发动机ECU支架振动疲劳分析及其优化设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Vibration Fatigue Analysis and Optimal Design of Engine ECU Bracket
  • 作者:钟自锋 ; 徐国权 ; 聂鹏
  • 英文作者:ZHONG Zifeng;XU Guoquan;NIE Peng;School of Transportation and Logistics,East China Jiaotong University;
  • 关键词:ECU支架 ; 频响分析 ; 振动疲劳 ; 优化
  • 英文关键词:ECU bracket;;frequency response analysis;;vibration fatigue;;optimization
  • 中文刊名:JSYY
  • 英文刊名:Machine Design & Research
  • 机构:华东交通大学交通运输与物流学院;
  • 出版日期:2018-06-20
  • 出版单位:机械设计与研究
  • 年:2018
  • 期:v.34;No.175
  • 基金:江苏省教育厅科学技术研究项目(GJJ170388)
  • 语种:中文;
  • 页:JSYY201803027
  • 页数:4
  • CN:03
  • ISSN:31-1382/TH
  • 分类号:108-110+115
摘要
为了解决某发动机ECU支架开裂失效问题,首先采集ECU与车架端的实车加速度,并且将其时域信号转换为频域信号。然后基于有限元方法建立ECU支架分析模型,对其进行频率响应分析,分析结果表明其最大应力值超过其材料屈服强度。再基于Miner线性累积损伤理论和功率谱密度函数对其进行振动疲劳分析,分析结果表明其最小寿命为低于设计要求值,与实际失效位置相吻合。最后基于Isight集成优化平台并且采用多岛遗传算法对ECU支架进行优化设计,得到了其最佳的设计参数,优化之后其最大应力值和疲劳寿命均能够满足设计要求,并且其优化方案通过了路试验证,成功解决了该故障问题。
        Aiming at of solving the cracking failure problem of an engine ECU bracket. Firstly,the acceleration of the ECU and the frame were collected,and the time domain signal was converted to the frequency domain signal.Secondly,the ECU bracket analysis model was established by adopting finite elements method,the frequency response analysised results showed that the maximum stress value exceeded the yield strength of the material. And then the ECU bracket was vibration fatigue analysised based on Miner linear cumulative damage theory and power spectral density function,the analysised result showed that the minimum life was lower than the design requirement,and it was consistent with the actual failure position. Lastly,the ECU bracket was optimal designed by adopting Isight integrated optimization platform and multi-island genetic algorithm,and the optimum design parameters were obtained. The maximum stress and fatigue life could meet design requirements,and the optimization scheme had passe the road test certificate,so the fault problem was successfully solved.
引文
[1]余淼,刘胜龙,朱李晰,等.汽车发动机ECU的可靠性试验研究[J].内燃机工程,2010,31(3):90-94.
    [2]彭浪,沈健,侯路,等.车用发动机ECU安装设计振动匹配研究[J].汽车工程学报,2013,3(4):305-312.
    [3]李乐新,沈智达,雷济平.安全气囊ECU支架的频响分析及模态优化[J].机械设计与制造,2012(4):273-275.
    [4]王会.汽车发动机EECU安装支架总成的设计与开发[J].制造业自动化,2012,34(16):142-145.
    [5]徐忠诚,刘观青,刘亮.ESP支架频率响应分析及优化设计[J].上海汽车,2016(8):30-33.
    [6]李嘉通.某车型空调压缩机支架NVH性能分析与优化[D].柳州:广西科技大学,2015.
    [7]张猛,陈剑,陈勇敢.基于频率响应灵敏度的车身结构的优化设计[J].噪声与振动控制,2011,32(6):135-138.
    [8]王宇.某轿车车身NVH性能分析与研究[D].合肥:合肥工业大学,2016.
    [9]张恩来,侯亮,蔡惠坤.基于Hypermesh的液压破碎锤工作装置模态分析[J].中国工程机械学报,2015,13(5):422-428.
    [10]郜慧超.某重型载货汽车车架的疲劳分析及优化[D].北京:北京理工大学,2016.
    [11]汪洋.基于模态频率响应的某重型车驾驶室疲劳寿命研究[D].合肥:合肥工业大学,2017.
    [12]卢黎明,余云云,曾国文.基于n Code Design Life的滚滑轴承疲劳寿命比较分析[J].机械传动,2017(3):114-119.
    [13]丁智平,王卫峰,贺才春,等.基于Isight的橡胶动力吸振器参数化优化[J].机械设计与研究,2016(6):126-129.
    [14]李明,刘斌,张亮.高速列车头型气动外形关键结构参数优化设计[J].机械工程学报,2016,52(20):120-125.