立体传质塔板罩内气液两相流动及传质过程的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
立体传质塔板(CTST)以梯形立体结构的帽罩为单元,将气液两相流动和传质从塔板上延伸至大部分塔板空间。罩内的气液流动是造成这种延伸的关键所在,同时又是促进传质的主要区域。对罩内气液流动和传质的研究既是优化帽罩结构的基础,又为预测整个塔板的传质效率提供理论依据。
     本文在直径600mm的工业规模冷模实验塔中,研究了喷射板倾斜角度(α)和塔板伸入罩内长度(Wb)对罩内气液两相流体力学参数的影响,获得了较优的帽罩结构参数为α=8o、Wb=10mm。对帽罩进行了传质实验研究,得到了罩内沿高度方向的浓度分布,以及提升段和喷射段的传质速率和传质效率。
     提出了采用不同模型对帽罩内气液两相流场分段模拟的方法。在充分考虑表面张力和气液相互作用力对两相流动影响的情况下,用VOF方法建立了能够较好追踪两相界面的提升段两相流模型。采用颗粒轨道模型模拟了喷射段的气液两相流动,模型中考虑了高速气体对液滴施加的曳力、液滴所受重力和虚拟质量力的影响,用随机轨道模型计算了液滴的湍流扩散。根据模拟结果,对提升段重点讨论了不同操作条件及帽罩结构对液膜流动的影响,得到了液膜流动的变化规律。在喷射段重点讨论了液滴粒度的分布规律,其结果与R-R分布函数符合较好,获得了液滴粒度的分布参数和特征尺寸。
     分别建立了提升段和喷射段的传质模型,并对罩内传质进行了计算。在提升段把夹带液滴的核心气流看作等效流体,利用两相流模型对其进行了浓度分布和传质效率计算。在喷射段,以特征液滴的传质来处理复杂的传质过程,对喷射段浓度分布和传质效率进行了初步预测。模型计算结果与实验数据的整体趋势一致。
The trapezoid tridimensional structure caps are the key parts of Combined Trapezoid Spary Tray (CTST), which enlarge the area of gas-liquid mass transfer. The two phase flow inside the cap effects on mass transffer remarkably. Study on the gas-liquid two phase flow and the mass transfer in the cap is the basis of the cap structure optimization and the mass transfer efficiency prediction.
     The effect of the cap with different inclination angle (α)of spray plate and the dip length of the tray (Wb)on flowing characteristic was investigated in a experiment column with 600 mm diameter. The results showed that the optimized cap strcture was thatα=8o and Wb=10 mm. The concentration distribution, the mass transfer distribution inside the cap, and the mass transfer efficiency in lifting region and spraying region were obtained by mass transfer experiment.
     The different model was put forward respectively to simulate gas-liquid two phase flow on different regions inside the cap. In lifting region, the forces by surface tension and the gas-liquid interaction were considered into VOF model, so that the model can well trace two phase interface. The gas-liquid two phase flow in spraying region was simulated with particle trajectory model, and the effect of drag force, gravity, virtual-mass force was considered in the model. At the same time, the droplet turbulence diffusion was calculated with random trajectory model. In lifting region, the liquid film flow characteristic and its variability with operating conditions and the cap structure were analysed mostly. In spraying region, the droplets size distribution was mainly concerned, and the results showed that the size distribution has a good agreement with R-R distribution function. The distribution parameter and the feature size in the distribution function about the droplet size were obtained by simulation.
     The mass transfer models were established respectively for lifting region and spraying region. In the model of lifting region, gas phase that entrained in droplets was regarded as effective fluid and liquid phase as film. In spraying region the complex mass transfer process was treated with feature droplet’s mass transfer. After that, the concentration distribution and mass transfer efficiency inside the cap were calculated with the model. It showed that the calculated results of the models have a good agreement with the experiment data in tendency.
