气候变化条件下山西翅果油树适宜分布区的空间迁移预测
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Prediction on spatial migration of suitable distribution of Elaeagnus mollis under climate change conditions in Shanxi Province,China
  • 作者:张殷波 ; 刘彦岚 ; 秦浩 ; 孟庆欣
  • 英文作者:ZHANG Yin-bo;LIU Yan-lan;QIN Hao;MENG Qing-xin;Department of Environment and Resources,Shanxi University;School of Statistics,Shanxi University of Finance & Economics;
  • 关键词:翅果油树 ; Maxent ; 气候变化 ; 空间格局 ; 迁移趋势
  • 英文关键词:Elaeagnus mollis;;Maxent;;climate change;;spatial pattern;;migration tend
  • 中文刊名:YYSB
  • 英文刊名:Chinese Journal of Applied Ecology
  • 机构:山西大学环境与资源学院;山西财经大学统计学院;
  • 出版日期:2018-12-18 09:15
  • 出版单位:应用生态学报
  • 年:2019
  • 期:v.30
  • 基金:山西省回国留学人员科研项目(2017-022);; 山西省自然科学基金项目(2011011031-1)资助~~
  • 语种:中文;
  • 页:YYSB201902018
  • 页数:7
  • CN:02
  • ISSN:21-1253/Q
  • 分类号:140-146
摘要
气候变化对生物多样性的影响及其适应性直接关系着生物多样性保护的成效,预测未来气候变化条件下受威胁物种适宜生境的空间变化趋势对生物多样性保护具有重要的理论和实践意义.本文选取我国特有濒危植物翅果油树为研究对象,在区域尺度上预测气候变化条件下的物种适宜分布区,进而通过空间分析模拟不同气候变化情景下其适宜分布区的空间变化和迁移趋势.最大熵(Maxent)物种分布模型预测结果显示:翅果油树的两个适宜分布区在未来气候变化情景下呈现不同的迁移趋势,吕梁山适生区呈现出纬度方向上的轻微波动,而中条山适生区则呈现出向高海拔地区迁移的趋势.适生区空间格局变化分析表明,翅果油树当前适生区的边界存在明显变化区域,包括新增适生区(零星分布在两个适生区的边缘地带,新增率为9.1%~20.9%)和丧失适生区(集中分布在吕梁山适生区北缘和中条山适生区东南部,丧失率为16.4%~31.2%),且两者对气候变化的响应较为敏感.利用分类统计工具Zonal计算得出,在未来气候变化条件下吕梁山适生区的中心点呈现向南迁移的趋势,最大迁移距离为7.451 km;中条山适生区的中心点则呈现出向西北迁移的趋势,最大迁移距离为8.284 km.表明山西翅果油树的分布对气候变化的响应较为剧烈.
        The impacts of climate change on biodiversity and its adaptation will directly affect the efficiency of biodiversity conservation. Predicting spatial variation of suitable habitats of threatened species under future climate change has important theoretical and practical significance for biodiversity conservation. In this study,we predicted the suitable distribution of Elaeagnus mollis,an endemic endangered plant in China,under climate change at regional scales. Then,we simulated the spatial variation and migration tend of suitable distribution under different climate change scenarios by spatial analysis. The results from Maxent model showed that the two suitable distribution areas of E. mollis presented different migration trends under the future climate change scenarios: the suitable areas of Lyuliang Mountain would fluctuate slightly in latitudinal direction,while that in Zhongtiao Mountain would migrate to high elevation. Analysis of the spatial pattern change of the suitable areas indicated that the areas with obvious change occurred at the boundary of the suitable areas of E.mollis,including new suitable area and lost suitable area. The new suitable areas were scattered in the marginal of the original,with the increase rate of 9.1% to 20.9%,and the lost suitable areas were concentrated in the northern Lyuliang Mountain suitable areas and the southeast Zhongtiao Mountain suitable areas,with the loss rate of 16.4% to 31.1%. These regions were more sensitive to climate change. Using the classification statistical tool of Zonal,we found that the central points of the Lyuliang Mountain suitable areas showed southward migration trend under the future climate change,with the maximum migration distance of 7.451 km,while the center point of the Zhongtiao Mountain suitable areas showed migration trend to the northwest,with the maximum migration distance of 8.284 km. Our results indicated that the response of E. mollis distribution in Shanxi to climate change was intense.
