海湾与变水深细长港的耦合振荡研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:RESEARCH ON COUPLED OSCILLATION BETWEEN BAY AND SLENDER HARBOR WITH VARIABLE WATER DEPTH
  • 作者:郑振钧 ; 马小舟 ; 董雨进 ; 董国海
  • 英文作者:ZHENG Zhen-jun;MA Xiao-zhou;DONG Yu-jin;DONG Guo-hai;The State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology;
  • 关键词:海岸工程 ; 港湾振荡 ; 耦合港池 ; 辐射阻尼 ; 拓展型缓坡方程
  • 英文关键词:coastal engineering;;harbor oscillation;;coupled basins;;radiation damping;;extended mild-slope equation
  • 中文刊名:工程力学
  • 英文刊名:Engineering Mechanics
  • 机构:大连理工大学海岸和近海工程国家重点实验室;
  • 出版日期:2019-09-25
  • 出版单位:工程力学
  • 年:2019
  • 期:09
  • 基金:国家重点研发计划项目(2017YFC1404205);; 中央高校基本科研业务费项目(DUT18ZD214)
  • 语种:中文;
  • 页:230-238
  • 页数:9
  • CN:11-2595/O3
  • ISSN:1000-4750
  • 分类号:P753
摘要
采用拓展型缓坡方程有限元模型模拟了变水深细长港和半圆形常水深海湾联结而成的耦合港池的港湾振荡现象。数值模拟结果表明,半圆形海湾的存在改变了入射波况和细长港的辐射阻尼,从而影响了细长港的共振特性。相关性分析表明,当海湾与细长港水体体积之比远大于2.5时,海湾在耦合振荡中占主导地位,联结处和细长港的响应曲线在强度和变化趋势上都有明显的正相关关系。反之,细长港和海湾在耦合振荡中处于平等地位,响应曲线之间只在强度上表现出正相关关系。
        The finite-element model of extended mild-slope equation is used to simulate the oscillation between a semi-circular bay and a slender harbor with variable water depth. A numerical model test shows that incident waves and the radiation damping of the narrow-long harbor are changed due to the bay which influences the resonant features of the harbor. Correlation analysis shows that the bay plays a leading role in the coupled resonance if the ratio of water volume between the bay and the harbor is much higher than 2.5, resulting in a positive correlation between the amplification diagrams of junction and harbor in intensity and trend. Conversely, bay and harbor hold equal status in a coupled oscillation, leading to a positive correlation only in intensity.
引文
[1]王岗,高俊亮,王培涛,等.港湾共振研究综述[J].海洋学报, 2017, 39(11):1―13.Wang Gang, Gao Junliang, Wang Peitao, et al. Review on harbor resonance[J]. Acta Oceanologics Sinica, 2017,39(11):1―13.(in Chinese)
    [2] Wang G, Dong G, Perlin M, et al. An analytic investigation of oscillations within a harbor of constant slope[J]. Ocean Engineering, 2011, 38(2):479―486.
    [3]郑金海,徐龙辉,王岗.斜坡底床港湾内横向与纵向波浪共振的解析解[J].工程力学, 2013, 30(5):293―297.Zheng Jinhai, Xu Longhui, Wang Gang. Theoretical analysis of transverse and longitudinal oscillations within a harbor of constant slope[J]. Engineering Mechanics,2013, 30(5):293―297.(in Chinese)
    [4]王岗,郑金海,徐龙辉,等.椭圆形港湾内水波共振的解析解[J].工程力学, 2014, 31(4):252―256.Wang Gang, Zheng Jinhai, Xu Longhui, et al. An analytical solution for oscillations within an elliptical harbor[J]. Engineering Mechanics, 2014, 31(4):252―256.(in Chinese)
    [5] Lee J J, Raichlen F. Wave induced oscillations in harbors of arbitrary shape[R]. California:California Institute of Technology, 1969.
    [6] Yu X, Togashi H. Oscillations in a coupled bar-river system. 2. Numerical method[J]. Coastal Engineering,1996, 28(1―4):165―182.
