内皮细胞生物反应器在猪脓毒血症伴多脏器功能障碍综合征中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分内毒素致多脏器功能障碍综合征动物模型的研究
     背景
     脓毒血症(sepsis)是一种常见而且致命的疾病,其实质是一种被恶性扩大的炎症反应,结果容易导致多脏器功能障碍综合征(Multiple Organ DysfunctionSyndrome,MODS),这是当今创伤外科和危重病医学领域中研究的热点课题。MODS是一类与休克和感染等应激打击关系密切,很可能是由失控的全身炎症和细胞氧代谢障碍所致的急性器官损伤。因此脓毒血症和MODS密不可分,长久以来其发病率和死亡率一直居高不,尤其是在重症监护室,脓毒血症、MODS是引起死亡主要的原因之一,因此有关于脓毒血症的研究成了医学界一个挑战。目前缺少非常有效治疗脓毒症尤其是伴有MODS的方法,主要是对脓毒症发病机制还没有完全了解,因此建立一个合理的动物脓毒血症模型,有助于了解脓毒血症的发生过程,以及发展成MODS的过程,并为临床上解决脓毒血症提供有力的帮助。目前建立脓毒血症伴MODS的动物模型有很多种,本文的目的就是初步探讨内毒素致脓毒血症、并发展成MODS的特点。
     方法
     选取5头健康杂交家猪,雌雄随机,年龄3个月左右,体重在16—21kg。用标准内毒素(0.25mg·kg~(-1))由右侧颈内静脉缓慢注入,分别于注入内毒素前及注入后1、2、3、4、5、6h检测血常规、血气分析、血生化、凝血酶原时间,同时记录动脉压及平均动脉压(MAP)、心率(HR)等血流动力学指标。同时留取血清标本用于检测白介素-1(IL-1)、白介素-10(IL-10)、可溶性血栓调节蛋白(sTM)、内皮素-1(ET-1)等指标。
     结果
     经脉输注内毒素后,平均动脉压(MAP)较前显著下降(p<0.01),但肺动脉压(PA)则持续升高。血清肌酐(SCr)和丙氨酸转氨酶(ALT)升高,凝血酶原时间(PT)较前延长。细胞因子中白介素-1、白介素-10和内皮素-1的变化一致,先有轻度升高,随后开始下降,而可溶性血栓调节蛋白的变化相反。
     结论
     内毒素输注能够诱发猪脓毒血症,并在短期内成功造成多脏器功能障碍综合征。
     第二部分内皮细胞生物反应器在猪脓毒血症伴多脏器功能障碍综合征中的运用
     背景
     由于本文的第一部分已经成功构建了猪脓毒血症伴MODS的动物模型,而我们实验室已经建立内皮细胞生物反应器(endothelial bioreactor device,EBD),并对反应器中的内皮细胞进行鉴定。由于内皮细胞生物反应器中内皮细胞是生长在反应器的外腔,那么血液通过反应器时并不和内皮细胞直接接触,有效避免了急性排异反应。反应器的内外腔可以进行物质交换,因此外腔中的内皮细胞可以通过这部分物质交换而对整个血循环进行调节。本研究的目的为初步证明内皮细胞生物反应器能在猪脓毒血症伴MODS中的作用。
     方法
     将健康杂交家猪10头随机分为内皮细胞生物反应器组(EBD组)和假性循环组(对照组),每组各5头。静滴内毒素(LPS,0.25 mg·kg-1,30min内滴完)制造脓毒症模型后进行体外循环。在实验的0h、1h、3h和6h分别观察实验动物的血流动力学指标、血常规、血生化指标和炎症、凝血指标。血流动力学指标主要包括平均动脉压(MAP)、血生化指标主要包括血清肌酐(SCr)和血钾(K)。炎症、凝血指标主要包括白介素-1(IL-1)、白介素-10(IL-10)、内皮素-1(ET-1)、一氧化氮合酶(NOs)和蛋白C(PC),最后记录实验动物的生存时间。
     结果
     在注射LPS后30min到2h,两组的平均动脉压(MAP)都开始显著下降,但内皮细胞反应器组此后MAP开始缓慢升高,并能维持一段时间,而假性循环组的血压则持续下降,没有升高趋势,两组有明显差异(p<0.01)。实验开始后,两组的肾功能开始有所变化,内皮细胞反应器组在实验的结束时,肌酐也没有明显升高,但假性循环组的血清肌酐则明显升高,两组有显著差异(p=0.001)。血钾的变化和血清肌酐相似,在试验6h,假性循环组的血钾明显高于内皮细胞反应器组,p=0.002。IL-1和IL-10在输注LPS后都开始升高,2小时后到达高峰,随后浓度开始下降,两组之间没有差异。内皮细胞生物反应器组的内皮素-1(ET-1)开始缓慢下降,到3小时后有所回升,一氧化氮合酶(NOs)则开始升高,2小时后有所下降,而假性循环组的变化恰好相反,ET-1先是升高,NOs则是下降,到了2小时后,ET-1急剧下降,而NOs则升高,两组相比有显著差异。实验结束时治疗组和对照组的生存时间分别为5.5±0.3天和6.7±0.4天(p<0.05)。
     结论
     内皮细胞生物反应器不仅能够改善猪脓毒血症的血流动力学,而且能够维持重要脏器的功能,使得实验动物的存活时间延长。
     第三部分内皮细胞生物反应器对猪内毒素诱导急性肺损伤中炎症因子的影响
     背景
     在脓毒血症的发生和发展过程中,由于炎症因子调节失控,容易导致多脏器功能不全(MODS),从而增加死亡率。而在器官损伤中,肺是最早也是最容易出现的。在肺损伤的发病机制中,炎症因子的参与起到了至关重要,尤其是IL-1、IL-10和TNF等促进了炎症反应的进一步扩大,引起肺组织中性粒细胞浸润,毁损肺上皮细胞,导致肺泡毛细管屏障功能减弱,通透性增加,最终出现急性呼吸窘迫综合征(ARDS)。由于本文的第二部分已经成功证实内皮细胞生物反应器对猪脓毒血症的治疗作用,并且这种治疗作用是通过调节细胞因子来实现的。而细胞因子在内毒素诱导的急性肺损伤(ALI)中起到关键作用,因此本文目的就是初步探讨内皮细胞生物反应器对内毒素诱导的ALI中炎症因子的影响。
     方法
     将健康杂交家猪10头随机分为内皮细胞生物反应器组(治疗组)和假性循环组(对照组),每组各5头。静滴内毒素(LPS,0.25 mg·kg-1,30min内滴完)制造脓毒症模型后进行体外循环。在实验的0h、1h、3h和6h分别留取血清标本测定IL-1和IL-10的浓度,同时取动物肺组织进行HE染色,并由病理专科医师进行读片和肺损伤分数的计算。同时利用western blot检测肺组织中TNF-α、组织因子(TF)等蛋白含量。
     结果
     在注射LPS后30min到2h,两组的IL-1和IL-10都开始升高,2小时后到达高峰,随后浓度开始下降,两组之间没有差异,但在治疗组IL-1和IL-10的下降幅度小于对照组。对照组的肺组织病理中出现较多的呼吸道上皮增生、肺泡出血和血管血栓形成。而治疗组肺组织病理也可见有炎症细胞浸润,但肺泡出血、血栓明显减少。而且对照组的肺损伤分数为8.2±1.0,显著高于治疗组6.1±0.9(p=0.0447)。肺组织中肿瘤坏死因子-α(TNF-α)在治疗组的蛋白含量低于对照组(p<0.05),但TF的蛋白含量没有显著差异。
     结论
     内皮细胞生物反应器不仅能够改善猪脓毒血症的血流动力学,而且能够减少TNF-α等在肺组织中表达,从而减轻肺组织炎症,延缓肺的损伤。
PARTⅠStudy of animal model of Multiple Organ Dysfunction Syndrome induced by endotoxin in porcines
     Background
     Sepsis is a common and fatal disease,and is regarded to be a vicious expansion of the inflammatory response.Multiple organ dysfunction syndrome(MODS) is the hot topics in the field of surgical trauma and critical care medicine.MODS is a kind of acute organ injury which has the close association with stress such as shock and infection,and with uncontrolled systemic inflammatory and disorders of cell oxygen metabolism.Therefore sepsis and MODS are inseparable,its morbidity and mortality is always high for a long-term.Especially in the intensive care unit,sepsis and MODS is the main cause for death,so the research of sepsis is still a challenge in medical domain.At present the puzzled pathogenesis of sepsis leads to the lack of effective treatment of sepsis especially with MODS.So how to establish a reasonable animal model of sepsis may help to understand the development of sepsis and MODS,and to provide a strong evidence for resolving sepsis.At present there are many ways to establish the animal models of sepsis with MODS,and the purpose of this paper is to provide a simple and useful MODS animal model which was mediated by endotoxin.
