贵州遵义松林镍-钼多金属矿区土壤及农作物钒健康风险评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Health risk assessment of V in the soils and crops around the Ni-Mo polymetallic mining area in Songlin,Zunyi,Guizhou
  • 作者:张迪 ; 周明忠 ; 熊康宁 ; 顾秉谦 ; 杨桦 ; 姚成斌
  • 英文作者:ZHANG Di;ZHOU Mingzhong;XIONG Kangning;GU Bingqian;YANG Hua;YAO Chengbin;School of Geographic and Environmental Sciences,Guizhou Normal University;Research Institute of Karst,Guizhou Normal University;
  • 关键词:镍-钼多金属矿区 ; 土壤污染 ; 农作物 ; 健康风险
  • 英文关键词:Ni-Mo polymetallic mining area;;soil pollution;;crop;;health risk assessment
  • 中文刊名:环境污染与防治
  • 英文刊名:Environmental Pollution & Control
  • 机构:贵州师范大学地理与环境科学学院;贵州师范大学喀斯特研究院;
  • 出版日期:2019-07-15
  • 出版单位:环境污染与防治
  • 年:2019
  • 期:07
  • 基金:国家“十三五”重点研发计划课题(No.2016YFC0502601);; 贵州省研究生教育创新计划项目(黔教研合GZS字[2016]04)
  • 语种:中文;
  • 页:85-91
  • 页数:7
  • CN:33-1084/X
  • ISSN:1001-3865
  • 分类号:X53;X820.4
摘要
为研究贵州遵义松林镍(Ni)-钼(Mo)多金属矿区土壤和农作物钒(V)污染情况,采集矿区旱地土、水稻土、森林土和农作物样品进行V含量分析,并分别采用地累积指数法和危险商法进行健康风险评价。结果表明:(1)矿区土壤V平均值为406mg/kg,分别为对照样品V(82mg/kg)和贵州土壤V背景值(139mg/kg)的4.95、2.92倍。其中,旱地土、水稻土和森林土V平均值分别为446、303、470mg/kg,均出现V富集现象。(2)矿区3种类型土壤V污染程度主要集中在轻度污染。水稻土和旱地土的危险商指数(HQ)均小于1,V造成健康风险的可能性较小。(3)6种农作物V为16.25~22.42mg/kg。水稻、玉米、甘薯、白菜和萝卜的HQ分别为13.25、1.44、1.40、6.36和2.57,表明长期食用这5类农作物可能会对人体产生一定的V健康风险,尤其以水稻和白菜的V健康风险最显著。
        To understand the contamination situation of V in soils and crops around the Ni-Mo polymetallic mining area in Songlin,Zunyi,Guizhou,concentration of V in soil and crop samples were analyzed.Meanwhile,pollution degree of V in the soils and the human health risk of V in the soils and crops were evaluated by the geoaccumulation index and hazard quotient,respectively.The results showed that:(1)the mean concentration of V in the soils was 406 mg/kg,which was 4.95 and 2.92 times of that in the comparison soil sample(82 mg/kg)and the V background value(139 mg/kg)of Guizhou.The high V contents were observed in both dry soil,paddy soil and forest soil with average concentration of 446,303 and 470 mg/kg,respectively.(2)Three different types of soil might have been polluted by V and the degree of contamination was light pollution.However,the human health risk evaluated by hazard quotient index(HQ)was less than 1,indicating that the health risk by intake of soils was less.(3)The concentrations of V in the crops(Chinese cabbage,radish,sweet potato,rice,pepper,maize)ranged from 16.25-22.42 mg/kg.At the same time,the evaluation results suggested that the HQ of rice,maize,sweet potato,radish,and Chinese cabbage were greater than 1,indicating a certain degree of health risk to human caused by long-term regular consumption of these crops,especially the rice and Chinese cabbage.
引文
[1]邹宝方,何增耀.钒的环境化学[J].环境污染与防治,1993,15(1).
    [2]刘德明.钒的生物学效应[J].化学教学,2001,15(10):24-25.
    [3]黄佩丽.糖尿病与钒[J].化学教育,1999,20(9):9-12.
    [4]滕彦国,张庆强,肖杰,等.攀枝花公园土壤中钒的地球化学形态及潜在生态风险[J].矿物岩石,2008,28(2):102-106.
    [5]RAWAL S B,SINGH M V,SALHAN A,et al.Influence of vanadium on acclimatization of humans to high altitude[J].International Journal of Biometeorology,1997,40(2):95-98.
    [6]KORBECKA J,BARANOWSKA B I,GUTOWSKA I,et al.Biochemical and medical importance of vanadium compounds[J].Acta Biochimica Polonica,2012,59(2):195-200.
    [7]曾昭华,廖苏平,曾雪萍.中国癌症与土壤环境中钒元素的关系[J].吉林地质,2002,21(3):93-98.
    [8]HINDY K T,ABDEL SHAFY H I,FARAG S A.The role of the cement industry in the contamination of air,water,soil and plant with vanadium in Cairo[J].Environmental Pollution,1990,66(3):195-205.
    [9]GUMMOW B,KIRSTEN W F,GUMMOW R J,et al.A stochastic exposure assessment model to estimate vanadium intake by beef cattle used as sentinels for the South African vanadium mining industry[J].Preventive Veterinary Medicine,2006,76(3):167-184.
    [10]滕彦国,矫旭东,左锐,等.攀枝花矿区表层土壤中钒的环境地球化学研究[J].吉林大学学报(地球科学版),2007,37(2):278-283.