引文
[1] John A. Williams. Optimize Distillation System Revamps. Chem. Eng. Prog., 1998, 94 (4): 23~33
    [2] Andrew W. Siloley. Should you switch to high capacity trays, Chem. Eng. Prog., 1999, 95(1): 23~35
    [3] Jose L. Bravo. Select structures: packings or trays.Chem. Eng. Prog., 1997, 93 (7): 36~41
    [4] Delnicki W. V., Wagner J L. Performance of Multiple Downcomer Trays. Chem. Eng. Prog., 1970, 66(3): 50~55
    [5]姚克俭,章渊昶,王章华等,新型高效大通量DJ系列塔板的研究与工业应用,化工进展,2003,3(22):228~231
    [6]郭敏强,李鹏,吴有庭等,新结构95型塔板的流体力学性能,化工学报,2000,51(3):395~398
    [7]李鹏,吴有庭,张志炳,95型塔板的流体力学性能,南京大学学报(自然科学),2000,36 (4):486~490
    [8]赵培,李玉安,张节旭,导向浮阀塔板的实验研究和工业应用,化工科技,1998,6 (4):29~34
    [9]梁治国,亓荣彬,段道顺,一种高性能BVT浮阀塔板的研制,石油大学学报,1999,23 (6):76~78
    [10]刘吉,吕家卓,谢润兴等,微分浮阀塔板的研究和应用,化学工程,2000,28 (5):10~14
    [11]杜佩衡,于文奎,王庆瑶,新型垂直筛板塔流体力学性能研究,石油化工设备,1986,5(9):1~7
    [12]杜佩衡,杜剑婷,王荣良,垂直筛板塔流体力学与传质研究状况,化学工程,2003,31(4):22~28
    [13]刘衍烈,翁力,王昂,新型垂直筛板塔的流体力学理论分析及关联,化学工程,1983,11(5):1~13
    [14]张海跃,新型垂直筛板塔的液体提升量的测定与关联,化学工程,1986,14(2):75~77
    [15]佛明义,“矩形喷射塔板初步研究”,化学工程,1986,14(3):16~24
    [16]高长宝,周鹍,王树楹等,气液并流填料塔板的流体力学性能,石油化工,2002,31(8):619~621
    [17]哈婧,王金戌,王树楹,新型复合塔板JCPT的性能及工业应用,化工科技,1999,7(2):27~31
    [18]兰仁水,并流喷射式复合塔,中国专利,CN.1147412A,1996-07-09
    [19]高长宝,兰仁水,周鹍等,气液并流侧喷式塔板流体力学性能,石油化工设备,2002,31(4):7~9
    [20]刘继东,吕建华,张竞平等,新型立体传质塔板及其流体力学性能,化工学报,2005,56(6):1144~1149
    [21]成弘,余国琮,蒸馏技术现状与发展方向,化学工程,2001,29(1):52~55
    [22] Krishna R. The Maxwell-Stefan approach to mass transfer. Chem Eng Sci,1997,52(6):861~870
    [23]吕建华,李柏春,李春利等,梯形立体喷射塔板在环氧乙烷精制塔中的应用,石油化工,2002,31(9):749~752
    [24] Ho G. E.,Mutler R. L.,Pruace R G. H.,Characterization two phase flow patterns in plate columns. Instn, Chem. Engr. Symp. Ser., 1969, 32(2):10~21
    [25] Hofhuis P. A.,Zuiderweg F. J.,Sieve plates: dispersion density and flow regimes. Instn. Chem. Engr. Symp. Ser., 1979, 56(2):21~26
    [26] Clift R., Grace J. R., Weber M. E., Bubble drops and particals, Academic Press, 1978
    [27] Dracy D., Bubbling from submerged orifices, AIChE meeting, 1975
    [28] Sundar R., Tan R. B., A model for bubble-to-jet transition at a submerged orifice, Chem. Eng. Sci., 1999, 18(54):4053~4060
    [29] Lockeet M. J., Kirkpatrick R.D., Uddin M. S., Froth regime point effciency for gas-film controlled mass tranfer on a two-dimensional sieve tray, Trans. Inst. Chem. Eng., 1979, 57:25~30
    [30] Tuge H., Hibino S., Nojima U., Volumn of a bubble formed at a single submerged orifice in a flowing liquid, Int. Chem. Eng., 1981, 21(4):630~639
    [31] Hofer H., Influnce of gas-phase dispersion on plate column efficiency, Ger. Chem. Eng., 1983, 6:113~120
    [32] Kaltenbacher E., On the effect of the bubble size distribution and the gas-phase diffusion on the selectivity of sieve trays, Chem. Eng. Fundam., 1982, 1:47~68
    [33] Wong P. F., Kwan W. K., A generalized method for prection the spray bubbling transition on sieve plates, Trans. IChemE, 1979, 57:20~25