     Methods
     Ten white cross pigs were anesthetized and mechanically ventilated.All the animals received intravenous lipopolysaccharide(0.25mg·kg-1) slowly through right internal jugular vein.Hemodynamics、blood routine、blood biochemistry and cytokines were examined at basement and at 1,2,3,4,5 and 6 h after the injection respectively.
     Results
     After the infusion of LPS,MAP was significantly lower at 6h than it before the infusion(p<0.01),but the PA was raised continuously.Compared with the basement,the serum creatinine(SCr) and alanine aminotransferase(ALT) rised at 6h,and the prothrombin time(PT) prolonged 3s.Changes of cytokines such as IL-1、IL-10 and ET-1 were first raised slightly,then began to fall.However,the changes of sTM was inversely.
     Conclusion
     Infusion of LPS can induce porcine sepsis and lead to MODS in short term.
     PARTⅡThe role of endothelial bioreactor device in porcine sepsis with Multiple Organ Dysfunction Syndrome
     Background
     In the first part of this paper we have successfully constructed the animal model of sepsis with MODS in porcine.In our laboratory endothelial bioreactor device(BAD) has been established and the endothelial cells in this bioreactor device have been identified.Because endothelial cells in this bioreactor device exsist in the reactor's external cavity,then the blood through the reactor does not directly contact the endothelial cells,which effectively leads to the prevention of acute rejection.Much substance can be exchanged between inside and outside of the reactor cavity,and this exchange can be used by the endothelial cells in the bioreactor device to regulate the entire blood circulation.The purpose of this study is to prove the effectiveness of endothelial bioreactor device in porcine sepsis with MODS.
     Methods
     We picked up 10 white cross pigs and divided them into 2 groups randomly: sham group and endothelial bioreactor device(EBD) group.All the animals were anesthetized and mechanically ventilated.After the infusion of endotoxin(LPS,0.25 mg·kg~(-1)) to establish the sepsis model extracorporeal circulation began to run. Hemodynamics、blood routine、blood biochemistry and inflammatory parameters were examined at basement and at 1,3,6 h after the injection respectively.Hemodynamic parameters included mean arterial pressure(MAP),and serum biochemical parameters included serum creatinine(SCr) and potassium(K).Inflammation parameters included interleukin-1(IL-1) and 10(IL-10),endothelin-1(ET-1),nitric oxide synthase(NOs),and protein C(PC).The survival time of experimental animals was recorded at the last.
     Results
     At 30 min after injection of LPS to 2 h,the drop of MAP of two groups was obvious,but MAP of EBD group then began to slowly increase,and could be maintained for a long time,and MAP of the sham group continued to decline.The differences between the two groups was significant(p<0.01).After the start of the experiment,kidney function of the two group began to change,but it changed less in EBD group than in sham group.Even at the end of experiment SCr of EBD group has not significantly increased,while it was significantly increased in sham group(p=0.001).Changes in serum potassium was similar to SCr.At 6 h,serum potassium was significantly higher than that of EBD group,p=0.002.After the LPS infusion the concentration of IL-1 and IL-10 rised and arrived at the peak in two hours,and then began to decrease,and there was no difference between the two groups.The endothelin-1(ET-1) of EBD group decreased slowly first and began to rise after three hours,but nitric oxide synthase(NOs) began to increase first and decrease after two hours,while the changes of ET-1 and NOs in sham group was on the contrary.The survival time of EBD group and sham group was 5.5±0.3 and 6.7±0.4 d(p<0.05).
     Conclusion
     Endothelial bioreactor device can not only improve hemodynamics of porcine sepsis,but also maintain the function of key organs,which lead to the prolongation of survival time of experimental animals.
