抑制性STDP突触机制对皮层网络的调节
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The regulation of inhibitory STDP to the cortial neural circuits
  • 作者:周茜 ; 杨秋 ; 徐桂芝
  • 英文作者:ZHOU Qian;YANG Qiu;XU Guizhi;State Key Laboratory of Reliability and Intelligence of Electrical Equipment,Hebei University of Technology;Department of Biomedical Engineering,Hebei University of Technology;
  • 关键词:STDP突触机制 ; 兴奋性突触可塑性 ; 抑制性突触可塑性 ; 皮层网络
  • 英文关键词:spike-timing-dependent-plasticity(STDP);;excitatory synaptic plasticity;;inhibitory synaptic plasticity;;cortical network
  • 中文刊名:ZKZX
  • 英文刊名:China Sciencepaper
  • 机构:河北工业大学省部共建电工装备可靠性与智能化国家重点实验室;河北工业大学生物医学工程系;
  • 出版日期:2018-04-23
  • 出版单位:中国科技论文
  • 年:2018
  • 期:v.13
  • 基金:国家自然科学基金资助项目(61305077)
  • 语种:中文;
  • 页:ZKZX201808012
  • 页数:7
  • CN:08
  • ISSN:10-1033/N
  • 分类号:71-77
摘要
为研究抑制性突触的脉冲时间依赖可塑性(spike-timing-dependent-plasticity,STDP)突触机制对大脑皮层网络的调节作用,构建了脑皮层神经网络的局部回路模型。通过模型观察到,在兴奋性与抑制性突触的共同作用下,不同类型突触连接的平均强度均维持稳定,保证了皮层网络自身的平稳放电;随着抑制性STDP突触规则学习率的增大,网络中神经元集群的平均放电率和同步指数均增大,兴奋性突触的整体强度减弱,抑制性突触的整体强度增强;揭示了皮层网络中兴奋性与抑制性的调节过程,有助于认识抑制性突触可塑性在皮层网络功能机制中的重要作用。
        To study the regulation of inhibitory spike-timing-dependent-plasticity(STDP)on the cortical neural network,a model of local cortical neural circuits is constructed in this paper,which consists of excitatory pyramid neurons and inhibitory interneurons for the research of the impact between the inhibitory synaptic plasticity and excitatory synaptic plasticity.It is found that under the joint regulation of excitatory and inhibitory STDP,the average strengths of different synaptic connections keep stable,which contributes to the stable firing state of the local cortical neural circuits.With the increasing of inhibitory STDP learning rate,the firing rates of both excitatory and inhibitory neuron groups are increased and their synchronization is enhanced.Moreover,the average strength of all the excitatory synapses is decreased,while that of the inhibitory synapses is increased.The regulation of the synaptic weights shows the balance between excitation and inhibition in the cortical network.The results will help to recognize the importance of inhibitory synaptic plasticity in the function of cortical neural networks.
引文
[1]HU H,GAN J,JONAS P.Fast-spiking,parvalbumin+GABAergic interneurons:from cellular design to microcircuit function[J].Science,2014,345(6196):1255263.
    [2]SPORNS O.Contributions and challenges for network models in cognitive neuroscience[J].Nature Neuroscience,2014,17(5):652-660.
    [3]GILSON M,BURKITT A,van HEMMEN J L.STDPin recurrent neuronal networks[J].Frontiers in Computational Neuroscience,2010,4(1):231-236.
    [4]GERSTNER W,KEMPTER R,van HEMMEN J L,et al.A neuronal learning rule for sub-millisecond temporal coding[J].Nature,1996,383(6595):76-81.
    [5]KEMPTER R,GERSTNER W,van HEMMEN J L.Hebbian learning and spiking neurons[J].Physical Review E,1999,59(4):4498-4514.
    [6]VOLGUSHEV M,CHEN J Y,ILIN V,et al.Partial breakdown of input specificity of STDP at individual synapses promotes new learning[J].Journal of Neuroscience,2016,36(34):8842-8855.
    [7]GILSON M,BURKITT A N,GRAYDEN D B,et al.Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks I:input selectivity-strengthening correlated input pathways[J].Biological Cybernetics,2009,101(2):81-102.
