Cu-1.5Ni-1.0Co-0.6Si合金的时效行为
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Aging behavior of Cu-1.5Ni-1.0Co-0.6Si alloy
  • 作者:赵转 ; 张毅 ; 田保红 ; 张晓辉 ; 刘勇 ; 王冰洁
  • 英文作者:ZHAO Zhuan;ZHANG Yi;TIAN Bao-hong;ZHANG Xiao-hui;LIU Yong;WANG Bing-jie;School of Materials Science and Engineering, Henan University of Science and Technology;Collaborative Innovation Center of Nonferrous Metals;
  • 关键词:Cu-1.5Ni-1.0Co-0.6Si合金 ; 时效处理 ; 冷轧变形 ; 析出动力学
  • 英文关键词:Cu-1.5Ni-1.0Co-0.6Si alloy;;aging treatment;;cold rolling deformation;;kinetics of precipitation
  • 中文刊名:JSCL
  • 英文刊名:Transactions of Materials and Heat Treatment
  • 机构:河南科技大学材料科学与工程学院;有色金属共性技术河南省协同创新中心;
  • 出版日期:2019-01-25
  • 出版单位:材料热处理学报
  • 年:2019
  • 期:v.40;No.223
  • 基金:国家自然科学基金(U1704143);; 河南省科技开放合作项目(172106000058);; 河南省高校科技创新人才支持计划(18HASTIT024)
  • 语种:中文;
  • 页:JSCL201901025
  • 页数:8
  • CN:01
  • ISSN:11-4545/TG
  • 分类号:74-81
摘要
研究了时效处理后不同程度冷变形的Cu-1.5Ni-1.0Co-0.6Si合金的时效行为,利用光学显微镜和透射电镜分析了合金时效过程和显微组织,并对其孪晶及析出相进行了标定;同时研究了时效处理和冷轧变形量对合金导电率和显微硬度的影响,建立了导电率方程和时效析出动力学方程,探讨了合金的时效强化机制和时效析出动力学。结果表明:经过时效处理,Cu-1.5Ni-1.0Co-0.6Si合金的硬度和导电率均得到提升;Cu-1.5Ni-1.0Co-0.6Si合金经40%冷轧变形后,在500℃时效1 h后,其导电率为44%·IACS,显微硬度为255 HV0.1。Cu-1.5Ni-1.0Co-0.6Si合金在500℃时效时,合金析出相析出完成所用时间最短。
        Aging behavior of Cu-1.5Ni-1.0Co-0.6Si alloy with different cold deformations after aging treatment was studied, the aging process and microstructure of the alloy were analyzed by means of optical microscope and transmission electron microscopy, and the twins and precipitates were calibrated. The effects of aging treatment and cold rolling deformation on conductivity and microhardness of the alloy were studied. The conductivity equation and aging precipitation kinetics equation were established, and the aging strengthening mechanism and aging precipitation kinetics of the alloy were discussed. The results show that the microhardness and the conductivity of the Cu-1.5Ni-1.0Co-0.6Si alloy are improved after aging treatment. After 40% cold rolling and aging at 500 ℃ for 1 h, the conductivity and the microhardness of the Cu-1.5Ni-1.0Co-0.6Si alloy are 44 %·IACS and 255 HV0.1, respectively.When the Cu-1.5Ni-1.0Co-0.6Si alloy is aged at 500 ℃, the precipitated phase of the alloy takes the shortest time to complete the precipitation.
引文
[1] 陈健,刘雪飘,梁欢.铜镍钴铍合金的时效相变动力学方程[J].机械工程材料,2011,35(1):19-21.CHEN Jian,LIU Xue-piao,LIANG Huan.Aging transformation kinetic equation of Cu-Ni-Co-Be alloy[J].Materials for Mechanical Engineering,2011,35(1):19-21.
    [2] 张毅,刘平,田保红,等.Cu-2.0Ni-0.5Si合金时效析出动力学研究[J].功能材料,2010,41(10):1827-1830.ZHANG Yi,LIU Ping,TIAN Bao-hong,et al.Study on aging kinetics of Cu-2.0Ni-0.5Si alloy[J].Journal of Functional Materials,2010,41(10):1827-1830.