     PARTⅢRole of endothelial bioreactor device in regulation of inflammatory cytokines of acute lung injury induced by endotoxin in porcine
     Background
     In the occurrence and development of sepsis,the uncontrol of inflammatory cytokines leads to multiple organ dysfunction syndrome(MODS),which thereby increases mortality.Among the injury organs,the lung usually happens the first and the easiest.In the pathogenesis of lung injury,the involvement of inflammatory cytokines plays a vital role,particularly including IL-1,IL-10 and TNF.These cytokines can promote the further injury of the lung tissue and cause the infiltration of neutrophil and the damage of lung epithelial cells,resulting in decreased function of alveolar capillary barrier and the increase of permeability,which culminates in acute respiratory distress syndrome(ARDS).In the second part of this research we have been successfully confirmed the effectiveness of endothelial cell bioreactor(BAD) in the treatment of porcine sepsis,and this effectiveness maybe achieve through the adjustment of cytokines.While cytokines are important in acute lung injury(ALI) induced by endotoxin,the initial purpose of this paper is to investigate the role of endothelial bioreactor device in regulating the inflammatory cytokines of acute lung injury induced by endotoxin.
     Methods
     We picked up 10 white cross pigs and divided them into 2 groups randomly: sham group and endothelial bioreactor device(EBD) group.All the animals were anesthetized and mechanically ventilated.After the infusion of endotoxin(LPS,0.25 mg·kg~(-1)) to establish the sepsis model extracorporeal circulation began to run. Interleukin-1 and 10 were examined at basement and at 1,3,6 h after the injection respectively.At the same time lung tissue from animals was obtained for HE staining, and the pathology specialist calculated the Lung Injury Score.Western blot was used to detect the protein content of TNF-αand tissue factor(TF) in the lung tissue.
     Results
     After injection of LPS,the concentration of IL-1 and IL-10 rised and arrived at the peak in two hours,and then began to decrease,and there was no difference between the two groups,but the decline was less in EBD group than in sham group.Compared with the EBD group in the lung pathology,there were more respiratory epithelial proliferation(REP),alveolar hemorrhage(AH) and vascular thrombosis(VT) in sham group.The lung injury score in sham group was much higher than in EBD group(8.2±1.0 vs 6.1±0.9,p=0.0447).In the lung tissue,protein content of tissue TNF-αin the treatment group was lower than in sham group(p<0.05),but there was no significant difference between two group in the protein content of TF.
     Conclusion
     Endothelial bioreactor device can not only improve the hemodynamics of porcine sepsis,but also can reduce the expression of TNF-αin the lung tissue,which extenuates inflammation response in the lung tissue inflammation and postpones lung injury.
引文
1、 Nee PA.Critical care in the emergency department: severe sepsis and septic shock.Emerg Med J.2006;23(9):713-7.
    2、 Bone RC, Balk RA, Cerra FB, et al.Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine.Chest.l992;101(6):1644-1655.
    3、 Angus DC, Linde-Zwirble WT,et al.Epidemiology of severe sepsis in the United States:analysis of incidence, outcome, and associated costs of care.Crit Care Med.2001;29:1303-10.
    4、 AliNA,AbereggSK,et al.sepsis.Am J Med.2007; 120(12): 1012-22.
    5、 Harrison DA, Welch CA, Eddleston JM.The epidemiology of severe sepsis in England, Wales and Northern Ireland, 1996 to 2004:secondary analysis of a high quality clinical database, the ICNARC case mix programme database.Crit Care.2006;10(2):R42
    6、 Dombrovskiy VY, Martin AA, Sunderram J, Paz HL.Rapid increase in hospitalization and mortality rates for severe sepsis in the United States: a trend analysis from 1993 to 2003.Crit Care Med.2007;35:1244-50.
    7、 Lever A.Sepsis:definition,epidemiology,and diagnosis.BMJ.2007;335(7625): 879-83.
    8、 Martin GS, Mannino DM, Eaton S, MossM.The epidemiology of sepsis in the United States from 1979 through 2000.N Engl J Med.2003;348(16): 1546-54.
    9、 Padkin A, Goldfrad C, Brady AR,et al.Epidemiology of severe sepsis occurring in the first 24 hrs in intensive care units in England, Wales, and Northern Ireland.Crit Care Med.2003;31(9):2332-8.
    10、 Rivers E, Nguyen B, Havstad S, et al.Early goal-directed therapy in the treatment of severe sepsis and septic shock.N Engl J Med.2001;345(19):1368-77.
    11、 Dellinger, R Phillip MD; Surviving Sepsis Campaign Guidelines Committee Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008.Crit Care Med. 2008;36(1):296-327.
    12、 Meduri GU, Golden E, Freire AX, Taylor E, Zaman M, Carson SJ, Gibson M, Umberger R Methylprednisolone infusion in early severe ARDS: results of a randomized controlled trial.Chest.2007;131(4):954-63.
    13、 Nguyen HB, Corbett SW, Menes K, Cho T, Daugharthy J, Klein W, Wittlake
    28、 Antonelli M. Sepsis and septic shock: pro-inflammatory or anti-inflammatory state? J Chemother.1999;11(6):536-40.
    29、 Brodsky SV,Yamamoto T,Tada T,et al.Endothelial dysfunction in ischemic acute renal failure: rescue by transplanted endothelial cells.Am J Physiol Renal Physiol.2002;282(6):F 1140-9.
    30、 Zahorec R,Firment J,et al.Epidemiology of severe sepsis in intensive care units in the Slovak Republic. Infection.2005;33(3): 122-8.
    31、 Dombrovskiy VY,Martin AA,Sunderram J,et al.Facing the challenge: decreasing case fatality rates in severe sepsis despite increasing hospitalizations.Crit Care Med.2005;33(11):2555-62.
    32、 Friedman G,Silva E,Vincent JL.Has the mortality of septic shock changed with time.Crit Care Med.1998;26:2078-86.
    33、 Nolan B,Collette H,Baker S,et al.Inhibition of neutrophil apoptosis after severe trauma is NF kappabeta dependent.Traum.2000;48:599-605.
    34、 胡森,盛志勇,周宝桐,等双相迟发多器官功能不全综合征(MODS) 动物模型的研究. 中华创伤杂志.1996; 12:102-106.
    35、 Parrillo JE,Parker MM,Natanson C,et al.Septic shock in humans: Advances in the understanding of pathogenesis, cardiovascular dysfunction and therapy.Ann Intern Med. 1990; 113(3), 227-242.
    36、 Moss M.Endothelial cell activity varies in patients at risk for the adult respiratory distress syndrome.Crit Care Med.1996; 24(11): 1782-6.
