视觉模型中的抑制突触可塑性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Theoretical study of inhibitory synaptic plasticity in visual cortex
  • 作者:张燕 ; 王世红
  • 英文作者:Zhang Yan;Wang Shihong;School of Sciences,Beijing University of Posts & Telecommunications;
  • 关键词:脉冲时序相关可塑性 ; 前馈网络 ; 抑制性突触可塑性 ; 赫布学习 ; 反赫布学习
  • 英文关键词:STDP;;feedforword network;;inhibitory synaptic plasticity;;Hebbian learning;;anti-Hebbian learning
  • 中文刊名:JSYJ
  • 英文刊名:Application Research of Computers
  • 机构:北京邮电大学理学院;
  • 出版日期:2016-05-09 14:32
  • 出版单位:计算机应用研究
  • 年:2017
  • 期:v.34;No.304
  • 语种:中文;
  • 页:JSYJ201702033
  • 页数:4
  • CN:02
  • ISSN:51-1196/TP
  • 分类号:149-152
摘要
研究了神经元抑制性突触的可塑性和在视觉模型中的作用。在一个三层前馈视觉模型中,除了考虑兴奋性突触的可塑性外,将抑制性突触的可塑性加入到模型中。比较了赫布学习和反赫布学习窗口,发现抑制性突触在反赫布学习窗口下符合视觉系统的生物特性;并进一步研究了抑制性突触可塑性对眼优势可塑性的影响,发现抑制性突触权重在可塑性学习下增大,是导致眼优势关键期关闭重要的原因。研究结果一方面有助于更好地理解脑视觉神经网络的可塑性;另一方面对于治疗斜视、弱视等视觉疾病提供理论依据。
        This paper researched the inhibitory synaptic plasticity and its effect on the visual cortex was meaningful. In a three layer feedforward model,it considered both the plasticity of excitatory and inhibitory synaptic. In this model,it investigated Hebbian and anti-Hebbian learning windows for inhibitory synaptic plasticity. The results show that the anti-Hebbian learning is in line with the biological characteristic,but Hebbian learning isn't. Further,it investigated the effect of inhibitory synaptic plasticity on the critical period for ocular dominance. The results show that increasing inhibitory synaptic weights mainly results in closure of the critical period of ocular dominance. On the one hand,the results are helpful to understand the plasticity of brain visual neural network,on the other hand,it provides a theoretical basis for the treatment of strabismus,amblyopia and other visual diseases.
引文
[1]Kleberg F I,Fukai T,Gilson M.Excitatory and inhibitory STDP jointly tune feedforward neural circuits to selectively propagate correlated spiking activity[J].Frontiers in Computational Neuroscience,2014,8(4):53.
    [2]Song Sen,Miller K D,Abbott L F.Competitive Hebbian learning through spike-timing-dependent synaptic plasticity[J].Nature Neuroscience,2000,3(9):919-926.
    [3]Song Sen,Abbott L F.Cortical development and remapping through spike timing-dependent plasticity.[J].Neuron,2001,32(2):339-350.
    [4]Matthieu G,Tomoki F.Stability versus neuronal specialization for STDP:long-tail weight distributions solve the dilemma[J].Plos One,2011,6(10):3035-3037.
    [5]Izhikevich E M,Gally J A,Edelman G M.Spike-timing dynamics of neuronal groups[J].Cerebral Cortex,2004,14(8):933-944.
    [6]Sakurai I,Kubota S,Niwano M.The onset and closure of critical period plasticity regulated by feedforward inhibition[J].Neurocomputing,2014,143(16):261-268.
    [7]Sakurai I,Kubota S,Niwano M.A model for ocular dominance plasticity controlled by feedforward and feedback inhibition[J].IEICE Trans on Fundamentals of Electronics Communications&Computer Sciences,2014,97(8):1780-1786.
    [8]Bear M F,Connors B W,Paradiso M A.Neuroscience:exploring the brain[M].Baltimore:Lippincott Williams&Wilkins,2007.
    [9]Michael O,Ilan L.Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities[J].Nature Neuroscience,2008,11(5):535-537.
    [10]黄旭辉.可塑性神经网络中的学习与记忆以及自组织相变的斑图动力学[D].北京:北京师范大学,2014.
    [11]Izhikevich E M.Polychronization:computation with spikes[J].Neural Computation,2006,18(2):245-282.
    [12]Kodangattil J N,Matthieu D,Authement M E,et al.Spike timingdependent plasticity at GABAergic synapses in the ventral tegmental area[J].Journal of Physiology,2013,591(19):4699-4710.
    [13]Levelt C N,Hübener M.Critical-period plasticity in the visual cortex[J].Annual Review of Neuroscience,2012,35:309-330.
    [14]Maffei A,Turrigiano G.The age of plasticity:developmental regulation of synaptic plasticity in neocortical microcircuits[J].Progress in Brain Research,2008,169(1):