    [34] Payne G. J., Prince G. H., The relationship between the froth and spray regime and the orifice processes occurring on perforated distillation plates, Trans. Instn. Chem. Eng., 1977, 55(4):266~273
    [35] Pinczewski W. V., Fell C. J. D., Froth to spray transition on sieve tray, Ind. Eng. Chem. Process. Des. Dev, 1982, 21:774~787
    [36] Bennett D. L., Kao A. S., Wong L. W., A mechanistic analysis of sieve tray froth height and entrainment, AIChE J., 1995, 41(9):2067~2082
    [37] Dhulesia H., Operation flow regimes on the valve tray, Trans. IchemE, Part A, Chem. Eng. Res. Des., 1983, 61:329~332
    [38] Rosin P. and Rammler E. Z., Ver. Dent. Ing., 1972, 71:1~14
    [39]刘云义,喷射态筛板上的液滴粒度分布,沈阳化工学院学报,1998,12(1):1~7
    [40] Nukiyama S. and Tanasawa Y., Trans. Soc. Mech. Engrs., 1939, 15:138~142
    [41] R. A. Mugele and H. D. Evans, Droplet size distribution in sparys, Ind. Eng. Chem., 1951, 43(6):1317~1324
    [42] Chen J. M., Size distribution of droplets above a rotating stream tray and model of droplet motion therein, Chinese J. Chem. Eng., 1997, 5(2):127~134
    [43]李春利,曹立姗,王金戌,新型垂直筛板液体分散性能研究,化学工程,1999,27(2):6~9
    [44]李建隆,大型精馏塔板上液体流动特性的研究:[博士学位论文],天津:天津大学,1985
    [45] Yoshid A H. Liquid flow over distillation column plates. Chem. Eng. Comm., 1987, 51: 261~268
    [46] J. M. Van Baten., Modeling sieve tray hydraulics using computational fluid dynamics, Chem. Eng., 2000, 77:143~151
    [47] Bennett D. L., New pressure drop correlation for sieve tray distillation columns, AIChE J., 1983,29:434~442
    [48]张敏卿,精馏塔板上液相流速及温度场的研究:[博士学位论文],天津:天津大学,1990
    [49]刘春江,蒸馏塔板上液相流场理论及实验研究:[博士学位论文],天津:天津大学,1998
    [50] Porter K. E., Lockett M. J., Lim C. T.,The effect of liquid channeling on distillation plate efficiency,Trans. Chem. Engrs, 1972, 50: 91~104
    [51]刘伯潭,单、双溢流蒸馏塔板液相流场三维模拟:[硕士学位论文],天津:天津大学,2001
    [52] LIU Botan and LIU Chunjiang. Three dimensional simulation of liquid flow on distillation tray. Chinese J. Chem. Eng.,2002, 10(5): 517~521
    [53]李瑞,许春建,曾爱武等,精馏塔板上双液层三维模型的流体力学计算,化工学报,2003,54 (2):159~163
    [54]王晓玲,精馏塔板上流体三维流场及传质的模拟:[博士学位论文],天津,天津大学,2002
    [55]袁希钢,尤学一,余国琮,筛孔塔板气液两相流速场模拟研究,化工学报,1995,46(4):511~518
    [56] YU K. T., YUAN X. G., Computational Fluid-Dynamics and Experimental Verification of Two-phase Two-Dimensional Flow on A sieve Column Tray, Trans. IChemE, 1999, 77 Part A,9: 554~560
    [57] Fischer C. H., Quarini G. L., Three Dimensional Hetrogeneous Modeling of Distillation Tray Hydraulics, The AIChE Annual Meeting, USA: Miami Beach, 1998, 15~20
    [58] Krishna R. CFD Simulations of sieve tray hydrodynamics, Trans. IChemE, 1999, 77 Part A: 639~646
    [59] Krishna R., Urseanu M. I., Van Baten J. M., et al. Rise velocity of a swarm of large gas bubbles in liquid, Chem. Eng. Sci., 1999, 54: 171~183
    [60] Krishna R., Van. Baten J. M. Modelling sieve tray hydrodynamics using computational fluid dynamics, Trans. IChemE, 2003, 81 Part A: 27~38
    [61]邢嵘,喷射工况下的大孔径筛板冷膜试验及CFD模拟,[硕士学位论文],上海:华东理工大学,2002