    37、Pellegrini JD,Decoilgen D,et al.Relationships between tlymphocyte apoptosis and anergy following trauma.Surg Res.2000;88:200-206.
    38、 Bruins MJ,et al.Aspects of organ protein,amino acid and glucose metabolism in a porcine model of hypermetabolic sepsis.Clin Sci(Lond).2003; 104(2): 127-41.
    39、 Nolan B,Collette H,Baker S,et al. Inhibition of neutrophil apoptosis after severe trauma is NF kappabeta dependent.Traum.2000;48:599-605.
    40、 TsuchidaK,et al.Adsorption of endotoxin by beta microglobulin adsorbent column: the mew approach for endotoxinemia.Therapeutic Apheresis.2002;6:116-8.
    41、 Dellinger RP,Carlet JM,Masur H,et al.Surviving sepsis campaign guidelines for management of severe sepsis and septic shock.Crit Care Med.2004;32:858-70.
    42、 Mackenzie I,Lever A.Management of sepsis.BMJ.2007;335(7626):929-32.
    43、 Vincent JL,Bruhn A,et al. Sepsis diagnosis and management: work in progress. Minerva Anestesiol.2006; 72(3):87-96.
    44、 Dellinger RP.Cardiovascular management of septic shock.Crit Care Med.2003;31:946-55.
    45、Patton HD,Fuchs AF,Hille B,et al.Textbook of physiology. 1989.
    46、 Fissell WH,Dyke DB,Humes HD.et al.Bioartificial kidney alters cytokine response and hemodynamics in endotoxin-challenged uremic animals. Blood Purif.2002;20(1):55-60.
    47、 Varpula M,Tallgren M,Saukkonen K,et al. Hemodynamic variables related to outcome in septic shock.Intensive Care Med.2005;31(8): 1066-71.
    48、 Fissell WH, Humes HD.et al.Bioartificial kidney ameliorates gram-negative bacteria-induced septic shock in uremic animals.JASN.2003;14(2):454-61.
    49、 Rapaport S, Rao L. Initiation and regulation of tissue factordependent blood coagulation. Arterioscler.Thromb.Arterioscler Thromb. 1992; 12:1111-21.
    50、 Faust SN,Levin M,Harrison OB,et al. Dysfunction of endothelial protein C activation in severe meningococcal sepsis.N Engl J Med.2001;345:408-16.
    51、 Nakamura T,Suzuki Y,Shimada N,et al.Hemoperfusion with polymyxin B-immobilized fiber attenuates the increased plasma levels of thrombomodulin and von willebrand factor from patients with septic shock.Blood Purif. 1998; 16(4): 179-86.
    52、 Liaw PC,Esmon CT,et al.Patients with severe sepsis vary markedly in their ability to generate activated protein C.Blood. 2004;104(13):3958-64.
    53、 Esmon CT,et al.The Protein C Pathway.Chest.2003;124:26-32.
    54、 Dhainaut JF,Yan SB,Mira JP,et al.Soluble thrombomodulin, plasma-derived unactivated protein C, and recombinant human activated protein C in sepsis.Crit Care Med.2007;30(5 Suppl):S318-24.
    55、 Ozaki T,Matsuo S,et al.Intrarenal administration of recombinant human soluble thrombomodulin ameliorates ischaemic acute renal failure.Nephrol Dial Transplant. 2008;23(1):l 10-9.
    56、 Mohri M,Maruyama I,et al. The antithrombotic effects of recombinant human soluble thrombomodulin (rhsTM) on tissue factor-induced disseminated intravascular coagulation in crab-eating monkeys (Macaca fascicularis).Blood Coagul Fibrinolysis. 1997;8(5):274-83.
    57、Baughman RP,Lower EE,Flessa HC,et al.Thromobocytopenia in the intensive care unit.Chest. 1993; 104(4): 1243-7.
    58、 Francois B,et al.Thrmbocytopenia in the sepsis syndrome:role of hemophagocytosis and macrophage colony-stimulating factor.Am J Med. 1997; 103(2): 114-20.
    59、 Matejovic M,Radermacher P,Fontaine E. Lactate in shock: a high-octane fuel for the heart?Intensive Care Med.2007;33(3):406-8.
    60、 Hussain FA,Martin MJ,Mullenix PS,et al. Serum lactate and base deficit as predictors of mortality and morbidity. Am J Surg.2003; 185:485-91.
    61、 Levraut JJchai C,Petit I,et al.Low exogenous lactate clearance as an early predictor of mortality in normolactatemic critically ill septic patients.Crit Care Med.2003;31:705-10.
    62、 De Backer D.Lactic acidosis.Intensive Care Med.2003;29:699-702.
    63、 Bruins MJ,Deutz NE,Soeters PB.Aspects of organ protein, amino acid and glucose metabolism in a porcine model of hypermetabolic sepsis. Clin Sci(Lond).2003; 104(2): 127-41.
    1、 Tsiotou AG,Sakorafas GH,et al.Septic shock:current pathogenetic concepts from a clinical perspective.Med Sci Monit.2005;11(3):RA76-85.
    2、 Annane D,Bellissant E,et al. Septic shock.Lancet.2005;365(9543):63-78.
    3、 Ellis CG,Jagger J,Sharpe M.The microcirculation as a functional system. Crit Care.2005;9(Suppl 4):S3-8.
    4、 Hotchkiss RS,Karl IE.The pathophysiology and treatment of sepsis. N Engl J Med.2003;348(2): 138-50.
    5、 Angus DC, Pereira CA, Silva E.Epidemiology of Severe Sepsis Around the World.Endocr Metab Immune Disord Drug Targets.2006;6(2):207-12.
    6、 Watson RS, Angus DC,et al. The epidemiology of severe sepsis in children in the United States. Am J Respir Crit Care Med.2003;167(5):695-701.
    7、 Cheng B,Sun Y, Fang X,et al.Epidemiology of severe sepsis in critically ill surgical patients in ten university hospitals in China. Crit Care Med.2007;35(11):2538-46.
    8、 Fissell WH,Funke A, Humes HD,et al.The role of a bioengineered artificial kidney in renal failure.Ann N Y Acad Sci. 2001;944:284-95.
    9、 Wang CC, Su CH,et al.Water absorbing and antibacterial properties of N-isopropyl acrylamide grafted and collagen/chitosan immobilized polypropylene nonwoven fabric and its application on wound healing enhancement.J Biomed Mater Res A.2008;84(4):1006-17.