引文
[1] Zhang F(张峰). Study on Quantitative Ecology of Rare and Endangered Plant Elaeagnus mollis. Beijing:Science Press,2012(in Chinese)
    [2] Xie S-L(谢树莲),Ling Y-H(凌云浩). The biology features and conservation of Elaeagnus mollis a rare and endangered plant species. Bulletin of Botanical Research(植物研究),1997,17(2):153-157(in Chinese)
    [3] Wang Z-H(王志红),Zhang K(张坤),Zhou W-Z(周维芝),et al. Study on Elaeagnus mollis resource and its sustainable utilization in Shanxi. Journal of Shanxi University(Natural Science)(山西大学学报:自然科学版),2002,25(4):358-360(in Chinese)
    [4] Chen IC,Hill JK,Ohlemüller R,et al. Rapid range shifts of species associated with high levels of climate warming. Science,2011,333:1024-1026
    [5] Pio DV,Engler R,Linder HP,et al. Climate change effects on animal and plant phylogenetic diversity in southern Africa. Global Change Biology, 2014, 20:1538-1549
    [6] Dieleman CM,Branfireun BA,McLaughlin JW,et al.Climate change drives a shift in peatland ecosystem plant community:Implications for ecosystem function and stability. Global Change Biology,2015,21:388-395
    [7] Ruiz-Labourdette D,Nogués-Bravo D,Ollero HS,et al.Forest composition in Mediterranean mountains is projected to shift along the entire elevational gradient under climate change. Journal of Biogeography,2012,39:162-176
    [8] Kozak KH,Graham CH,Wiens JJ. Integrating GISbased environmental data into evolutionary biology.Trends in Ecology&Evolution,2008,23:141-148
    [9] Liu HY,Yin Y. Response of forest distribution to past climate change:An insight into future predictions. Chinese Science Bulletin,2013,58:4426-4436
    [10] Bellard C,Bertelsmeier C,Leadley P,et al. Impacts of climate change on the future of biodiversity. Ecology Letters,2012,15:365-377
    [11] Espndola A,Pellissier L,Maiorano L,et al. Predicting present and future intra-specific genetic structure through niche hind casting across 24 millennia. Ecology Letters,2012,15:649-657
    [12] Zhang Y-B(张殷波),Zhang F(张峰). Structural diversity of Elaeagnus mollis communities. Chinese Journal of Ecology(生态学杂志),2012,31(8):1936-1941(in Chinese)
    [13] Zhang F(张峰),Shangguan T-L(上官铁梁).Study on the species diversity of Elaeagnus mollis community in Shanxi. Acta Phytoecologica Sinica(植物生态学报),1999,23(5):471-474(in Chinese)
    [14] Zhang F(张峰),Shangguan T-L(上官铁梁).Niche characteristics of dominant populations in Elaeagnus mollis communities,Shanxi. Acta Botanica BorealiOccidentalia Sinica(西北植物学报),2004,24(1):70-74(in Chinese)
    [15] Zhang F(张峰),Shangguan T-L(上官铁梁). Population pattern of dominant species in Elaeagnus mollis communities,Shanxi. Acta Phytoecologica Sinica(植物生态学报),2000,24(5):590-594(in Chinese)
    [16] Qin Y-Y(秦永燕),Wang Y-L(王祎玲),Zhang Q-D(张钦弟),et al. Analysis on the population genetic diversity of an endangered plant(Elaeagnus mollis)by SSR markers. Journal of Wuhan Botanical Research(武汉植物学研究),2010,28(4):466-472(in Chinese)
    [17] Xu Q(许强),Lyu J-Z(吕金枝),Miao Y-M(苗艳明),et al. Spatial distribution patterns and association of major species in Elaeagnus mollis communities.Chinese Bulletin of Botany(植物学报),2016,51(1):49-57(in Chinese)
    [18] Zhang F(张峰),Han S-Q(韩书权),Shangguan T-L(上官铁梁). Analysis on relationship between geographic distribution of Elaeagnus mollis and eco-environment factors in China. Journal of Shanxi University(Natural Science)(山西大学学报:自然科学版),2001,24(1):86-88(in Chinese)
    [19] Zhang Y-B(张殷波),Gao C-H(高晨虹),Qin H(秦浩). Prediction of suitable distribution of Elaeagnus mollis and response to climate change based on the Maxent model. Chinese Journal of Applied Ecology(应用生态学报),2018,29(4):1156-1162(in Chinese)
    [20] Graham MH. Confronting multicol linearity in ecological multiple regression. Ecology,2003,84:2809-2815
    [21] Pearson RG,Raxworthy CJ,Nakamura M,et al. Predicting species distributions from small numbers of occurrence records:A test case using cryptic geckos in Madagascar. Journal of Biogeography,2006,34:102-117
    [22] Xu W-H(徐卫华),Luo C(罗翀). Application of MAXENT model in Rhinopithecus roxllanae habitat assessment in Qinling Mountain. Forest Engineering(森林工程),2010,26(2):1-6(in Chinese)
    [23] Swets JA. Measuring the accuracy of diagnostic systems.Science,1988,240:1285-1293
    [24] Raes N,Roos MC,Slik JWF,et al. Botanical richness and endemicity patterns of Borneo derived from species distribution models. Ecography,2009,32:180-192
    [25] Bateman BL,Vanderwal J,Williams SE,et al. Biotic interactions influence the projected distribution of a specialist mammal under climate change. Diversity and Distributions,2012,18:861-872
    [26] Zhang MG,Zhou ZK,Chen WY,et al. Major declines of woody plant species ranges under climate change in Yunnan,China. Diversity and Distributions,2013,20:405-415
    [27] Parmesan C. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology,Evolution&Systematics,2006,37:637-669
    [28] Robertj W,David G,Javier G,et al. An elevational shift in butterfly species richness and composition accompanying recent climate change. Global Change Biology,2007,13:1873-1887
    [29] Wang G-X(王国祥),Liu X-Q(刘学勤),Qiao J(乔俊). Shanxi Forest. Beijing:China Forestry Press,1992(in Chinese)
    [30] Yang K-M(杨克明),Liu Z-G(刘珍贵),Yang T-E(杨天恩). Seeding and forestation tests of Elaeagnus mollis at high cold and damp mountains. Nonwood Forest Research(经济林研究),2010,28(4):104-107(in Chinese)
    [31] Yang W-Z(杨文忠),Kang H-M(康洪梅),Xiang ZY(向振勇),et al. Methods and techniques for conserving wild plant species with extremely small populations.Journal of West China Forestry Science(西部林业科学),2014,43(5):24-29(in Chinese)