    [8]GILSON M,BURKITT A N,GRAYDEN,D B et al.Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networksII:Input selectivity-symmetry breaking[J].Biological Cybernetics,2009,101(2):103-114.
    [9]GILSON M,BURKITT A N,GRAYDEN D B,et al.Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networksIII:partially connected neurons driven by spontaneous activity[J].Biological Cybernetics,2009,101(5):411-426.
    [10]GILSON M,BURKITT A N,GRAYDEN D B,et al.Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks V:self-organization schemes and weight dependence[J].Biological Cybernetics,2010,103(5):365-386.
    [11]SADEH S,CLOPATH C,ROTTER S.Emergence of functional specificity in balanced networks with synaptic plasticity[J].Plos Computational Biology,2015,11(6):e1004307(1-27).
    [12]van ROSSUM M C W,BI G Q,TURRIGIANO G G.Stable Hebbian learning from spike timing-dependent plasticity[J].Neuroscience,2000,20(23):8812-8821.
    [13]GUTIG R,AHARONOV R,ROTTER S,et al.Learning input correlations through nonlinear temporally asymmetric Hebbian plasticity[J].Neuroscience,2003,23(9):3697-3714.
    [14]SONG S,ABBOTT L F.Cortical development and remapping through spike timing-dependent plasticity[J].Neuron,2001,32(2):339-350.
    [15]MEFFIN H,BESSON J,BURKITT A N,et al.Learning the structure of correlated synaptic subgroups using stable and competitive spike-timing-dependent plasticity[J].Physics Review E,2006,73(4):041911(1-14).
    [16]SAKURAI I,KUBOTA S,NIWANO M.The onset and closure of critical period plasticity regulated by feedforward inhibition[J].Neurocomputing,2014,143(16):261-268.
    [17]夏小飞,王俊松.基于分岔理论的突触可塑性对神经群动力学特性调控规律研究[J].物理学报,2014,63(14):84-93.XIA Xiaofei,WANG Junsong.Influence of synaptic plasticity on dynamics of neural mass model:a bifurcation study[J].Acta Physica Sinica,2014,63(14):84-93.(in Chinese)
    [18]LUZ Y,SHAMIR M.Balancing feed-forward excitation and inhibition via Hebbian inhibitory synaptic plasticity[J].Plos Computational Biology,2012,8(1):e1002334(1-12).
    [19]KLEBERG F I,FUKAI T,GILSON M.Excitatory and inhibitory STDP jointly tune feedforward neural circuits to selectively propagate correlated spiking activity[J].Frontiers in Computational Neuroscience,2014,8(4):53(1-15).
    [20]VOGELS T P,SPREKELER H,ZENKE F,et al.Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks[J].Science,2011,334(6062):1569-1573.
    [21]王美丽,王俊松.基于抑制性突触可塑性的反馈神经回路兴奋性与抑制性动态平衡[J].物理学报,2015,64(10):416-423.WANG Meili,WANG Junsong.Dynamical balance between excitation and inhibition of feedback neural circuit via inhibitory synaptic plasticity[J].Acta Physica Sinica,2015,64(10):416-423.(in Chinese)
    [22]BOURJAILY M A,MILLER P.Synaptic plasticity and connectivity requirements to produce stimulus-pair specific responses in recurrent networks of spiking neurons[J].Plos Computational Biology,2011,7(2):e1001091(1-18).
    [23]HAAS J S,NOWOTNY T,ABARBANEL H D.Spike-timing-dependent plasticity of inhibitory synapses in the entorhinal cortex[J].Journal of Neurophysiology,2006,96(6):3305-3313.
    [24]IZHIKEVICH E M.Simple model of spiking neurons[J].IEEE Transactions on Neural Networks,2003,14(6):1569-1572.
    [25]EFFENBERGER F,JOST J,LEVINA A.Self-organization in balanced state networks by STDP and homeostatic plasticity[J].Plos Computational Biology,2015,11(9):e1004420(1-30).
    [26]IZHIKEVICH E M.Polychronization:computation with spikes[M].Cambridge:MIT Press,2006:34.
    [27]SONG S,MILLER K D,ABBOTT L F.Competitive Hebbian learning through spike-timing-dependent synaptic plasticity[J].Nature Neuroscience,2000,3(9):919-926.