    10、 Terasaka S, Uchida T,et alFibrin glue and polyglycolic Acid nonwoven fabric as a biocompatible dural substitute.Neurosurgery.2006;58(1 Suppl):S134-9.
    11、 Naruse K,Muto T,Makuuchi M.et al.Efficacy of a bioreactor filled with porcine hepatocytes immobilized on nonwoven fabric for ex vivo direct hemoperfusion treatment of liver failure in pigs.Artif Organs. 1998;22(12): 1031-7.
    12、 Naruse K,Suzuki M,Makuuchi M.et al.Efficacy of nonwoven fabric bioreactor immobilized with porcine hepatocytes for ex vivo xenogeneic perfusion treatment of liver failure in dogs.Artif Organs.2001;25(4):273-80.
    13、 Li LJ,Chen Y,Chen YM.et al.Evaluation of a bioartificial liver based on a nonwoven fabric bioreactor with porcine hepatocytes in pigs.J Hepatol.2006;44(2): 317-24.
    14、 Patton HD,Fuchs AF,Hille B,et al.Textbook of physiology. 1989.
    15、 Bone RC. Immunologic dissonance: A continuing evolution in our understanding of the systemic inflammatory response syndrome and the multiple organ dysfunction syndrome.Ann Intern Med. 1996; 125:680-687.
    16、 Endemann DH,et al.Endothelial dysfunction.JASN.2004; 15(8): 1983-92.
    17、 Bauersachs J,Widder JD.Endothelial dysfunction in heart failure.Pharmacol Rep.2008;60(1):119-26.
    18、 Levy B,Lacolley P,Regnault V.ADAMTS-13(A disintegrin-like and metalloprotease with thrombospondin) and endothelial dysfunction in sepsis: marker or culprit?Crit Care Med.2007;35(10):2453-4.
    19、 Peters K,Unger RE,Kirkpatrick CJ.et al.Molecular basis of endothelial dysfunction in sepsis.Cardiovasc Res.2003;60(1):49-57.
    20、 BattistiniB,et al. Potential roles for endothelins in systemic inflammatory response syndrome with a particular relationship to cytokines.Shock.1996;5(3): 167-83.
    21、 Thijs A,Thijs LGPathogenesis of renal failure in sepsis.KI.1998;53(Suppl 66):S34-S37.
    22、 Schor N.Acute renal failure and the sepsis syndrome.KI.2002;61(2):764-76.
    23、 Kon V, Badr KF.Biological actions and pathophysiologic significance of endothelin in the kidney.KI. 1991 ;40(1): 1 -12.
    24、 Sharma AC.Sepsis-induced myocardial dysfunction.Shock.2007;28(3):265-9.
    25、 Eum HA, Park SW, Lee SM. Role of nitric oxide in the expression of hepatic vascular stress genes in response to sepsis.Nitric Oxide.2007;17(3-4):126-33.
    26、 Shimojo N,Goto K, Miyauchi T.et al.Alterations of gene expressions of preproET-1 and ET receptors in brains of endotoxemic Sprague-Dawley rats. Exp Biol Med.2006;231(6): 1058-63.
    27、 Konrad D,Weitzberg E,et al.Cardiac effects of endothelin receptor antagonism in endotoxemic pigs.Am J Physiol Heart Circ Physiol. 2007;293(2):H988-96.
    28、 Pittet JF,Suter PM, Lundberg JM.et al. Elevated plasma endothelin-1 concentrations are associated with the severity of illness in patients with sepsis.Ann Surg.1991;213(3):261-4.
    29、 Figueras-Aloy J, Gomez-Lopez L,et al.Plasma endothelin-1 and clinical manifestations of neonatal sepsis.J Perinat Med. 2004;32(6):522-6.
    30、 Kuklin V, Kirov M.et al. Tezosentan-induced attenuation of lung injury in endotoxemic sheep is associated with reduced activation of protein kinase C.Crit Care.2005;9(3):R211-7.
    31、 Rossi P,et al.Tezosentan counteracts endotoxin-induced pulmonary edema and improves gas exchange.Shock2004;21(6):543-8.
    32、 Geiger R, Kleinsasser A,et al.Intravenous tezosentan improves gas exchange and hemodynamics in acute lung injury secondary to meconium aspiration.Intensive Care Med. 2008; 34(2):368-76.
    33、 Erdem A,Meltem Sevgili A,et al.Tezosentan attenuates organ injury and mesenteric blood flow decrease in endotoxemia and cecal ligation and puncture.J Surg Res.2007;141(2):211-9.
    34、 He HB,Dai DZ,Dai Y.CPU0213,a novel endothelin receptor antagonist, ameliorates septic renal lesion by suppressing ET system and NF-kappaB in rats.Acta Pharmacol Sin.2006;27(9): 1213-21.
    35、 Shultz PJ,RaijL.Endogenously synthesized nitric oxide prevents endotoxin-induced glomerular thrombosis.J Clin Invest.l992;90(5):1718-25.
    36、 Weight SC,Furness PN,Nicholson ML.Nitric oxide generation is increased in experimental renal warm ischaemia-reperfusion injury.Br J Surg.l998;85(12):1663-8.
    37、 Bateman RM,Lidington D,Ellis CG.et al.Inhibiting nitric oxide overproduction during hypotensive sepsis increases local oxygen consumption in rat skeletal muscle. Crit Care Med.2008.36(1):225-31.
    38、 Xie XQ,Shinozawa Y.et al.The Effects of Arginine and Selective Inducible Nitric Oxide Synthase Inhibitor on Pathophysiology of Sepsis in a CLP Model.J Surg Res.2007;Aug 22.
    39、 Heemskerk S,Pickkers P.et al.Upregulation of renal inducible nitric oxide synthase during human endotoxemia and sepsis is associated with proximal tubule injury.Clin J Am Soc Nephrol.2006;1(4):853-62.
    40、 Matejovic M,et al.Effects of combining inducible nitric oxide synthase inhibitor and radical scavenger during porcine bacteremia.Shock.2007;27(1):61-8.
    41、 Ribes JA,Francis CW,Wagner DD.Fibrin induces release of von Willebrand factor from endothelial cells.J Clin Invest. 1987;79:117-123.
    42、 Rubin DB,Wiener-Kronish JP,Murray JF,et al,Elevated von Willebrand factor antigen is an early plasma predictor of acute lung injury in nonpulmonary sepsis syndrome.J Clin Invest.1990;86(2):474-80.
