高贝利特硫铝酸盐水泥基泡沫混凝土的物理性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Physical Properties of High-Belite Sulphoaluminate Cement-based Foamed Concrete
  • 作者:刘超 ; 罗健林 ; 李秋义
  • 英文作者:LIU Chao;LUO Jian-lin;LI Qiu-yi;School of Civil Engineering,Qingdao University of Technology;Collaborative Innovation Center of Engineering Construction and Safety in Shandong Blue Economic Zone,Qingdao University of Technology;School of Architecture Engineering,Qingdao Agricultural University;
  • 关键词:泡沫剂 ; 泡沫质量 ; 硫铝酸盐水泥 ; 发泡混凝土 ; 物理性能 ; 轻质保温墙板
  • 英文关键词:foam agent;;foam quality;;sulphoaluminate cement;;foam concrete;;physical property;;lightweight thermal-insulation panel
  • 中文刊名:GSYT
  • 英文刊名:Bulletin of the Chinese Ceramic Society
  • 机构:青岛理工大学土木工程学院;青岛理工大学蓝色经济区工程建设与安全协同创新中心;青岛农业大学建筑工程学院;
  • 出版日期:2018-11-15
  • 出版单位:硅酸盐通报
  • 年:2018
  • 期:v.37;No.266
  • 基金:国家自然科学基金(51578297);; 山东省自然科学基金重大基础研究项目(2017YFC0703603);山东省自然科学基金面上项目(ZR2018MEE043);; 青岛市政府采购项目(402019201700013);; 高等学校学科创新引智计划国家“111”项目
  • 语种:中文;
  • 页:GSYT201811008
  • 页数:7
  • CN:11
  • ISSN:11-5440/TQ
  • 分类号:49-54+65
摘要
为探究泡沫质量稳定性,首先筛选出了复合型泡沫剂作为最优泡沫剂。然后分别试验稀释比为1∶15、1∶20、1∶30、1∶40下的1 h泌水量、1 h沉降距、发泡倍数和泡沫密度。发现发泡倍数随稀释比减小而减小,其它3项随稀释比减小而增大。探究了发泡机进气量对泡沫稳定性影响,按1∶20稀释比进行试验,得到进气量60%时1 h泌水量最小为53. 2 mL,此时泡沫密度最小为40. 1 kg/m~3。之后又通过d_1、d_2和d_3这3组试验初步探究硫铝酸盐基发泡混凝土的物理性能,其干密度、抗压强度、吸水率分别为(291. 9±8. 2) kg/m~3、(0. 68±0. 07) MPa、(44. 9±5. 4)%,满足现代装配式轻质保温墙材基本要求。
        In order to explore the quality and stability of foam,firstly screened the compound foam agent as the optimal foam agent. Then,the 1 h bleeding volume,1 h settling distance,foaming multiple and foam density at 1∶ 15,1∶ 20,1∶ 30 and 1∶ 40 dilution ratios were tested. The foaming multiple decreased with dilution ratio decreasing,and the other three items increased with dilution ratio decreasing. The effect of foam stability caused by the air intake of the foaming machine was also explored. Fixed dilution ratio at 1∶ 20,it found that the minimum bleeding volume was 53. 2 mL in 1 h and the minimum foam density was 40. 1 kg/m~3 when the intake air amount was 60%. Afterwards,the physical properties of sulphoaluminate-based foamed concrete were preliminarily investigated through the three groups marked as d_1,d_2,and d_3. The dry density,compressive strength,and water absorption was( 291. 9 ± 8. 2) kg/m~3,( 0. 68 ± 0. 07) MPa,and( 44. 9 ± 5. 4) %,respectively,meeting the basic requirements of modern assembly lightweight thermal-insulation panel.
引文
[1]耿飞,尹万云,习雨同,等.泡沫混凝土孔隙结构的试验研究[J].硅酸盐通报,2017,36(2):526-532.
    [2] Luo J L,Hou D S,Li Q Y,et al. Comprehensive performances of carbon nanotube reinforced foam concrete with ethyl silicate impregnation[J].Construction and Building Materials,2017,131:512-516.
    [3]周冬冬,廖洪强,宋慧平,等.实验参数对固废基发泡混凝土试块性能的影响研究[J].硅酸盐通报,2017,36(7):2459-2466.
    [4] GB/T 7462-94,表面活性剂发泡力的测定[S].北京:中国标准出版社,1994.