    [62] Wasden F. K., Dukler A. E. Insights into the hydrodynamics of free falling wavy films. AIChE J, 1989, 35(2): 187~195
    [63] Yu L. Q., Wasden F. K., Dukler A. E., Evolution of waves on falling films at high Reynolds numbers, Phys. Fluids, 1995, 7: 1889~1902
    [64] Hirt C. W., Nichols B. D. Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of Computational Physics, 1981, 39:201~206
    [65] Ataki A, Bart H. J. Experimental study of rivulet liquid flow on an inclined plate, International Conference on Distillation & Adsorption, Baden-Baden, Gemany September 30-October, 2~9, 2002
    [66] Brauner N., Maron M. D. Characteristics of inclined thin films waviness and the associated mass transfer, Int. J. Heat Mass Transfer, 1982, 25(1): 99~109
    [67] Murphree E. V. Ind. Eng. Chem.,1925,17:747~756
    [68] Fair J. R., Bolles W. L., Chem. Eng.,1968,9:156~165
    [69] American Institute of Chemical Engineers, Tray Efficiencies in ditillation columns, New York, Univerdity of Delaware, 1958
    [70] Chan H. Fair J. R., Predict of point effciencies on sieve trays, Ind. Eng. Chem. Process Des. Dev., 1984, 23(4):814~819
    [71] William G.., Matthew V. W., Correlation of valve tray efficiency data, Ind. Eng. Chem. Process Des. Dev., 1972, 11(4):589~604
    [72] Richard D. S., Ralph H. W., Mass transfer characteristics of valve trays, Ind. Eng. Chem. Res., 1987, 26(2):228~236
    [73] AIChE. Bubble tray design manual.1958
    [74]余国琮,黄洁,梁明汉,大型塔板上液相浓度分布的理论探讨,全国分离工程学术论文报告会,1979
    [75]余国琮,黄洁,顾芳珍,大型塔板的数学模型,美国化学工程师协会88届年会,1980
    [76]余国琮,黄洁,大型塔板的模拟与板效率的研究(Ⅰ),化工学报,1981,1:11~15
    [77] Kirschbaum E., Dechema Monographiem,1933,6:19~26
    [78] Gautreaux M. F.,O’conell E,Chem. Eng. Prog.,1955,51:232~237
    [79] Bruin S,Freije A. O., Trans. Tnst. Chem. Engrs.1974,52:75~83
    [80]余国琮,顾芳珍,大型塔板的模拟与板效率的研究(Ⅱ),化工学报,1981,2:98~102
    [81]余国琮,顾芳珍,李建隆,大型塔板的模拟与板效率的研究(Ⅳ)——应用二维定数混合池模型对板效率的分析,全国化学工程论文报告会
    [82] Foss A. S., Gerster J. A., Pogford R. L., AIChE J,1958,4:23~31
    [83] Bell R. L. Experimental determination of residence time distribution on commercial-scale distillation trays using a Fiber Optic Technique, AIChE Journal, 1972, 18:491~498
    [84]余国琮,黄洁,单、双溢流塔板液体停留时间分布和板效率的研究,化工学报,1986,(2):151~156
    [85]张泽廷,大型塔板液体停留时间分布与板效率研究,[硕士学位论文],天津:天津大学,1982
    [86] Yu Guocong,Huang Jie,Zhang Zeting,Residence time distribution and efficiencies of large tray, Proceedings of joint meeting of chemical engineering,CIESC and AIChE, China, 1982, 425~433
    [87]于文奎,杨生俊,曹立姗等,体形立体喷射气液接触组合元件,中国专利,ZL 93 2 18445.6,1994-06-29
    [88]李柏春,李春利,吕建华等,立体传质塔板,中国专利,ZL 01 2 21921.5,2002-02-06
    [89]于文奎,李柏春,曹立珊等,梯形立体喷射塔板CTST的流体力学性能研究,第八届全国化学工程学术会议论文集,1996,251~258
    [90]王金戌,新型垂直筛板液滴粒度分布和雾沫夹带的研究:[硕士学位论文],天津:河北工业大学,1996
    [91]张惠源,梯形立体喷射塔板罩内压力分布和液体提升量的研究:[硕士学位论文],天津:河北工业大学,1997
    [92]陈华艳,立体传质塔板CTST液体提升机理的研究:[硕士学位论文],天津:河北工业大学,2003
    [93]王志英,立体传质塔板板上液相流动性能的研究:[硕士学位论文],天津:河北工业大学,2002
    [94]孙玉春,立体传质塔板板上液相流场的三维模拟研究:[硕士学位论文],天津:河北工业大学,2005
