基于AMESim与ADAMS联合建模的轧机厚控系统仿真
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Co-Simulationof Strip Rolling mill Gauge Control System Based on AMESim and ADAMS
  • 作者:董敏 ; 马昌飞 ; 杨利辉 ; 王立科
  • 英文作者:DONG Min;MA Changfei;YANG Lihui;WANG Like;College of Mechanical Engineering,Yanshan University;Chengdu Textile College;
  • 关键词:AMESim ; ADAMS ; 联合仿真 ; 轧机厚控系统
  • 英文关键词:AMESim;;ADAMS;;Co-simulation;;Gauge control system
  • 中文刊名:JCYY
  • 英文刊名:Machine Tool & Hydraulics
  • 机构:燕山大学机械工程学院;成都纺织高等专科学校;
  • 出版日期:2017-03-15
  • 出版单位:机床与液压
  • 年:2017
  • 期:v.45;No.431
  • 基金:河北省自然科学基金-钢铁联合研究基金资助项目(E2012203110)
  • 语种:中文;
  • 页:JCYY201705030
  • 页数:6
  • CN:05
  • ISSN:44-1259/TH
  • 分类号:71+130-134
摘要
为了全面研究轧机液压厚控系统动态特性,建立直观真实的虚拟轧机模型,提出基于AMESimADAMS联合建模的仿真方法。在ADAMS中构造轧机实体刚柔耦合动力学模型,实现了轧机的负载特性研究;在AMESim中建立液压系统物理模型,实现了液压伺服系统精确建模和分析,两者通过接口实现数据交换,保证了液压系统模拟的准确性和负载系统模拟的真实性。通过联合仿真模型得到了系统实时响应以及出口板厚实时数据,将模型仿真输出数据与实测数据进行比较,证明仿真模型能准确体现系统动态响应,并能体现机械部件在载荷下弹性变形和板厚实时输出情况。
        In order to research the dynamic property of rolling mill gauge control system in the round,a visible accurate rolling mill model was established,the co-simulation method was proposed based on AMESim and ADAMS joint modeling. The rolling mill entity flexible coupling dynamics model was constructed in ADAMS,which achieved the study of rolling mill load characteristics. The physical model of the hydraulic system was established in AMESim,which achieved a precise modeling and analysis to hydraulic servo system. Both of them implemented data exchange through the interfaces,which ensured the accuracy simulation of the hydraulic system and the authenticity of load system simulation. The system real-time dynamic response and real-time data export thickness were obtained through the co-simulation model. By comparing the simulation output data with measured data,it can be concluded that the model can simulate the dynamic response accurately and can reflect the elastic deformation of mechanical components under heavy loads and the thickness of outlet strip.
引文
[1]丁修堃.高精度板带钢厚度控制的理论与实践[M].北京:冶金工业出版社,2009.
    [2]张伟,袁丛林,刘广阔.电池极片轧机液压压下系统的建模仿真与实验研究[J].中国机械工程,2014,25(24):3257-3270.ZHANG Wei,YUAN Conglin,LIU Guangkuo.Modeling,Simulation and Experimental Research of Hydraulic Pressure System in Battery Pole Piece Rolling Mill[J].China Mechanical Engineering,2014,25(24):3257-3270.
    [3]董敏,周彬.板带轧机厚控系统三自由度建模与故障模拟[J].钢铁,2013,48(1):46-49.DONG Min,ZHOU Bin.Modeling of Three Freedom Degrees and Failure Simulation of Strip Mill Gauge Control System[J].Iron&Steel,2013,48(1):46-49.
    [4]KWAK J,CHUN T,SHIN S,et al.Domain Decomposition Approach to Flexible Multibody Dynamics Simulation[J].Computational Mechanics,2014,53(1):147-158.
    [5]LIN H,SONG C.Simulation of Hydraulic Anti-lock Braking System Control Based on a Co-simulation Model by AMESim and Simulink[C]//Transportation,Mechanical,and Electrical Engineering,International Conference on,2011,20(3):775-778.
    [6]ANDREAS Kugi,KURT Schlacher,RAINEr Novak.Nonlinear Control in Rolling Mills:A New Perspective[J].IEEE Transactions on Industry Application,2001,37(5):1394-1402.
    [7]王国栋,刘相华,王军生.冷连轧计算机过程控制系统[J].轧钢,2003,20(2):41-44.WANG Guo,LIU Xianghua,WANG Junsheng.Computer Process Control System for Tandem Cold Rolling[J].Steel Rolling,2003,20(2):41-44.
    [8]陈家焱,庄文玮,陈章位.液压AGC电液伺服系统在线状态监测与故障诊断系统的研究[J].液压与气动,2008(8):27-29.CHEN Jiayan,ZHUANG Wenwei,CHEN Zhangwei.Research on the Online State Monitoring and Failure Diagnosis System of the Hydraulic AGC Electro-hydraulic Servo System[J].Chinese Hydraulics&Pneumatics,2008(8):27-29.
    [9]曹建国,张杰,陈先霖,等.热轧带钢板形板厚综合控制系统的耦合关系[J].北京科技大学学报,2000,22(6):551-554.CAO Jianguo,ZHANG Jie,CHEN Xianlin,et al.Application of the Relative Gain Matrix to Combined Shape and Gauge Control System of Hot Strip Mills[J].Journal of University of Science and Technology Beijing,2000,22(6):551-554.
    [10]孙静娜,薛涛,杜凤山,等.基于刚度特性分析的UCM冷轧机板形板厚综合设定模型[J].钢铁,2014,49(8):64-67.SUN Jingna,XUE Tao,DU Fengshan,et al.Strip Shape and Gauge Integrated Set Model of UCM Cold Mill Based on Rigidity Characteristics Analysis[J].Iron&Steel,2014,49(8):64-67.
    [11]MRZ L,VALEK M.Solution of Three Key Problems for Massive Parallelization of Multibody Dynamics[J].Multibody System Dynamics,2013,29(1):21-39.