超声振动法制备半固态TiAl_3/A356复合材料浆料的微观组织演变(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microstructure Evolution of Semi-solid TiAl_3/A356 Composite Prepared by Ultrasonic Vibration
  • 作者:孙勇辉 ; 闫洪 ; 陈小会 ; 万骏 ; 喻保标
  • 英文作者:Sun Yonghui;Yan Hong;Chen Xiaohui;Wan Jun;Yu Baobiao;Nanchang University;Xinyu University;
  • 关键词:微观组织 ; 半固态 ; 铝基复合材料 ; 超声振动 ; 初生α-Al颗粒
  • 英文关键词:microstructure;;semi-solid;;aluminum matrix composite;;ultrasonic vibration;;primary α-Al particle
  • 中文刊名:COSE
  • 英文刊名:Rare Metal Materials and Engineering
  • 机构:南昌大学;新余学院;
  • 出版日期:2019-01-15
  • 出版单位:稀有金属材料与工程
  • 年:2019
  • 期:v.48;No.390
  • 基金:National Natural Science Foundation of China(51364035);; Natural Science Foundation of Jiangxi Province(20171BAB206034)
  • 语种:英文;
  • 页:COSE201901004
  • 页数:9
  • CN:01
  • ISSN:61-1154/TG
  • 分类号:28-36
摘要
利用超声振动法制备半固态TiAl_3/A356铝基复合材料浆料,利用扫描电镜和X射线衍射技术研究了超声温度,超声时间和超声功率对半固态TiAl_3/A356铝基复合材料浆料的微观组织的影响。结果显示,初生α-Al颗粒的尺寸随着超声温度和超声功率的降低而减小;随着超声时间的增加,先减小后增大。当超声温度为608℃、超声功率为1000 W、超声时间为60 s时,获得的半固态浆料组织中的初生α-Al颗粒形貌较为理想,平均初生α-Al颗粒尺寸为62μm,形状系数为0.8。微观组织演变的机理是空化效应和声流效应引起的形核率和过冷度的增加。此外,原位生成的TiAl_3颗粒有很强的结合α-Al颗粒的能力。
        The semi-solid TiAl_3/A356 aluminum composite was prepared by ultrasonic vibration treatment(UVT). The effects of UVT temperature, time and power on the microstructure of semi-solid slurry of TiAl_3/A356 composite were studied by SEM and XRD. The results reveal that the size of primary α-Al particles increases with the decrease of UVT temperature and power. The size of the primary α-Al particle decreases first and then increases with the increase of UVT time. When treated at a UVT temperature of 608 °C and a UVT power of 1 kW for 60 s, a good primary α-Al particle morphology with an average size of 62 μm and a shape coefficient of 0.8 can be obtained. The mechanism involved in the development of microstructure is the result of the increase of nucleation rates and undercooling caused by cavitation and acoustic streaming. Furthermore, the in situ TiAl_3 particles have strong ability to nucleate α-Al particles.
引文
1 Chen Z G,Ren J K,Zhang J S et al.Rare Metal Materials&Engineering[J],2015,44(10):2341
    2 Ma K K,Wen H M,Hu T et al.Acta Materialia[J],2014,62(5):141
    3 Xu F S,Guo X B,Wu P F et al.Rare Metal Materials&Engineering[J],2017,46(4):0876
    4 Kong D J,Wang J C,Liu H.Rare Metal Materials&Engineering[J],2016,45(5):1122
    5 Jian H G,Yin Z M,Jiang F et al.Rare Metal Materials&Engineering[J],2014,43(6):1332
    6 Qi X,Song R G,Qi W J et al.Rare Metal Materials&Engineering[J],2016,45(8):1943
    7 Zhou W W,Yamamoto G,Fan Y C et al.Carbon[J],2016,106:37
    8 Yuan L L,Han J T,Liu J et al.Tribology International[J],2016,98:41
    9 Xie B,Wang X G.Rare Metal Materials&Engineering[J],2015,44(5):1057
    10 Wang Z,Prashanth K G,Chaubey A K et al.Journal of Alloys&Compounds[J],2015,630:256
    11 Qi C,Wang J N,Lin Y H.Bioresource Technology[J],2016,211:654
    12 Zhao Jianhua,Shang Zhengheng,Wang Li et al.Rare Metal Materials&Engineering[J],2015,44(12):3141(in Chinese)
    13 Kim J H,Lee K M,Lee H D et al.Materials Transactions[J],2015,56(3):450
    14 Chen X H,Yan H.Materials&Design[J],2016,94:148
    15 Zhang Junkai,Zhang Qin,Li Ying.Rare Metal Materials&Engineering[J],2017,46(1):274(in Chinese)
    16 Zhang Yunpeng,Sun Guangbiao,Zhang Anzhou.Rare Metal Materials&Engineering[J],2014,43(1):189(in Chinese)
    17 Huang W X,Yan H.Journal of Rare Earths[J],2014,32(6):573
    18 Chen X H,Yan H.Journal of Materials Research[J],2015,30(14):2197
    19 Yan H,Rao Y S,He R.Journal of Materials Processing Technology[J],2014,214(3):612
    20 Jiang R P,Li X Q,Zhang M.Metals&Materials International[J],2015,21(1):104
    21 Wan J,Yan H,Xu D.International Journal of Materials Research[J],2015,106(12):1244
    22 Liew P J,Yan J W,Kuriyagawa T.International Journal of Machine Tools&Manufacture[J],2014,76(1):13
    23 Lakshmanan P,Kalaichelvan K,Somakumar T.Materials&Manufacturing Processes[J],2015,31(10):1275