    [95]刘继东,李春利,李柏春等,新型立体传质塔板罩内压力分布和气液提升机理的研究,化学工程,2004,1(32):1~5
    [96]刘德新,立体传质塔板CTST罩内气相速度分布的研究:[硕士学位论文],天津:河北工业大学,2005
    [97]李建慈,立体传质塔板CTST分离板上方气相速度分布的研究,[硕士学位论文],天津:河北工业大学,2007
    [98]刘衍烈,王昂,翁力等,新型垂直筛板的塔板分离效率研究,化学工程, 1983, (5):24~28
    [99]王志魁,张海跃,林义英,帽罩式气液并流接触塔板的板效率,化学工程,1986,(1):61~65
    [100]张海跃,王志魁,帽罩式汽液并流接触塔板的汽相Murphree板效率数学模型,化学工程,1987,(5):29~32
    [101]毕永宏,王志魁,新垂直筛板塔汽体不混合时的板效率数学模型,化学工程,1990,(6):32~36
    [102]张佑红,包雪梅,王志魁,新垂直筛板帽罩单元传质性能的测试与分析,石油化工设备,1997,26(4):1~6
    [103]张佑红,包雪梅,王志魁,新型垂直筛板的传质点效率研究,化学工程,1996, 24(3):17~22
    [104]张佑红,包雪梅,王志魁,新垂直筛板帽罩单元传质性能研究(Ⅰ),武汉化工学院学报,1996,18(3):13~17
    [105]刘金城,喷射工况下二维传质-混合池模型的建立及其在New VST上的应用,[硕士学位论文],天津:河北工业大学,1988
    [106]朱向前,新型垂直筛板(New VST)阶梯式浓变传质模型的研究,[硕士学位论文],天津:河北工业大学,1990
    [107]汤兵,喷射型塔板二维传质效率模型研究,[硕士学位论文],天津:河北工业大学,1995
    [108]佛明义,候文有,矩形喷射塔板研究,化学工程,1993,21(3):13~17
    [109]徐世民,陈宁,干爱华等,大型塔板液体停留时间分布与板效率研究,化学工程,2002, 30(1):12~16
    [110]崔宝林,新型垂直筛板(New VST)性能研究——罩内压力分布,罩内外液体浓度分布及传质量.[硕士学位论文],天津:河北工业大学,1990
    [111]包雪梅,新型垂直筛板帽罩单元传质性能的研究,[硕士学位论文],北京:北京化工学院,1989
    [112] Leuptow R. M. Computer-aider Calibration of X-probes Uawing a Look-up Table., Experiments in Fluids,1988,6:115~118
    [113] Brwone L B .Calibration of X-probes for Turbulent Flow Measurements, Experiments in Fluids,1989,7:201~208
    [114] Schroder T. Entwicklung des Instationaren Nachlsufa Hinter Quer Stromungsrichtung bewegen Zylindern, Technische Hochschule Darmstadt, 1985,45:849~854
    [115]王仁人,万金领,刘贵杰等,热膜风速仪X型探针的标定及其敏感性的试验研究,山东轻工业学院学报,1998,12(4):11~16
    [116]刘继东,李春利,李柏春等,新型立体传质塔板(CTST)的气相提升能力,现代化工,2002,22(增):104~107
    [117]刘继东,李春利,张凤宝等,立体传质塔板相对液体提升量的计算,高校化学工程学报,2007,21(1):163~167
    [118]陶文全,数值传热学,西安:西安交通大学出版社, 2001
    [119]周力行,湍流两相流动和燃烧的数值模拟,北京:清华大学出版社,1991
    [120] Brackbill J. U., Kothe D. B., Zemach C. A. Continuum method for modeling surface tension, Computational Physics, 1992, 100:335~354
    [121] Woerlee G. F., Berends J., Olujic Z., Acomprehensive model for the pressure drop in vertical pipes and packed columns, Chem. Eng. J. 2001, 84: 367~379
    [122] Monahan S. M., Vivek S., Fox, R. O., CFD Predictions for Flow-Regime Transitions in Bubble Columns, AIChE J., 2005, 51(7): 1897~1923
    [123] Lain S., Broder D., Sommerfeld M., et al., Modelling hydrodynamics and turbulence in a bubble column using the Euler-Lagrange procedure, International Journal of Multiphase Flow, 2002, 28(8): 1381~1407
    [124] Padial N. T., VanderHeyden, W. B., Rauenzahn, R. M., et al., Three dimensional simulation of a three-phase draft-tube bubble column, Chemical Engineering Science, 2000, 55:3261~3273
    [125] Delnoij E., Kuipers J. A. M., van Swaaij W. P. M., Computational fluid dynamics applied to gas–liquid contactors, Chemical Engineering Science, 1997, 52(21-22): 3623~3638
    [126] Delnoij E., Kuipers J. A. M., van Swaaij W. P. M., Dynamic simulation of gas–liquid two-phase flow: Effect of column aspect ratio on the flow structure, Chemical Engineering Science, 1997, 52(21-22): 3759~3772
