[J]. Ceramics International,2009,35:2959-2963.
    [134] Chen K F, Ai N, Jiang S P. Performance and Stability of (La,Sr)MnO3-Y2O3-ZrO2CompositeOxygen Electrodes under Solid Oxide Electrolysis Cell Operation Conditions[J]. InternationalJournal of Hydrogen Energy,2012,37:10517-10525.
    [135] Liu Y H, Chi B, Pu J, et al. Performance Degradation of Impregnated La0.6Sr0.4Co0.2Fe0.8O3+Y2O3Stabilized ZrO2Composite Cathodes of Intermediate Temperature Solid Oxide FuelCells[J]. International Journal of Hydrogen Energy,2012,37:4388-4393.
    [136] Woo L Y, Martin L P, Glass R S, et al. Effect of Electrode Composition and Microstructure onImpedancemetric Nitric Oxide Sensors Based on YSZ Electrolyte[J]. Journal of theElectrochemical Society,2008,155: J32-J40.
    [137] Martin L P, Woo L Y, Glass R S. Impedancemetric NOx Sensing Using YSZ Electrolyte andYSZ/Cr2O3Composite Electrodes[J]. Journal of The Electrochemical Society,2007,154:J97-J104.
    [138] Plashnitsa V V, Elumalai P, Fujio Y, et al. Zirconia-based Electrochemical Gas Sensors UsingNano-structured Sensing Materials Aiming at Detection of Automotive Exhausts[J].Electrochimica Acta,2009,54:6099-6106.
    [139] Plashnitsa V V, Uedab T, Elumalai P, et al. NO2Sensing Performances of Planar Sensor UsingStabilized Zirconia and Thin-NiO Sensing Electrode[J]. Sensors and Actuators B: Chemical,2008,130:231-239.
    [140] Sholklapper T Z, Radmilovic V, Jacobson C P, et al. Nanocomposite Ag–LSM Solid Oxide FuelCell Electrodes[J]. Journal of Power Sources,2008,175:206-210.
    [141] Anjos T G, Hahn C E W. The Development of A Membrane-covered Microelectrode Array GasSensor for Oxygen And Carbon Dioxide Measurement[J]. Sensors and Actuators B: Chemical,2008,135:224-229.
    [142] Fischer S, Pohle R, Farber B, et al. Method for Detection of NOxin Exhaust Gases by PulsedDischarge Measurements Using Standard Zirconia-based Lambda Sensors[J]. Sensors andActuators B: Chemical,2010,147:780-785.
    [143] Fischer S, Pohle R, Magori E, et al. Pulsed Polarization of Platinum Electrodes on YSZ[J]. SolidState Ionics,2012,225:371-375.
    [144] Kanungo J, Saha H, Basu S. Pd Sensitized Porous Silicon Hydrogen Sensor-Influence of ZnOThin Film[J]. Sensors and Actuators B: Chemical,2010,147:128-136.
    [145] Wei A, Pan L H, Huang W. Recent Progress in The ZnO Nanostructure-based Sensors[J].Materials Science and Engineering B,2011,176:1409-1421.
    [146] Al-Hardan N H, Abdullah M J, Aziz A A. Sensing Mechanism of Hydrogen Gas Sensor Basedon RF-sputtered ZnO Thin Films[J]. International Journal of Hydrogen Energy,2010,35:4428-4434.
    [147] Peng Z Z, Guo R S, Yin Z G, et al. Influence of ZnO on The Properties of SrZr0.9Y0.1O2.95Protonic Conductor[J]. Journal of the American Ceramic Society,2008,91:1534-1538.
    [148] Han J D, Wen Z Y, Zhang J C, et al. Synthesis and Characterization of Proton ConductiveCaZr0.90In0.10O3δby a Citric Acid Complexation Method[J]. Fusion Engineering and Design,2010,85:2100-2104.
    [149] Han J D, Wen Z Y, Zhang J C, et al. Electrical Conductivity of Fully Densified NanoCaZr0.90In0.10O3δCeramics Prepared by A Water-based Gel Precipitation Method[J]. Solid StateIonics,2009,180:154-159.