水蒸气蒸馏法与超临界CO_2萃取法结合气相色谱-质谱分析胡椒木精油成分
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of Compositions of Essential Oil in Zanthoxylum Piperitum by Gas Chromatography-Mass Spectrometry with Steam Distillation and Supercritical CO_2 Extraction
  • 作者:杜丽 ; 牛先前 ; 林晓红 ; 郑国华
  • 英文作者:DU Li-jun;NIU Xian-qian;LIN Xiao-hong;ZHENG Guo-hua;Zhangzhou City College;Horticulture College,Fujian Agriculture and Forestry University;Fujian Institute of Tropical Crops;
  • 关键词:水蒸气蒸馏(SD)法 ; 超临界CO2萃取(SC-CO2)法 ; 胡椒木 ; 精油 ; GC-MS
  • 英文关键词:steam distillation(SD);;supercritical CO2 extraction(SC-CO2);;Zanthoxylum piperitum;;essential oil;;GC-MS
  • 中文刊名:TEST
  • 英文刊名:Journal of Instrumental Analysis
  • 机构:漳州城市职业学院;福建农林大学园艺学院;福建省热带作物科学研究所;
  • 出版日期:2019-01-25
  • 出版单位:分析测试学报
  • 年:2019
  • 期:v.38
  • 基金:国家科技支撑计划项目(2014BAD15B00);; 福建省中青年教师教育科研项目(JAT171150);; 漳州市自然科学基金计划项目(ZZ2017J42)
  • 语种:中文;
  • 页:TEST201901015
  • 页数:6
  • CN:01
  • ISSN:44-1318/TH
  • 分类号:97-102
摘要
以水蒸气蒸馏(SD)法和超临界CO_2萃取(SC-CO_2)法分别提取胡椒木叶片精油,经气相色谱-质谱(GC-MS)分析其组分差异,并通过DPPH·自由基清除能力和还原力测定对提取液品质进行判断。结果表明:SD法和SC-CO_2法获得的主要成分为脂类和烯烃类物质,且组分数量同为34种,但两种方法获得的化学成分有所不同。SD法中相对含量较高的为苯乙烯(43. 15%)、顺式肉桂酸甲酯(30. 33%)、α-石竹烯(1. 81%)、α-月桂烯(8. 41%)等;而SC-CO_2法获得相对含量较高的物质为顺式肉桂酸甲酯(73. 91%)、柠檬烯(11. 13%)、α-石竹烯(4. 12%)等。抗氧化试验表明,SC-CO_2法提取精油清除DPPH·自由基能力在8 mg/mL达到2,6-二叔丁基-4-甲基苯酚(BHT)抑制率的97. 27%,IC_(50)为3. 173 3,还原力在20 mg/mL达到Vc的34. 86%; SD法在20 mg/mL的抑制率仅为BHT的14. 27%,还原力在20 mg/mL时仅为Vc的5. 98%。两种提取方法的分析结果显示,不同提取工艺的选择对获得胡椒木精油中活性成分存在明显差异,差异主要为酚类、萜类等还原性和抗氧化性较强的物质,且SC-CO_2法获得的胡椒木精油中含有较多的驱虫抗菌活性物质,提取效果优于SD法。
        A method of gas chromatography-mass spectrometry( GC-MS) with steam distillation(SD) and supercritical CO_2 extraction( SC-CO_2) was developed for the analysis of components of essential oil in leaves of Zanthoxylum piperitum ‘Odorum'. The samples were extracted by SD and SC-CO_2,respectively,then analyzed by GC-MS. The quality of extracts was distinguished by determining the scavenging ability and reducibility for free radical DPPH·. A total of 34 components,extracted by both SD and SC-CO_2,were mainly lipids and alkenes. However,the types of components obtained by the two methods were significantly different. The SD extracted components,contained relatively high contents of ethyl benzene(43. 15%),methyl cinnamate < cis->(30. 33%),α-caryophyllene(1. 81%) and α-myrcene(8. 41%). In contrast,the SC-CO_2 method mainly yielded methyl cinnamate < cis->(73. 91%),limonene(11. 13%) and α-caryophyllene(4. 12%). As the scavenging ability for DPPH· was concerned,the essential oils extracted by SC-CO_2 reached the butylated hydroxytoluene( BHT) inhibition rate of 97. 27% at the concentration of 8 mg/mL,with an IC_(50) of 3. 173 3. At 20 mg/mL,their reducibility reached to 34. 86% of that of vitamin C( Vc).In contrast,the SD-extracted essential oils only had a BHT inhibition rate of 14. 27% at 20 mg/mL,and 5. 98% of Vc reducibility. Therefore,the differential components between the two extraction methods were mainly those reductive and antioxidative substances such as phenols and terpenes. In conclusion,the essential oils extracted from leaves of Zanthoxylum piperitum by SC-CO_2 contained more insect-repelling and antimicrobial agents,and its extraction effects were superior to those of SD method.