    [127] Kuwagi K., Three-dimensional oscillation of bubbly flow in a vertical cylinder, International Journal of Multiphase Flow, 1999, 25(1): 175~182
    [128] Mudde R.F., Simonin O., Two- and three-dimensional simulations of a bubble plume using a two-fluid model, Chem. Eng. Sci., 1999, 54: 5061~5069
    [129] O'Rourke P. J., Collective Drop Effects on Vaporizing Liquid Sprays.PhD thesis, Princeton University, Princeton, New Jersey, 1981.SAE Technical Paper 872089, SAE, 1987
    [130] G. I. Taylor. The Shape and Acceleration of a Drop in a High Speed Air Stream. Technical report, In the Scientific Papers of G. I. Taylor, ed., G. K. Batchelor, 1963
    [131] H. Lamb. Hydrodynamics, Sixth Edition. Dover Publications, New York, 1945
    [132] Wallis, G. B. and Makkenchery, S., The hanging film phenomenon in vertical annular two-phase flow, J. Fluid, Report ANL/RAS/LWR/81-2, ANL, Argonne, I11, 1981
    [133] Walley, P.B. and Hewitt, G. F., The correlation of liquid entrainment fraction and entrainment rate in anular two-phase flow, Report AERE-R 9187, UKAEA, Harwell, Oxon, 1978
    [134] Sherwood.T.K, R.L.Pigford and C.R.Wicke, Mass tranfer, New York: McGra-Hill, 1975
    [135] Litt,M. and S.K.Fair dlander, AIChE J., 1959, 5(5):483~496
    [136] Geankoplis, C.J. Masstransport Phenomean, Ohio State University Bookstores, Columbus, Ohio, 1972
    [137] Brian, L.T. and H.B. Hales, AIChE J., 1969,15: 419~431
    [138] Levich, V. G. Physicochemical hydrodynamics, Prewtice-hall, N. J. 1962
    [139] Garner F.H. and R.D. Sucking, AIChE J., 1958,4:114~125
    [140] Steinberger W.L. and Treybal, R.E., AIChE, J. 1960,6: 227~236
    [141] Pinczewski, W.V. and S.Sideman, Chem. Eng. Sci., 1974, 29: 1969~1981
    [142] Gilliland, E. R. and T. K. Sherwood, Ind. Eng. Chem. 1934,26:516~525
    [143] Linton, W. H. and T. K. Sherwood, Chem. Eng. Prog. 1950,46:258~264
    [144] Maxwell J. C. Encyclopaedia brtiannica 9th edition. 1878, 7:214~221
    [145] Davis, E. J., Schweiger, G. The airborne microparticle, Berlin, Springer Press, 2002
    [146] Masters, K. Spray drying handbook. New York, Pitman Press, 1985
    [147] Acrivos, A. Taylor, T.D. Physical fluid, 1962, 5:387~396
    [148] Rimmer, P. L. Journal of Fluid Mechanism. 1968, 32:1~14
    [149] Rimmer, P. L. Journal of Fluid Mechanism. 1969, 35:827~835
    [150] Zhang S. H., Davis, E. J. Mass transfer from a single micro-droplet to a gas flowing at low Reynolds Number. Chemical Engineering Communication, 1987, 50:51~59
    [151] Kronig, R., Bruijsten, J. Applied Science Research, 1951, A2:439~448
    [152] Olander D. R.,The handlos baron drop extraction Model. AIChE Joural, 1966,43(1):14~32
    [153] Calderbank, P. H., M. B. Moo-Young. Chem. Eng. Sci. 1961, 16:39~52
    [154] Rowe P. N., Claxton K. T., Lewis J. B., Heat and mass transfer from a single sphere in an extensive flowing fluid. Trans. Inst. Chem. Eng., 1965, 43(1):14~32