    [7] Kumar, P, Rupali. Modeling of shallow water waves with variable bathymetry in an irregular domain by using hybrid finite element method[J]. Ocean Engineering,2018, 165:386―398.
    [8] Losada I J, Gonzalez-Ondina J M, Diaz-Hernandez G,et al. Numerical modeling of nonlinear resonance of semi-enclosed water bodies:Description and experimental validation[J]. Coastal Engineering, 2008,55(1):21―4.
    [9]马小舟,刘嫔,王岗,等.孤立波作用下细长港响应的数值研究[J].计算力学学报, 2013, 30(1):101―105.MA Xiaozhou, Liu Pin, Wang Gang, et al. Numerical study on the response of a narrow-long harbor to a solitary wave[J]. Chinese Journal of Computational Mechanics, 2013, 30(1):101―105.(in Chinese)
    [10]史宏达,徐国栋,孙龙龙.矩形港池的港内共振研究[J].海岸工程, 2011, 30(2):14―21.Shi Hongda, Xu Guodong, Sun Longlong. Study on resonance in a rectangular harbor basin[J]. Coastal Engineering, 2011, 30(2):14―21.(in Chinese)
    [11]王岗,马小舟,马玉祥,等.短波对港池长周期振荡的影响[J].工程力学, 2010, 27(4):240―245.Wang Gang, Ma Xiaozhou, Ma Yuxiang, et al.Long-period harbor resonance induced by short waves[J]. Engineering Mechanics, 2010, 27(4):240―245.(in Chinese)
    [12]高俊亮,马小舟,王岗,等.波群诱发的非线性港湾振荡中低频波浪的数值研究[J].工程力学, 2013, 30(2):50―57.Gao Junliang, Ma Xiaozhou, Wang Gang, et al.Numerical study on low-frequency waves in nonlinear harbor resonance induced by wave groups[J].Engineering Mechanics, 2013, 30(2):50―57.(in Chinese)
    [13]高俊亮,马小舟,董国海,等.港湾振荡下港内低频波浪的数值研究[J].工程力学, 2016, 33(7):159―166.Gao Junliang, Ma Xiaozhou, Dong Guohai, et al.Numerical study on low-frequency waves inside the harbor during harbor oscillations[J]. Engineering Mechanics, 2016, 33(7):159―166.(in Chinese)
    [14]马小舟,马玉祥,朱小伟,等.波浪在潜堤上传播的非线性参数分析[J].工程力学, 2016, 33(9):235―241.Ma Xiaozhou, Ma Yuxiang, Zhu Xiaowei, et al. Analysis of wave nonlinear parameters for waves transformation over a submerged bar[J]. Engineering Mechanics, 2016,33(9):235―241.(in Chinese)
    [15] Gao J, Zhou X, Zang J, et al. Influence of offshore fringing reefs on infragravity period oscillations within a harbor[J]. Ocean Engineering, 2018, 158:286―298.
    [16] Gao J, Zhou X, Zhou L, et al. Numerical investigation on effects of fringing reefs on low-frequency oscillations within a harbor[J]. Ocean Engineering, 2019, 172:86―95.
    [17] Lee J J, Raichlen F. Wave induced oscillations in harbors with two connected basins[R]. California:California Institute of Technology, 1971.
    [18] Bellotti G. Transient response of harbours to long waves under resonance conditions[J]. Coastal Engineering,2007, 54(9):680―693.
    [19] Chandrasekera C N, Cheung K F. Extended linear refraction-diffraction model[J]. Journal of Waterway Port Coastal&Ocean Engineering, 1997, 125(3):280―286.
    [20] Berkhoff J C W. Computation of combined refractiondiffraction[M]. Holland:Delft Hydraulics Laboratory,1974.
    [21] Mei C C, Stiassnie M, Yue D K P. Theory and applications of ocean surface waves[M]. Singapore:World Scientific Publishing Co. Pte. Ltd., 2005:201―275.
    [22] Miles J, Munk W. Harbor paradox[J]. Journal of the Waterway and Harbor Division, 1961, 87(3):111―130.