引文
[1]Niu X Q,Du L J,Lin X X,Zheng G H.J.Tropical Subtropical Bot.(牛先前,杜丽君,林秀香,郑国华.热带亚热带植物学报),2016,24(1):93-98.
    [2]Zhang C K,Zheng Q A,Mi L X,Tu Z B.J.Wuhan Bot.Res.(张灿奎,郑庆安,糜留西,屠治本.武汉植物学研究),2000,18(5):441-442.
    [3]Guo H R,Xiao Y W,Jin X.J.Wuhan Bot.Res.(郭慧然,肖耀文,金鑫.武汉植物学研究),1987,5(1):65-67.
    [4]Hisatomi E,Matsui M,Kubota K,Matsui M.J.Agric.Food Chem.,2000,48(10):4924-4928.
    [5]Hur J M,Park J G,Yang K H.Biosci.Biotechnol.Biochem.,2003,67(5):945-950.
    [6]Guo J,Wang Y,Ji T.Chin.Food Addit.(郭静,王寅,吉恬.中国食品添加剂),2007,(3):139-142.
    [7]Changho J,Jihyun K,Jihye K,Gwinam C,Daeok K,Hojin H.Food Chem.,2011,125(2):417-422.
    [8]Du L J,Zheng G H,Niu X Q.Acta Horticulturae Sinica(杜丽君,郑国华,牛先前.热带作物学报),2013,34(5):995-999.
    [9]Kim C,Lee S J,Hyun C G,Lee N H.Int.J.Pharmacol.,2013,9(4):258-264.
    [10]Chinese Pharmacopoeia.Part 1.Beijing:Chemical Industry Publisher(中华人民共和国药典.一部.北京:化学工业出版社),2005:185.
    [11]Feresin G E,Tapia A,Angel G R,Delporte C,Erazo N B,Hirschmann G S.J.Pharm.Pharmacol.,2002,54(6):835-844.
    [12]Xing S L,Zhang P H,Ji Q L,Jia H L,Wang X H.Food Sci.(邢思雷,张丕鸿,计巧灵,贾红丽,王雪华.食品科学),2010,31(7):154-159.
    [13]Lee J H,Jang M R J,Seo J E,Kim G H.J.Food Biochem.,2012,36(3):667-674.
    [14]Hieu T T,Kim S K,Kwon H W,Ahn Y J.Pest Manage.Sci.,2010,66(11):1191-1198.
    [15]Wang Z D,Chen J Z,Song Z Q,Jiang Z K,Han Z J,Song J.Acta Entomologica Sinica(王宗德,陈金珠,宋湛谦,姜志宽,韩招久,宋杰.昆虫学报),2010,53(11):1241-1247.
    [16]Chen J Z,Wang Z D,Song S Q,Jiang Z K,Hang Z J,Chen C.Acta Agric.Univ.Jiangxiensis(陈金珠,王宗德,宋湛谦,姜志宽,韩招久,陈超.江西农业大学学报),2006,28(5):765-768.
    [17]Peng Y H,Zhang Y,Zeng D Q,Chen F F,Zhong H Y,Li Z H,Huang Y.Chin.J.Appl.Ecol.(彭映辉,张云,曾冬琴,陈飞飞,钟海雁,李忠海,黄谊.应用生态学报),2009,20(6):1488-1494.
    [18]Jin J Z,Shen M M.Guangzhou Chem.(金建忠,沈敏敏.广州化学),2006,31(3):51-56.
    [19]Wang J E,Zhu Y L,Xiong C J.Shangdong Chem.Ind.(王金娥,朱岳麟,熊常健.山东化工),2011,40(3):47-50.
    [20]Zhang S Q,Kan J Q.Food Sci.(张世奇,阚建全.食品科学),2011,32(8):281-285.
    [21]Nilsson U,Magnusson K,Karlberg O,Karlberg A.Contact Dermatitis,2010,40(3):127-132.
    [22]Jaenson G T,Palsson K,Borg-Karlso A K.J.Med.Entomol.,2006,43(1):113-119.
    [23]Gillij Y G,Gleiser R M,Zygadlo J A.Bioresour.Technol.,2008,99(7):2507-2515.
    [24]Yamazaki E I,Kurita O,Inoue T.Food Chem.,2007,100(1):171-177.