    43、 Ware LB, Conner ER, Matthay MA. von Willebrand factor antigen is an independent marker of poor outcome in patients with early acute lung injury.Crit Care Med.2001;29(12):2325-31.
    44、 Kremer Hovinga JA, Zeerleder S, Kessler P,et al. ADAMTS-13, von Willebrand factor and related parameters in severe sepsis and septic shock.J Thromb Haemost. 2007;5(11):2284-90.
    45、 Ware LB,Eisner MD,Thompson BT,et al. Significance of von Willebrand factor in septic and nonseptic patients with acute lung injury.Am J Respir Crit Care Med.2004;170(7):766-72.
    1、 Brun-Buisson C,Meshaka P,et al.EPISEPSIS: a reappraisal of the epidemiology and outcome of severe sepsis in French intensive care units. Intensive Care Med. 2004,30(4):580-8.
    2、 Costa EL,Schettino IA,Schettino GP.The lung in sepsis: guilty or innocent?Endocr Metab Immune Disord Drug Targets.2006,6(2):213-6.
    3、 Eggimann P,Harbarth S,Ricou B,et al. Acute respiratory distress syndrome after bacteremic sepsis does not increase mortality. Am J Respir Crit Care Med. 2003,167(9):1210-4.
    4、 Matute-Bello G,Winn RK,Jonas M,et al.Fas (CD95) induces alveolar epithelial cell apoptosis in vivo: implications for acute pulmonary inflammation. Am J Pathol.2001,158(1):153-61.
    5、 Alberti C,Brun-Buisson C,Burchardi H,et al: Epidemiology of sepsis and infection in ICU patients from an international multicenter cohort study. Intensive Care Med.2002;28(2): 108-21.
    6、 O'Reilly M, Newcomb DE,Remick D. Endotoxin, sepsis, and the primrose path. Shock. 1999; 12(6):411-20.
    7、 Fidan H,Sahin O,Yavuz Y,et al.Caffeic acid phenethyl ester reduces mortality and sepsis-induced lung injury in rats.Crit Care Med.2007;35(12):2822-9.
    8、 Cohen J.The immunopathogenesis of sepsis.Nature.2002;420(6917):885-91.
    9、 Fiorentino D, Zlotnik A, Mosmann T, et al.IL-10 inhibits cytokine production by activated macrophages. J Immunol.1991;147(11):3815-3822.
    10、 Togbe D,Doz E,Moser R,et al. Toll-like receptor and tumour necrosis factor dependent endotoxin-induced acute lung injury. Int J Exp Pathol.2007;88(6):387-91.
    11、 K(o|¨)ksoy C,Kuzu MA,Kuzu I,et al. Role of tumour necrosis factor in lung injury caused by intestinal ischaemia-reperfusion. Br J Surg.2001;88(3):464-8.
    12、 Yang YJ,Chen SH,Ge XR. Role of interleukin-18 in the development of acute pulmonary injury induced by intestinal ischemia/reperfusion and its possible mechanism. J Gastroenterol Hepatol.2007;22(2):253-60.
    13、 Song Y,Ao L,et al. A low level of TNF-alpha mediates hemorrhage-induced acute lung injury via p55 TNF receptor.Am J Physiol Lung Cell Mol Physiol.2001 ;281(3):L677-84.
    14、 Parsons PE,Matthay MA,Ware LB,ET AL. Elevated plasma levels of soluble TNF receptors are associated with morbidity and mortality in patients with acute lung injury. Am J Physiol Lung Cell Mol Physiol.2005;288(3):L426-31.
    15、 Mattey DL,Glossop JR,et al. Circulating levels of tumor necrosis factor receptors are highly predictive of mortality in patients with rheumatoid arthritis. Arthritis Rheum. 2007;56(12):3940-8.
    16、 Maganhin CC,Carbonel AA,et al.Effects of pentoxifylline on TNF-alpha and lung histopathology in HCL-induced lung injury. Clinics.2008;63(1):77-84.
    17、 Ji Q, Zhang L,et al. Pentoxifylline reduces indirect lung injury of fresh water drowning in canis. Clin Chim Acta.2006;365(1-2):221-9.
    18、 Lupu C,Westmuckett AD,et al.Tissue factor-dependent coagulation is preferentially up-regulated within arterial branching areas in a baboon model of Escherichia coli sepsis. Am J Pathol.2005;167(4):1161-72.
    19、 Pawlinski R,Mackman N.Tissue factor,coagulation proteases,and proteaseactivated receptors in endotoxemia and sepsis.Crit Care Med.2004;32(5 Suppl):S293-7.
    20、 Watkins LR,Hansen MK,Nguyen KT,et al.Dynamic regulation of the proinflammatory cytokine,interleukin-1beta:molecular biology for non-molecular biologists.Life Sci. 1999;65:449-81.
    21、 Henderson B, Pettipher ER.Arthritogenic actions of recombinant IL-1 and tumour necrosis factor a in the rabbit: evidence for synergistic interactions between cytokines in vivo. Clin Exp Immunol. 1989,75:306-10.
    22、 Stashenko P,et al. Synergistic interactions between interleukin 1, tumor necrosis factor, and lymphotoxin in bone resorption.J Immunol.1987,138:1464-8.
    23、 Flores EA, Bistrian BR,et al.Infusion of tumor necrosis factor/cachectin promotes muscle catabolism in the rat. A synergistic effect with interleukin 1.J Clin Invest, 1989,83:1614-22.
    24、 Carter DB,Deibel MR Jr,Dunn CJ,et al.Purification, cloning, expression and biological characterization of an interleukin-1 receptor antagonist protein.Nature. 1990,344:633-8.
    25、 Eisenberg SP,Evans RJ,Arend WP,et al.Primary structure and functional expression from complementary DNA of a human interleukin-1 receptor antagonist.Nature.1990,343:341-6.
    26、 Fisher CJ Jr,Slotman GJ,Opal SM,et al.Initial evaluation of human recombinant interleukin-1 receptor antagonist in the treatment of sepsis syndrome:a randomized, open-label, placebo-controlled multicenter trial. The IL-1RA Sepsis Syndrome Study Group. Crit Care Med. 1994,22:12-21.
    27、 Fisher CJ Jr,Dhainaut JF,Opal SM,et al.Recombinant human interleukin 1 receptor antagonist in the treatment of patients with sepsis syndrome. Results from a randomized, double-blind, placebo-controlled trial.Phase Ⅲ rhIL-1ra Sepsis Syndrome Study Group.J Am Med Assoc. 1994,271:1836-43.
