底板隐伏陷落柱突水主控因素数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation of Main Controlling Factors of Water Inrush from Concealed Collapse Column of Floor
  • 作者:刘勇胜
  • 英文作者:LIU Yongsheng;Coal Branch of Kailuan(Group)Co., Ltd.;
  • 关键词:底板隐伏 ; 岩溶陷落柱 ; 突水危险 ; 围岩应力 ; 塑性破坏 ; 围岩位移 ; 渗流场
  • 英文关键词:concealed floor;;karst collapse column;;water inrush danger;;surrounding rock stress;;plastic failure;;displacement of surrounding rock;;seepage field
  • 中文刊名:MKAQ
  • 英文刊名:Safety in Coal Mines
  • 机构:开滦集团煤业分公司;
  • 出版日期:2019-01-20
  • 出版单位:煤矿安全
  • 年:2019
  • 期:v.50;No.535
  • 基金:国家自然科学基金资助项目(51674158);; 泰山学者优势特色学科人才团队支持计划资助项目
  • 语种:中文;
  • 页:MKAQ201901050
  • 页数:5
  • CN:01
  • ISSN:21-1232/TD
  • 分类号:208-212
摘要
为了弄清采动过程在底板陷落柱围岩破坏及突水中所起到的作用,采用理论分析、数值模拟、物理探测的方法从发育特征等方面分析归纳出葛亭煤矿底板隐伏岩溶陷落柱的基本特征。以葛亭煤矿2160工作面发现的SX1陷落柱为研究对象,通过FLAC3D模拟陷落柱在采动过程中煤层顶底板和陷落柱围岩应力场、渗流场、位移场和塑性破坏区的变化情况。结果表明:随着工作面采高和含水层水压的增加,陷落柱周围围岩应力场、塑性破坏区、位移场和渗流场随着采高和含水层水压的增加呈现增大的趋势;陷落柱属于天然的低应力集中区,随着推进距离的增加,原有的应力场重新分布,陷落柱顶部围岩的位移不断增加。
        In order to understand the role of mining process in the failure and water inrush of the surrounding rock of floor collapse column, the basic characteristics of underground karst collapse columns in Geting Coal Mine were concluded by theoretical analysis, numerical simulation and physical detection. Take SX1 collapse column discovered at working face 2160 of Geting Coal Mine as the research object. FLAC3 Dwas used to simulate the variation of the stress field, seepage field, displacement field and plastic failure area of coal seam roof and surrounding rock of collapse column during mining. The results show that the stress field, plastic failure zone, displacement field and seepage field around collapse column increase with the increase of working face mining height and aquifer pressure. Collapse column belongs to natural low-stress concentration area. With the increase of advancing distance, the original stress field is redistributed, and the displacement of surrounding rock at the top of collapse column increases continuously.
引文
[1]王冬平.采动诱发隐伏陷落柱突水与渗流耦合模型研究[J].煤炭工程,2016,48(7):93-96.
    [2]李振华.带压开采陷落柱突水影响因素数值模拟[J].安全与环境学报,2015,15(4):41-46.
    [3]张凯.陷落柱的变质量渗流特性及突水数值模拟[J].采矿与安全工程学报,2013,30(6):892-896.
    [4]杨志豪.陷落柱影响采场围岩破坏的数值模拟分析[J].山东科技大学学报,2011,30(5):26-29.
    [5]许进鹏,梁开武.陷落柱形成的力学机理及数值模拟研究[J].采矿与安全工程学报,2008(1):82-86.
    [6]李连崇.煤层底板陷落柱活化突水过程的数值模拟[J].采矿与安全工程学报,2009,26(2):158-162.
    [7]韩玫.基于优化组合赋权法的都汶高速沿线泥石流危险度评价[J].山地学报,2015,33(5):597-602.
    [8]姚轲.煤层陷落柱防水煤柱数值模拟研究[J].华北科技学院学报,2016,13(6):12-19.
    [9]王家臣.预测陷落柱突水灾害的物理模型及理论[J].北京科技大学学报,2010,32(10):1243-1247.
    [10]王家臣.导水陷落柱突水模拟试验台研制及应用[J].采矿与安全工程学报,2010,27(3):305-309.