    [5]尹忠,陈馥,梁发书,等.泡沫评价及发泡剂复配的实验研究[J].西南石油学院学报,2004,26(4):56-58.
    [6]高倩,王兆利,赵铁军.泡沫混凝土[J].青岛理工大学学报,2002,23(3):113-115.
    [7]高波,王群力,周孝德.混凝土发泡剂及泡沫稳定性的研究[J].粉煤灰综合利用,2004(1):13-16.
    [8] Fidantsi A,Doxastakis G. Emulsifying and foaming properties of amaranth seed protein isolates[J]. Colloids&Surfaces B Biointerfaces,2001,21(1-3):119-124.
    [9] Davis J P,Foegeding E A,Hansen F K. Electrostatic effects on the yield stress of whey protein isolate foams[J]. Colloids&Surfaces B Biointerfaces,2004,34(1):13-23.
    [10] Ralet M C,Gueguen J. Foaming properties of potato raw proteinsand isolated fractions[J]. LWT-Food Science and Technology,2001,34(4):266-269.
    [11]胡曙光,关凌岳,王发洲,等.泡间水对泡沫混凝土抗压强度影响规律研究[J].功能材料,2013,44(z2):205-209.
    [12]高波,王群力,周孝德.混凝土发泡剂及泡沫稳定性的研究[J].粉煤灰综合利用,2004(1):13-16.
    [13]李森兰,王建平,路长发,等.泡沫混凝土发泡剂评价指标及其测定方法探讨[J].混凝土,2009(10):71-73.
    [14] Kearsley E P,Wainwright P J. The effect of high fly ash content on the compressive strength of foamed concrete[J]. Cement&Concrete Research,2001,31(1):105-112.
    [15] Pickford C,Crompton S. Foamed concrete inbridge construction[J]. Concrete,1996,30(6):14-15.
    [16] Nambiar E K K,Ramamurthy K. Fresh state characteristics of foam concrete[J]. Journal of Materials in Civil Engineering,2008,20(2):111-117.
    [17] Lim S K,Tan C S,Lim Q Y,et al. Fresh and hardened properties of lightweight foamed concrete with palm oil fuel ash as filler[J]. Construction&Building Materials,2013,46(3):39-47.
    [18]李浩然.高稳定发泡剂与泡沫混凝土的优化设计及性能研究[D].南京:南京航空航天大学,2014.
    [19]桑国臣,朱轶韵,杨岗,等.水灰比对轻质水泥基泡沫材料性能的影响[J].材料科学与工程学报,2015,33(3):339-342.
    [20] Mccarthy A,Jones M R. Preliminary views on the potential of foamed concrete as a structural material[J]. Magazine of Concrete Research,2005,57(1):21-31.
    [21]孙诗兵,聂光临,甘延玲,等.调凝剂对物理发泡水泥性能的影响[J].材料科学与工程学报,2015,33(2):178-184.
    [22]林雪志,苑永伟,蔡振云,等.糖基聚氧乙烯醚对混凝土用发泡剂性能的改进[J].材料科学与工程学报,2012,30(4):576-580.
    [23]光鉴淼,吴其胜,刘小艳,等.水热合成镍矿渣加气混凝土及其水化产物[J].材料科学与工程学报,2016,34(3):421-426.
    [24]肖红力.泡沫混凝土发泡剂性能的研究[D].杭州:浙江大学,2011.
    [25]张启.寒冷地区超轻泡沫混凝土的制备与性能[D].哈尔滨:哈尔滨工业大学,2014.
    [26]黄暑年.泡沫混凝土稳定性研究[D].合肥:合肥工业大学,2017.
    [27]李浩然,耿飞,卓跃武,等.泡沫混凝土制备及泡沫稳定性研究[J].低温建筑技术,2013,35(10):1-3.
    [28]朱红英.泡沫混凝土配合比设计及性能研究[D].咸阳:西北农林科技大学,2013.
    [29]张巨松,王才智,黄灵玺,等.泡沫混凝土[M].哈尔滨:哈尔滨工业大学出版社,2016:1.
    [30]黄政宇,孙庆丰,周志敏.硅酸盐-硫铝酸盐水泥超轻泡沫混凝土孔结构及性能研究[J].硅酸盐通报,2013,32(9):1894-1899.
    [31]闫振甲,何艳君.高性能泡沫混凝土保温制品实用技术[M].北京:中国建材工业出版社,2015:6.