    [11]杨淼.典型石煤提钒区和蔬菜基地土壤钒污染特征及基准值研究[D].长沙:中南大学,2012.
    [12]YANG J,TANG Y,YANG K,et al.Leaching characteristics of vanadium in mine tailings and soils near a vanadium titanomagnetite mining site[J].Journal of Hazardous Materials,2014,264(2):498-504.
    [13]杨金燕,唐亚,李廷强,等.我国钒资源现状及土壤中钒的生物效应[J].土壤通报,2010,41(6):1511-1517.
    [14]罗泰义,张欢,李晓彪,等.遵义牛蹄塘组黑色岩系中多元素富集层的主要矿化特征[J].矿物学报,2003,23(4).
    [15]周明忠,罗泰义,李正祥,等.遵义牛蹄塘组底部凝灰岩锆石SHRIMP U-Pb年龄及其地质意义[J].科学通报,2008,53(1):104-110.
    [16]MULLER G.Index of geoaccumulation in sediments of the Rhine River[J].GeoJournal,1969,2(3):109-118.
    [17]刘勇,岳玲玲,李晋昌.太原市土壤重金属污染及其潜在生态风险评价[J].环境科学学报,2011,31(6):1285-1293.
    [18]赵杰,罗志军,赵越,等.环鄱阳湖区农田土壤重金属空间分布及污染评价[J].环境科学学报,2018,38(6):2475-2485.
    [19]KRISHNA A K,MOHAN K R,MURTHY N N,et al.Assessment of heavy metal contamination in soils around chromite mining areas,Nuggihalli,Karnataka,India[J].Environmental Earth Sciences,2013,70(2):699-708.
    [20]范拴喜.宝鸡市长青镇冶炼厂周边居住区土壤重金属污染特征与风险评估[J].环境污染与防治,2015,37(9):46-54.
    [21]中国环境监测总站.中国土壤元素背景值[M].北京:中国环境科学出版社,1990.
    [22]FORSTNER U,MULLER G.Concentrations of heavy metals and polycyclic aromatic hydrocarbons in river sediments:geochemical background,man’s influence and environmental impact[J].GeoJournal,1981,5(5):417-432.
    [23]GAY J R,KORRE A.A spatially-evaluated methodology for assessing risk to a population from contaminated land[J].Environmental Pollution,2006,142(2):227-234.
    [24]USEPA.Supplemental guidance for developing soil screening levels for superfund sites,peer review draft[R].Washington,D.C.:USEPA Office of Solid Waste and Emergency Response,2001.
    [25]USEPA.Exposure factors handbook[R].Washington,D.C.:USEPA RegionⅠ,1997.
    [26]WANG L D.Report on the nutrition and health of Chinese:2002comprehensive report[R].Beijing:People’s Medical Publishing House,2004.
    [27]卫生部.中国居民营养与健康现状[R].北京:卫生部,2004.
    [28]YANG J,TENG Y,WU J,et al.Current status and associated human health risk of vanadium in soil in China[J].Chemosphere,2017,171(3):635-643.
    [29]TENG Y G,YANG J,SUN Z J,et al.Environmental vanadium distribution,mobility and bioaccumulation in different land-use districts in Panzhihua Region,SW China[J].Environmental Monitoring&Assessment,2011,176(1/2/3/4):605-620.
    [30]TUTTLE M L W,BREIT G N,GOLDHABER M B,et al.Weathering of the New Albany Shale,Kentucky:Ⅱ.Redistribution of minor and trace elements[J].Applied Geochemistry,2009,24(8):1565-1578.
    [31]PENG B,SONG Z L,TU X L,et al.Release of heavy metals during weathering of the Lower Cambrian black shales in Western Hunan,China[J].Environmental Geology,2004,45(8):1137-1147.
    [32]FANG W X,WU P W,HUANG Z Y.Influence of black shales on soils and edible plants in the Ankang area,Shaanxi Province,P.R.of China[J].Environmental Geochemistry and Health,2002,24(1):35-46.
    [33]Canadian Council of Ministers of the Environment.Canadian soil quality guidelines for the protection of environmental and human health[M].Ottawa:Canadian Council of Ministers of the Environment,1999.
    [34]Ministry of Housing.Spatial planning and the environment[M].Amsterdam:Ministry of Housing,1999.
    [35]戴彬,吕建树,战金成,等.山东省典型工业城市土壤重金属来源、空间分布及潜在生态风险评价[J].环境科学,2015,36(2):507-515.
    [36]CHABUKDHARA M,NEMA A K.Heavy metals assessment in urban soil around industrial clusters in Ghaziabad,India:probabilistic health risk approach[J].Ecotoxicology&Environmental Safety,2013,87(1):57-64.
    [37]金昭贵,周明忠.遵义松林Ni-Mo矿区耕地土壤铊污染及潜在生态风险初步评价[J].地球与环境,2013,41(3):274-280.
    [38]金昭贵,周明忠.遵义松林Ni-Mo矿区耕地土壤的镉砷污染及潜在生态风险评价[J].农业环境科学学报,2012,31(12):2367-2373.
    [39]侯明,黄以峰,何剑亮,等.蔬菜根际环境钒的形态变化及植物有效性[J].农业环境科学学报,2009,28(7):1353-1357.
    [40]侯明,陈国勇,梁福晓,等.钒胁迫对水稻幼苗生理生化和富集特性的影响[J].生态环境学报,2014,23(10):1657-1663.