    28、 Opal SM,Fisher CJ Jr,Dhainaut JF,et al.Confirmatory interleukin-1 receptor antagonist trial in severe sepsis: a phase Ⅲ, randomized, double-blind,placebo-controlled, multicenter trial. The Interleukin-1 Receptor Antagonist Sepsis Investigator Group.Crit Care Med. 1997,25:1115-24.
    29、 Malisan F,Briem F,Bridon JM,et al. nterleukin-10 Induces Immunoglobulin G Isotype switch recombination in human CD40activated naive B lymphocytes.J Exp Med. 1996,183:937-47.
    30、 Cook JW,Karakozis S,Kim D, Interleukin-10 attenuates proinflammatory cytokine production and improves survival in lethal pancreatitis. Am Surg.2001;67(3):237-41.
    31、 Kabay B,Kocaefe C,Baykal A,et al.Interleukin-10 gene transfer: prevention of multiple organ injury in a murine cecal ligation and puncture model of sepsis.World J Surg.2007;31(1):105-15.
    1、 Nee PA.Critical care in the emergency department: severe sepsis and septic shock.Emerg Med J. 2006 Sep;23(9):713-7.
    2、 Bone RC, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis.The ACCP/SCCM Consensus Conference Committee.chest. 1992, 101(6):1644-55.
    3、 Tsiotou AG,Sakorafas GH,Anagnostopoulos G,et al. Septic shock:current pathogenetic concepts from a clinical perspective. Med Sci Monit.2005; 11(3):RA76-85.
    4、 O'Brien JM Jr,Abraham E,et al.Sepsis.Am J Med.2007; 120(12): 1012-22.
    5、 Martin GS, Mannino DM, Eaton S,et al.The epidemiology of sepsis in the United States from 1979 through 2000.N Engl J Med.2003;348:1546-54.
    6、 Angus DC,et al.Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care.Crit Care Med.2001;29(7):1303-10.
    7、 Cheng B,Sun Y,Fang X,et al.Epidemiology of severe sepsis in critically ill surgical patients in ten university hospitals in China.Crit Care Med.2007;35(11):2538-46.
    8、 Padkin A, Goldfrad C, Brady AR,et al. Epidemiology of severe sepsis occurring in the first 24 hrs in intensive care units in England, Wales, and Northern Ireland.Crit Care Med.2003;31(9):2332-8.
    9、 Zahorec R,Firment J,et al.Epidemiology of severe sepsis in intensive care units in the Slovak Republic. Infection.2005;33(3):122-8.
    10、 Annane D,Bellissant E,et al.Septic shock.Lancet.2005;365(9453):63-78.
    11、 Ellis CG,et al.The microcirculation as a functional system.Crit Care.2005;9(Suppl 4):S3-8.
    12、 Hotchkiss RS,et al.The pathophysiology and treatment of sepsis. NEJM.2003 ;348(2): 138-50.
    13、 Springer T.Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Ann Rev Physiol.1995;57:827-72.
    14、 Gando S, Kameue T,et al. Serial changes in neutrophil-endothelial activation markers during the course of sepsis associated with disseminated intravascular coagulation.Thromb Res. 2005;116(2):91-100.
    15、 Cummings CJ, Sessler CN,et al. Soluble E-selectin levels in sepsis and critical illness. Correlation with infection and hemodynamic dysfunction. Am J Respir Crit Care Med. 1997; 156(2 Pt 1):431-7.
    16、 Kuebler WM, Borges J,et al. Role of L-selectin in leukocyte sequestration in lung capillaries in a rabbit model of endotoxemia. Am J Respir Crit Care Med.2000;161(1):36-43.
    17、 Kiefmann R, Heckel K,et al. Role of p-selectin in platelet sequestration in pulmonary capillaries during endotoxemia. J Vasc Res.2006;43(5):473-81.
    18、 Gardinali M, Borrelli E,et al. Inhibition of CD11-CD18 complex prevents acute lung injury and reduces mortality after peritonitis in rabbits. Am J Respir Crit Care Med.2000;161(3 Pt 1):1022-9.
    19、 Watanabe S, Mukaida N,et al. Prevention of endotoxin shock by an antibody against leukocyte integrin beta 2 through inhibiting production and action of TNF. Int Immunol. 1995;7:1037-46.
    20、 Sessler CN, Windsor AC,et al. Circulating ICAM-1 is increased in septic shock.Am J Respir Crit Care Med. 1995;151(5): 1420-7.
    21、 Stefanec T.Endothelial apoptosis: could it have a role in the pathogenesis and treatment of disease. Chest.2000;117:841-54.
    22、 Lee M, Schuessler G, Chien S.Time dependent effetcs of endotoxin on the ultrastructure of the aortic endothelium.Artery. 1998; 15:71-89.
    23、 Bauer PR.Microvascular responses to sepsisxlinical significance. Pathophysiology.2002;8:141-8.
    24、 Wiel E, Vallet B.Vascular endothelial cell dysfunction in septic shock.Crit Care Med.2001;29(suppl):S36-S41.
    25、 Taylor FB, Haddad PA,et al.Two-stage response to endotoxin infusion into normal human subjects: correlation of blood phagocyte luminescence with clinical and laboratory markers of the inflammatory, hemostatic response.Crit Care Med.2001;29:326-334.
    26、 Rapaport S, Rao L.Initiation and regulation of tissue factordependent blood coagulation. Arterioscler.Thromb. 1992; 12:1111-21.
    27、 Pober JS, Min W. Endothelial cell dysfunction, injury and death. Handb Exp Pharmacol. 2006;(176 Pt 2): 135-56.
    28、 Tesfamariam B, DeFelice AF. Endothelial injury in the initiation and progression of vascular disorders. Vascul Pharmacol.2007;46(4):229-37.
    29、 Basile DP.The endothelial cell in ischemic acute kidney injury: implications for acute and chronic function. Kidney Int.2007;72(2):151-6.
    30、 Molitoris BA, Sutton TA.Endothelial injury and dysfunction: role in the extension phase of acute renal failure.Kidney Int.2004;66(2):496-9.
    31、 H(o|¨)rbelt M, Lee SY,et al. Acute and chronic microvascular alterations in a mouse model of ischemic acute kidney injury. Am J Physiol Renal PhysioI.2007;293(3):F688-95.