    [3] 李鹏.热处理对铜镍钴合金组织性能影响的研究[D].兰州:兰州理工大学,2014.LI Peng.Effect treatmeng on microstructure and mechanical properties of Cu-Ni-Co alloy[D].LanZhou:LanZhou University of Technology,2014.
    [4] 黄国杰,肖翔鹏,马吉苗,等.固溶时效对Cu-1.4Ni-1.2Co-0.6Si合金组织性能的影响[J].材料热处理学报,2014,35(8):58-63.HUANG Guo-jie,XIAO Xiang-peng,MA Ji-miao,et al.Effect of solid solution and aging process on microstructure and properties of Cu-1.4Ni-1.2Co-0.6Si alloy[J].Transactions of Materials and Heat Treatment,2014,35(8):58-63.
    [5] Ozawa A,Watanabe C,Monzen R.Influence of Co on strength of Cu-Ni-Co-Si alloy[J].Materials Science Forum,2014,783-786:2468-2473.
    [6] 邓猛,贾淑果,陈少华,等.铜镍硅锌镁合金的时效析出动力学[J].机械工程材料,2014,38(3):10-13.DENG Meng,JIA Shu-guo,CHEN Shao-hua,et al.Aging precipitation kinetics of Cu-Ni-Si-Zn-Mg alloy[J].Materials for Mechancial Engineering,2014,38(3):10-13.
    [7] Suzuki S,Shibutani N,Mimura K,et al.Improvement in strength and electrical conductivity of Cu-Ni-Si alloys by aging and cold rolling[J].Journal of Alloys and Compounds,2006,417(1):116-120.
    [8] 郑雁军,姚家鑫,李国俊.高强高导电铜合金的研究现状及展望[J].材料导报,1997(6):52-55.ZHENG Yan-jun,YAO Jia-xin,LI Guo-jun.The present situation and future prospect of the research on high-strength high-conductivity copper-based alloys[J].Materials Review,1997(6):52-55.
    [9] 张毅,刘平,田保红,等.微量合金元素对Cu-Ni-Si合金组织和性能的影响[J].热加工工艺,2011,40(6):11-14.ZHANG Yi,LIU Ping,TIAN Bao-hong,et al.Effect of trace element on microstructure and properties of Cu-Ni-Si alloy[J].Hot Working Technology,2011,40(6):11-14.
    [10] Freitas P P,Berger L.Effect of atomic order on the electrical resistivity of alloys[J].Physical Review B Condensed Matter,1988,37(11):6079-6084.
    [11] 孙健,刘平,刘新宽,等.Cu-Ni-Si合金连续挤压过程中的组织演变及性能[J].中国有色金属学报,2014,24(4):944-949.SUN Jian,LIU Ping,LIU Xin-kuan,et al.Microstructure evolution and properties of Cu-Ni-Si alloy during continuous extrusion process[J].The Chinese Journal of Nonferrous Metals,2014,24(4):944-949.
    [12] Jia L,Xie H,Tao S P,et al.Microstructure and selection of grain boundary phase of Cu-Ni-Si ternary alloys[J].Rare Metal Materials and Engineering,2015,44(12):3050-3054.
    [13] 潘志勇,汪明朴,李周,等.时效及冷变形对Cu-5.2Ni-1.2Si合金组织和性能的影响[J].稀有金属材料与工程,2009,38(1):485-489.PAN Zhi-yong,WANG Ming-pu,LI Zhou,et al.Effect of aging and cold deforming on microstructure and performance of Cu-5.2Ni-1.2Si alloy[J].Rare Metal Materials and Engineering,2009,38(1):485-489.
    [14] Shaaban E R,Kansal I,Shapaan M,et al.Thermal stability and crystallization kinetics of ternary Se-Te-Sb semiconducting glassy alloys[J].Journal of Thermal Analysis and Calorimetry,2009,98(2):347-354.
    [15] Zhang Y,Liu P,Tian B H,et al.Microstructure and properties of Cu-3.2Ni-0.75Si-0.3Zn alloy for lead frame[J].Advanced Materials Research,2007,26-28:569-572.Aging behavior of Cu-1.5Ni-1.0Co-0.6Si alloy ZHAO Zhuan, ZHANG Yi, TIAN Bao-hong, ZHANG Xiao-hui, LIU Yong, WANG Bing-jie(68)