    32、 Yokota H.Cerebral endothelial damage after severe head injury.J Nippon Med Sch. 2007;74(5):332-7.
    33、 Silliman CC, Kelher M.The role of endothelial activation in the pathogenesis of transfusion-related acute lung injury.Transfusion.2005 ;45(2 Suppl):109S-116S.
    34、 Bauersachs J,Widder JD.Endothelial dysfunction in heart failure.Pharmacol Rep.2008;60(1):119-26.
    35、 Bajaj MS, Tricomi SM.Plasma levels of the three endothelial specific proteins von Willebrand factor, tissue factor pathway inhibitor, and thrombomodulin do not predict the development of acute respiratory distress syndrome. Intensive Care Med.l999;25:1259-66.
    36、 Kayal S,Jais JP,et al. Elevated circulating E-selectin, intercellular adhesion molecule 1, and von Willebrand factor in patients with severe infection. Am J Respir Crit Care Med. 1998; 157:776-84.
    37、 Borchiellini A, Fijnvandraat K,et al.Quantitative analysis of von Willebrand factor propeptide release in vivo: effect of experimental endotoxemia and administration of 1 -deamino-8-D-arginine vasopressin in humans. Blood. 1996;88:2951-58.
    38、 Vaudo G, Marchesi S,et al. Human endothelial impairment in sepsis. Atherosclerosis.2007;Aug 30.
    39、 Niemir ZI, Kubiak A, Olejniczak P,et al.Can von Willebrand factor, platelet-endothelial cell adhesion molecule1 and thrombomodulin be used as alternative markers of endothelial cell injury in human glomerulonephritis?.Rocz Akad Med Bialymst.2004;49:213-8.
    40、 Kessler CM, Tang Z,et al.The suprapharmacologic dosing of antithrombin concentrate for Staphylococcus aureus-induced disseminated intravascular coagulation in guinea pigs: substantial reduction in mortality and morbidity.Blood.1997;89:4393-4401.
    41、 Warren BL, Eid A, Singer P, et al: Caring for the critically ill patient. High-dose antithrombin Ⅲ in severe sepsis: A randomized controlled trial. JAMA 2001; 286:1869-78.
    42、 Wiedermann CJ, Hoffmann JN, Juers M, et al.High-dose antithrombin Ⅲ in the treatment of severe sepsis in patients with a high risk of death: Efficacy and safety. Crit Care Med 2006; 34:285-92.
    43、 Bernard GR, Ely EW, Wright TJ, et al.Safety and dose relationship of recombinant human activated protein C for coagulopathy in severe sepsis. Crit Care Med 2001; 29:2051-59.
    44、 Bernard GR, Vincent JL, Laterre PF, et al.Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 2001; 344:699 - 709.
    45、 Abraham E, Laterre F, Garg R, et al.Drotrecogin Alfa (activated) for adults with severe sepsis and a low risk of death. N Engl J Med 2005; 353:1332-41.
    46、 Abraham E, Reinhart K, Svoboda P, et al.Assessment of the safety of recombinant tissue factor pathway inhibitor in patients with severe sepsis: A multicenter, randomized,placebo-controlled, single-blind, dose escalation study. Crit Care Med 2001; 29:2081-89.
    47、 Abraham E, Reinhart K, Opal S, et al: Effi-cacy and safety of tifacogin (recombinant tissue factor pathway inhibitor) in severe sepsis:A randomized controlled trial. JAMA 2003; 290:238-47.
    48、 Grinnell BW, Hermann RB, Yan SB.Human protein C inhibits selectin-mediated cell adhesion: role of unique fucosylated oligosaccharide.Glycobiology. 1994;4:221 -5.
    49、 Jackson CV, Bailey BD, Shetler TJ.Pharmacological profile of recombinant, human activated protein C (LY203638) in a canine model of coronary artery thrombosis.J Pharmacol Exp Ther 2000;295:967-71.
    50、 Thijs A, Thijs LGPathogenesis of renal failure in sepsis.KI.1998;53(Suppl 66):S34-S37.
    51、 Shultz PJ,RaijL.Endogenously synthesized nitric oxide prevents endotoxin-induced glomerular thrombosis.J Clin Invest.1992;90(5):1718-25.
    52、 Weight SC,Furness PN,Nicholson ML.Nitric oxide generation is increased in experimental renal warm ischaemia-reperfusion injury.Br J Surg.l998;85(12):1663-8.
    53、 Bateman RM,Lidington D,Ellis CG.et al.Inhibiting nitric oxide overproduction during hypotensive sepsis increases local oxygen consumption in rat skeletal muscle. Crit Care Med.2008.36(1):225-31.
    54、 Xie XQ,Shinozawa Y.et al.The Effects of Arginine and Selective Inducible Nitric Oxide Synthase Inhibitor on Pathophysiology of Sepsis in a CLP Model. J Surg Res.2007;Aug 22.
    55、 Heemskerk S,Pickkers P.et al.Upregulation of renal inducible nitric oxide synthase during human endotoxemia and sepsis is associated with proximal tubule injury.Clin J Am Soc Nephrol.2006;1(4):853-62.
    56、 Matejovic M,Krouzecky A.et al.Effects of combining inducible nitric oxide synthase inhibitor and radical scavenger during porcine bacteremia.Shock.2007;27(1):61-8.
    57、 Laudes IJ,Guo RF,Riedemann NC,et al. Disturbed homeostasis of lung intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 during sepsis.Am J Pathol.2004;164(4):1435-45
    58、 Basit A,Reutershan J,Morris MA,et al. ICAM-1 and LFA-1 play critical roles in LPS-induced neutrophil recruitment into the alveolar space. Am J Physiol Lung Cell Mol Physiol.2006;291(2):L200-7.
    59、 Moreland JG,Fuhrman RM,Pruessner JA,et al. CD11b and intercellular adhesion molecule-1 are involved in pulmonary neutrophil recruitment in lipopolysaccharide-induced airway disease. Am J Respir Cell Mol Biol.2002;27(4):474-80.
    60、 Brodsky SV,Yamamoto T,Tada T,et al.Endothelial dysfunction in ischemic acute renal failure: rescue by transplanted endothelial cells.Am J Physiol Renal Physiol.2002;282(6):F1140-9.
    61、 Arriero M,Brodsky SV,Gealekman O,et al. Adult skeletal muscle stem cells differentiate into endothelial lineage and ameliorate renal dysfunction after acute ischemia. Am J Physiol Renal Physiol.2004;287(4):F621-7.